1
|
Gebre SG, Scott RT, Saravia-Butler AM, Lopez DK, Sanders LM, Costes SV. NASA open science data repository: open science for life in space. Nucleic Acids Res 2025; 53:D1697-D1710. [PMID: 39558178 PMCID: PMC11701653 DOI: 10.1093/nar/gkae1116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/11/2024] [Accepted: 10/28/2024] [Indexed: 11/20/2024] Open
Abstract
Space biology and health data are critical for the success of deep space missions and sustainable human presence off-world. At the core of effectively managing biomedical risks is the commitment to open science principles, which ensure that data are findable, accessible, interoperable, reusable, reproducible and maximally open. The 2021 integration of the Ames Life Sciences Data Archive with GeneLab to establish the NASA Open Science Data Repository significantly enhanced access to a wide range of life sciences, biomedical-clinical and mission telemetry data alongside existing 'omics data from GeneLab. This paper describes the new database, its architecture and new data streams supporting diverse data types and enhancing data submission, retrieval and analysis. Features include the biological data management environment for improved data submission, a new user interface, controlled data access, an enhanced API and comprehensive public visualization tools for environmental telemetry, radiation dosimetry data and 'omics analyses. By fostering global collaboration through its analysis working groups and training programs, the open science data repository promotes widespread engagement in space biology, ensuring transparency and inclusivity in research. It supports the global scientific community in advancing our understanding of spaceflight's impact on biological systems, ensuring humans will thrive in future deep space missions.
Collapse
Affiliation(s)
- Samrawit G Gebre
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Ryan T Scott
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | | | - Danielle K Lopez
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Lauren M Sanders
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Sylvain V Costes
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| |
Collapse
|
2
|
Guan Y, Kümper J, Mürtz SD, Kumari S, Hausoul PJC, Palkovits R, Sautet P. Origin of copper dissolution under electrocatalytic reduction conditions involving amines. Chem Sci 2024:d4sc01944j. [PMID: 39170715 PMCID: PMC11331451 DOI: 10.1039/d4sc01944j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
Cu dissolution has been identified as the dominant process that causes cathode degradation and losses even under cathodic conditions involving methylamine. Despite extensive experimental research, our fundamental and theoretical understanding of the atomic-scale mechanism for Cu dissolution under electrochemical conditions, eventually coupled with surface restructuring processes, is limited. Here, driven by the observation that the working Cu electrode is corroded using mixtures of acetone and methylamine even under reductive potential conditions (-0.75 V vs. RHE), we employed Grand Canonical density functional theory to understand this dynamic process under potential from a microscopic perspective. We show that amine ligands in solution directly chemisorb on the electrode, coordinate with the metal center, and drive the rearrangement of the copper surface by extracting Cu as adatoms in low coordination positions, where other amine ligands can coordinate and stabilize a surface copper-ligand complex, finally forming a detached Cu-amine cationic complex in solution, even under negative potential conditions. Calculations predict that dissolution would occur for a potential of -1.1 V vs. RHE or above. Our work provides a fundamental understanding of Cu dissolution facilitated by surface restructuring in amine solutions under electroreduction conditions, which is required for the rational design of durable Cu-based cathodes for electrochemical amination or other amine involving reduction processes.
Collapse
Affiliation(s)
- Yani Guan
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles Los Angeles CA 90095 USA
| | - Justus Kümper
- Chair of Heterogeneous Catalysis and Technical Chemistry, RWTH Aachen University Worringerweg 2 52074 Aachen Germany
| | - Sonja D Mürtz
- Chair of Heterogeneous Catalysis and Technical Chemistry, RWTH Aachen University Worringerweg 2 52074 Aachen Germany
| | - Simran Kumari
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles Los Angeles CA 90095 USA
| | - Peter J C Hausoul
- Chair of Heterogeneous Catalysis and Technical Chemistry, RWTH Aachen University Worringerweg 2 52074 Aachen Germany
| | - Regina Palkovits
- Chair of Heterogeneous Catalysis and Technical Chemistry, RWTH Aachen University Worringerweg 2 52074 Aachen Germany
- Institute for Sustainable Hydrogen Economy (INW-2), Forschungszentrum Jülich Am Brainergy Park 4 52428 Jülich Germany
| | - Philippe Sautet
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles Los Angeles CA 90095 USA
- Department of Chemistry and Biochemistry, University of California Los Angeles Los Angeles CA 90095 USA
| |
Collapse
|
3
|
Zhai W, Zhang Y, Shi H, Hu X, Hao R, Liu W, Yu Y. Quantifying the Growth Kinetics of Lithium Metal Reduced from Solid Ionic Conductors. J Am Chem Soc 2024; 146:14095-14104. [PMID: 38718380 DOI: 10.1021/jacs.4c02567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Investigating the growth kinetics of Li metal in solid-state batteries is crucial to both a fundamental understanding and practical application. Here, by directly observing the formation of Li metal from Ta-doped Li6.4La3Zr1.4Ta0.6O12 (LLZTO) in a transmission electron microscope, the growth kinetics is analyzed quantitatively. The growth kinetics of Li deposits shows a cubic-curve characteristic for LLZTO with Li-source-free. Instead, a linear growth process is observed with Li-source supplied. The impact of the illuminating electron dose rate on the growth kinetics is clarified, indicating that even low dose rates (1-3 e-/Å2/s) could affect Li growth, highlighting the significance of controlling dose rates. Furthermore, a new pathway for the formation of Li metal from Li-containing materials utilizing the field-emission effect is reported. This work has implications on the failure mechanism in solid batteries by using limited Li anodes and opens pathways for regulating Li growth in LLZTO at various scenarios, which can also extend to other ionic conductors.
Collapse
Affiliation(s)
- Wenbo Zhai
- School of Physical Science and Technology & Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| | - Yue Zhang
- School of Physical Science and Technology & Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| | - Hongsheng Shi
- School of Physical Science and Technology & Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| | - Xiangchen Hu
- School of Physical Science and Technology & Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| | - Ruixin Hao
- School of Physical Science and Technology & Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| | - Wei Liu
- School of Physical Science and Technology & Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| | - Yi Yu
- School of Physical Science and Technology & Shanghai Key Laboratory of High-Resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
4
|
Zhao Z, Zhao J, Liang L, Zhou Y, Mei Z, Li Y, Zhou Z, Zhang L, Fan S, Li Q, Wei Y. Microheater Chips with Carbon Nanotube Resistors. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38688033 DOI: 10.1021/acsami.3c18496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The specific and excellent properties of the low-dimensional nanomaterials have made them promising building blocks to be integrated into microelectromechanical systems with high performances. Here, we present a new microheater chip for in situ TEM, in which a cross-stacked superaligned carbon nanotube (CNT) film resistor is located on a suspended SiNx membrane via van der Waals (vdW) interactions. The CNT microheater has a fast high-temperature response and low power consumption, thanks to the micro/nanostructure of the CNT materials. Moreover, the membrane bulging amplitude is significantly reduced to only ∼100 nm at 800 °C for the vdW interaction between the CNTs and the SiNx membrane. An in situ observation of the Sn melting process is successfully conducted with the assistance of a customized flexible temperature control system. The uniform wafer-scaled CNT films enable a high level of consistency and cost-effective mass production of such chips. The as-developed in situ chips, as well as the related techniques, hold great promise in nanoscience, materials science, and electrochemistry.
Collapse
Affiliation(s)
- Zhongyuan Zhao
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, China
| | - Jie Zhao
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, China
| | - Liang Liang
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, China
| | - Yushi Zhou
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, China
| | - Zhen Mei
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, China
| | - Yuheng Li
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, China
| | - Zuoping Zhou
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, China
| | - Lina Zhang
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, China
| | - Shoushan Fan
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, China
| | - Qunqing Li
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, China
| | - Yang Wei
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Sharma R, Yang WCD. Perspective and prospects of in situ transmission/scanning transmission electron microscopy. Microscopy (Oxf) 2024; 73:79-100. [PMID: 38006307 DOI: 10.1093/jmicro/dfad057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/01/2023] [Accepted: 11/22/2023] [Indexed: 11/27/2023] Open
Abstract
In situ transmission/scanning transmission electron microscopy (TEM/STEM) measurements have taken a central stage for establishing structure-chemistry-property relationship over the past couple of decades. The challenges for realizing 'a lab-in-gap', i.e. gap between the objective lens pole pieces, or 'a lab-on-chip', to be used to carry out experiments are being met through continuous instrumental developments. Commercially available TEM columns and sample holder, that have been modified for in situ experimentation, have contributed to uncover structural and chemical changes occurring in the sample when subjected to external stimulus such as temperature, pressure, radiation (photon, ions and electrons), environment (gas, liquid and magnetic or electrical field) or a combination thereof. Whereas atomic resolution images and spectroscopy data are being collected routinely using TEM/STEM, temporal resolution is limited to millisecond. On the other hand, better than femtosecond temporal resolution can be achieved using an ultrafast electron microscopy or dynamic TEM, but the spatial resolution is limited to sub-nanometers. In either case, in situ experiments generate large datasets that need to be transferred, stored and analyzed. The advent of artificial intelligence, especially machine learning platforms, is proving crucial to deal with this big data problem. Further developments are still needed in order to fully exploit our capability to understand, measure and control chemical and/or physical processes. We present the current state of instrumental and computational capabilities and discuss future possibilities.
Collapse
Affiliation(s)
- Renu Sharma
- Materials Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - Wei-Chang David Yang
- Materials Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| |
Collapse
|
6
|
Liu H, Wu Y, Wu Z, Liu S, Zhang VL, Yu T. Coexisting Phases in Transition Metal Dichalcogenides: Overview, Synthesis, Applications, and Prospects. ACS NANO 2024; 18:2708-2729. [PMID: 38252696 DOI: 10.1021/acsnano.3c10665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Over the past decade, significant advancements have been made in phase engineering of two-dimensional transition metal dichalcogenides (TMDCs), thereby allowing controlled synthesis of various phases of TMDCs and facile conversion between them. Recently, there has been emerging interest in TMDC coexisting phases, which contain multiple phases within one nanostructured TMDC. By taking advantage of the merits from the component phases, the coexisting phases offer enhanced performance in many aspects compared with single-phase TMDCs. Herein, this review article thoroughly expounds the latest progress and ongoing efforts on the syntheses, properties, and applications of TMDC coexisting phases. The introduction section overviews the main phases of TMDCs (2H, 3R, 1T, 1T', 1Td), along with the advantages of phase coexistence. The subsequent section focuses on the synthesis methods for coexisting phases of TMDCs, with particular attention to local patterning and random formations. Furthermore, on the basis of the versatile properties of TMDC coexisting phases, their applications in magnetism, valleytronics, field-effect transistors, memristors, and catalysis are discussed. Lastly, a perspective is presented on the future development, challenges, and potential opportunities of TMDC coexisting phases. This review aims to provide insights into the phase engineering of 2D materials for both scientific and engineering communities and contribute to further advancements in this emerging field.
Collapse
Affiliation(s)
- Haiyang Liu
- School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Yaping Wu
- School of Physics and Technology, Xiamen University, Xiamen 361005, China
| | - Zhiming Wu
- School of Physics and Technology, Xiamen University, Xiamen 361005, China
| | - Sheng Liu
- School of Physics and Technology, Wuhan University, Wuhan 430072, China
- Wuhan Institute of Quantum Technology, Wuhan 430206, China
| | - Vanessa Li Zhang
- School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Ting Yu
- School of Physics and Technology, Wuhan University, Wuhan 430072, China
| |
Collapse
|
7
|
Ii S. Quantitative Characterization by Transmission Electron Microscopy and Its Application to Interfacial Phenomena in Crystalline Materials. MATERIALS (BASEL, SWITZERLAND) 2024; 17:578. [PMID: 38591374 PMCID: PMC10856096 DOI: 10.3390/ma17030578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/13/2024] [Accepted: 01/18/2024] [Indexed: 04/10/2024]
Abstract
This paper reviews quantitative characterization via transmission electron microscopy (TEM) and its application to interfacial phenomena based on the results obtained through the studies. Several signals generated by the interaction between the specimen and the electron beam with a probe size of less than 1 nm are utilized for a quantitative analysis, which yields considerable chemical and physical information. This review describes several phenomena near the interfaces, e.g., clear solid-vapor interface (surface) segregation of yttria in the zirconia nanoparticles by an energy-dispersive X-ray spectroscopy analysis, the evaluation of the local magnetic moment at the grain boundary in terms of electron energy loss spectroscopy equipped with TEM, and grain boundary character dependence of the magnetism. The direct measurement of the stress to the dislocation transferred across the grain boundary and the microstructure evolution focused on the grain boundary formation caused by plastic deformation are discussed as examples of material dynamics associated with the grain boundary. Finally, the outlook for future investigations of interface studies, including the recent progress, is also discussed.
Collapse
Affiliation(s)
- Seiichiro Ii
- Research Center for Structural Materials, National Institute for Materials Science (NIMS), Tsukuba 305-0047, Japan
| |
Collapse
|
8
|
Han Y, Wang L, Cao K, Zhou J, Zhu Y, Hou Y, Lu Y. In Situ TEM Characterization and Modulation for Phase Engineering of Nanomaterials. Chem Rev 2023; 123:14119-14184. [PMID: 38055201 DOI: 10.1021/acs.chemrev.3c00510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Solid-state phase transformation is an intriguing phenomenon in crystalline or noncrystalline solids due to the distinct physical and chemical properties that can be obtained and modified by phase engineering. Compared to bulk solids, nanomaterials exhibit enhanced capability for phase engineering due to their small sizes and high surface-to-volume ratios, facilitating various emerging applications. To establish a comprehensive atomistic understanding of phase engineering, in situ transmission electron microscopy (TEM) techniques have emerged as powerful tools, providing unprecedented atomic-resolution imaging, multiple characterization and stimulation mechanisms, and real-time integrations with various external fields. In this Review, we present a comprehensive overview of recent advances in in situ TEM studies to characterize and modulate nanomaterials for phase transformations under different stimuli, including mechanical, thermal, electrical, environmental, optical, and magnetic factors. We briefly introduce crystalline structures and polymorphism and then summarize phase stability and phase transformation models. The advanced experimental setups of in situ techniques are outlined and the advantages of in situ TEM phase engineering are highlighted, as demonstrated via several representative examples. Besides, the distinctive properties that can be obtained from in situ phase engineering are presented. Finally, current challenges and future research opportunities, along with their potential applications, are suggested.
Collapse
Affiliation(s)
- Ying Han
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Liqiang Wang
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Ke Cao
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, Shaanxi 710026, China
| | - Jingzhuo Zhou
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Yingxin Zhu
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Yuan Hou
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Yang Lu
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, China
| |
Collapse
|
9
|
Grimm TJ, Mears L. In situ pulsed electrical biasing TEM observation of AA7075. Microscopy (Oxf) 2023; 72:494-505. [PMID: 37130147 DOI: 10.1093/jmicro/dfad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/06/2023] [Accepted: 04/23/2023] [Indexed: 05/03/2023] Open
Abstract
Electrically assisted heat treatment is the process of applying an electric current to a sample during heat treatment. Literature has generally shown there to be a difference in the resulting effects of direct current (DC) current and highly transient current (i.e. electropulsing). However, these differences are poorly characterized. In situ transmission electron microscopy (TEM) observation of an AA7075 sample while DC and pulsed current were passed through it was performed herein to explore the effects of an electric current on precipitate development. Numerical simulation results indicate that the thermal response of the samples was very rapid, causing the sample to reach steady-state temperatures almost instantly. There does not appear to be any significant difference between the results of pulsed current application and DC current. Additionally, the failure mechanism of an electrical biasing TEM sample is explored.
Collapse
Affiliation(s)
- Tyler J Grimm
- International Center for Automotive Research, Clemson University, Greenville, SC 29607, USA
| | - Laine Mears
- International Center for Automotive Research, Clemson University, Greenville, SC 29607, USA
| |
Collapse
|
10
|
Moradifar P, Liu Y, Shi J, Siukola Thurston ML, Utzat H, van Driel TB, Lindenberg AM, Dionne JA. Accelerating Quantum Materials Development with Advances in Transmission Electron Microscopy. Chem Rev 2023. [PMID: 37979189 DOI: 10.1021/acs.chemrev.2c00917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2023]
Abstract
Quantum materials are driving a technology revolution in sensing, communication, and computing, while simultaneously testing many core theories of the past century. Materials such as topological insulators, complex oxides, superconductors, quantum dots, color center-hosting semiconductors, and other types of strongly correlated materials can exhibit exotic properties such as edge conductivity, multiferroicity, magnetoresistance, superconductivity, single photon emission, and optical-spin locking. These emergent properties arise and depend strongly on the material's detailed atomic-scale structure, including atomic defects, dopants, and lattice stacking. In this review, we describe how progress in the field of electron microscopy (EM), including in situ and in operando EM, can accelerate advances in quantum materials and quantum excitations. We begin by describing fundamental EM principles and operation modes. We then discuss various EM methods such as (i) EM spectroscopies, including electron energy loss spectroscopy (EELS), cathodoluminescence (CL), and electron energy gain spectroscopy (EEGS); (ii) four-dimensional scanning transmission electron microscopy (4D-STEM); (iii) dynamic and ultrafast EM (UEM); (iv) complementary ultrafast spectroscopies (UED, XFEL); and (v) atomic electron tomography (AET). We describe how these methods could inform structure-function relations in quantum materials down to the picometer scale and femtosecond time resolution, and how they enable precision positioning of atomic defects and high-resolution manipulation of quantum materials. For each method, we also describe existing limitations to solve open quantum mechanical questions, and how they might be addressed to accelerate progress. Among numerous notable results, our review highlights how EM is enabling identification of the 3D structure of quantum defects; measuring reversible and metastable dynamics of quantum excitations; mapping exciton states and single photon emission; measuring nanoscale thermal transport and coupled excitation dynamics; and measuring the internal electric field and charge density distribution of quantum heterointerfaces- all at the quantum materials' intrinsic atomic and near atomic-length scale. We conclude by describing open challenges for the future, including achieving stable sample holders for ultralow temperature (below 10K) atomic-scale spatial resolution, stable spectrometers that enable meV energy resolution, and high-resolution, dynamic mapping of magnetic and spin fields. With atomic manipulation and ultrafast characterization enabled by EM, quantum materials will be poised to integrate into many of the sustainable and energy-efficient technologies needed for the 21st century.
Collapse
Affiliation(s)
- Parivash Moradifar
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Yin Liu
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Jiaojian Shi
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road MS69, Menlo Park, California 94025, United States
| | | | - Hendrik Utzat
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
| | - Tim B van Driel
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Aaron M Lindenberg
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road MS69, Menlo Park, California 94025, United States
| | - Jennifer A Dionne
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
- Department of Radiology, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
11
|
Gui C, Zhang Z, Li Z, Luo C, Xia J, Wu X, Chu J. Deep learning analysis on transmission electron microscope imaging of atomic defects in two-dimensional materials. iScience 2023; 26:107982. [PMID: 37810254 PMCID: PMC10551659 DOI: 10.1016/j.isci.2023.107982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023] Open
Abstract
Defects are prevalent in two-dimensional (2D) materials due to thermal equilibrium and processing kinetics. The presence of various defect types can affect material properties significantly. With the development of the advanced transmission electron microscopy (TEM), the property-related structures could be investigated in multiple dimensions. It produces TEM datasets containing a large amount of information. Traditional data analysis is influenced by the subjectivity of researchers, and manual analysis is inefficient and imprecise. Recent developments in deep learning provide robust methods for the quantitative identification of defects in 2D materials efficiently and precisely. Taking advantage of big data, it breaks the limitations of TEM as a local characterization tool, making TEM an intelligent macroscopic analysis method. In this review, the recent developments in the TEM data analysis of defects in 2D materials using deep learning technology are summarized. Initially, an in-depth examination of the distinctions between TEM and natural images is presented. Subsequently, a comprehensive exploration of TEM data analysis ensues, encompassing denoising, point defects, line defects, planar defects, quantitative analysis, and applications. Furthermore, an exhaustive assessment of the significant obstacles encountered in the accurate identification of distinct structures is also provided.
Collapse
Affiliation(s)
- Chen Gui
- Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, Shanghai 200241, China
| | - Zhihao Zhang
- Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, Shanghai 200241, China
| | - Zongyi Li
- Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, Shanghai 200241, China
- JCET SEMICONDUCTOR INTEGRATION (SHAOXING) CO, LTD, Shaoxing, Zhejiang 312000, China
| | - Chen Luo
- Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, Shanghai 200241, China
- Institute of Optoelectronics, Fudan University, Shanghai 200433, China. Frontier Institute of Chip and System, Fudan University, Shanghai 200433, China
| | - Jiang Xia
- JCET SEMICONDUCTOR INTEGRATION (SHAOXING) CO, LTD, Shaoxing, Zhejiang 312000, China
| | - Xing Wu
- Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, Shanghai 200241, China
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
| | - Junhao Chu
- Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, Shanghai 200241, China
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
- Institute of Optoelectronics, Fudan University, Shanghai 200433, China. Frontier Institute of Chip and System, Fudan University, Shanghai 200433, China
| |
Collapse
|
12
|
Karg A, Gödrich S, Dennstedt P, Helfricht N, Retsch M, Papastavrou G. An Integrated, Exchangeable Three-Electrode Electrochemical Setup for AFM-Based Scanning Electrochemical Microscopy. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23115228. [PMID: 37299955 DOI: 10.3390/s23115228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/14/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023]
Abstract
Scanning electrochemical microscopy (SECM) is a versatile scanning probe technique that allows monitoring of a plethora of electrochemical reactions on a highly resolved local scale. SECM in combination with atomic force microscopy (AFM) is particularly well suited to acquire electrochemical data correlated to sample topography, elasticity, and adhesion, respectively. The resolution achievable in SECM depends critically on the properties of the probe acting as an electrochemical sensor, i.e., the working electrode, which is scanned over the sample. Hence, the development of SECM probes received much attention in recent years. However, for the operation and performance of SECM, the fluid cell and the three-electrode setup are also of paramount importance. These two aspects received much less attention so far. Here, we present a novel approach to the universal implementation of a three-electrode setup for SECM in practically any fluid cell. The integration of all three electrodes (working, counter, and reference) near the cantilever provides many advantages, such as the usage of conventional AFM fluid cells also for SECM or enables the measurement in liquid drops. Moreover, the other electrodes become easily exchangeable as they are combined with the cantilever substrate. Thereby, the handling is improved significantly. We demonstrated that high-resolution SECM, i.e., resolving features smaller than 250 nm in the electrochemical signal, could be achieved with the new setup and that the electrochemical performance was equivalent to the one obtained with macroscopic electrodes.
Collapse
Affiliation(s)
- Andreas Karg
- Physical Chemistry II, University of Bayreuth, 95447 Bayreuth, Germany
- Bavarian Institute for Battery Technology, University of Bayreuth, 95448 Bayreuth, Germany
| | - Sebastian Gödrich
- Physical Chemistry II, University of Bayreuth, 95447 Bayreuth, Germany
| | - Philipp Dennstedt
- Physical Chemistry II, University of Bayreuth, 95447 Bayreuth, Germany
- Bavarian Institute for Battery Technology, University of Bayreuth, 95448 Bayreuth, Germany
| | - Nicolas Helfricht
- Physical Chemistry II, University of Bayreuth, 95447 Bayreuth, Germany
| | - Markus Retsch
- Bavarian Institute for Battery Technology, University of Bayreuth, 95448 Bayreuth, Germany
- Physical Chemistry I, University of Bayreuth, 95447 Bayreuth, Germany
| | - Georg Papastavrou
- Physical Chemistry II, University of Bayreuth, 95447 Bayreuth, Germany
- Bavarian Institute for Battery Technology, University of Bayreuth, 95448 Bayreuth, Germany
| |
Collapse
|
13
|
Zheng A, Yin K, Pan R, Zhu M, Xiong Y, Sun L. Research Progress on Metal-Organic Frameworks by Advanced Transmission Electron Microscopy. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111742. [PMID: 37299645 DOI: 10.3390/nano13111742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
Metal-organic frameworks (MOFs), composed of metal nodes and inorganic linkers, are promising for a wide range of applications due to their unique periodic frameworks. Understanding structure-activity relationships can facilitate the development of new MOFs. Transmission electron microscopy (TEM) is a powerful technique to characterize the microstructures of MOFs at the atomic scale. In addition, it is possible to directly visualize the microstructural evolution of MOFs in real time under working conditions via in situ TEM setups. Although MOFs are sensitive to high-energy electron beams, much progress has been made due to the development of advanced TEM. In this review, we first introduce the main damage mechanisms for MOFs under electron-beam irradiation and two strategies to minimize these damages: low-dose TEM and cryo-TEM. Then we discuss three typical techniques to analyze the microstructure of MOFs, including three-dimensional electron diffraction, imaging using direct-detection electron-counting cameras, and iDPC-STEM. Groundbreaking milestones and research advances of MOFs structures obtained with these techniques are highlighted. In situ TEM studies are reviewed to provide insights into the dynamics of MOFs induced by various stimuli. Additionally, perspectives are analyzed for promising TEM techniques in the research of MOFs' structures.
Collapse
Affiliation(s)
- Anqi Zheng
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China
| | - Kuibo Yin
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China
| | - Rui Pan
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China
| | - Mingyun Zhu
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China
| | - Yuwei Xiong
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China
| | - Litao Sun
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China
| |
Collapse
|
14
|
Zhang X, Zhou Y, Chen Y, Li M, Yu H, Li X. Advanced In Situ TEM Microchip with Excellent Temperature Uniformity and High Spatial Resolution. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23094470. [PMID: 37177673 PMCID: PMC10181734 DOI: 10.3390/s23094470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/22/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023]
Abstract
Transmission electron microscopy (TEM) is a highly effective method for scientific research, providing comprehensive analysis and characterization. However, traditional TEM is limited to observing static material structures at room temperature within a high-vacuum environment. To address this limitation, a microchip was developed for in situ TEM characterization, enabling the real-time study of material structure evolution and chemical process mechanisms. This microchip, based on microelectromechanical System (MEMS) technology, is capable of introducing multi-physics stimulation and can be used in conjunction with TEM to investigate the dynamic changes of matter in gas and high-temperature environments. The microchip design ensures a high-temperature uniformity in the sample observation area, and a system of tests was established to verify its performance. Results show that the temperature uniformity of 10 real-time observation windows with a total area of up to 1130 μm2 exceeded 95%, and the spatial resolution reached the lattice level, even in a flowing atmosphere of 1 bar.
Collapse
Affiliation(s)
- Xuelin Zhang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yufan Zhou
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Chen
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Li
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haitao Yu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinxin Li
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Microelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Szostak R, de Souza Gonçalves A, de Freitas JN, Marchezi PE, de Araújo FL, Tolentino HCN, Toney MF, das Chagas Marques F, Nogueira AF. In Situ and Operando Characterizations of Metal Halide Perovskite and Solar Cells: Insights from Lab-Sized Devices to Upscaling Processes. Chem Rev 2023; 123:3160-3236. [PMID: 36877871 DOI: 10.1021/acs.chemrev.2c00382] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
The performance and stability of metal halide perovskite solar cells strongly depend on precursor materials and deposition methods adopted during the perovskite layer preparation. There are often a number of different formation pathways available when preparing perovskite films. Since the precise pathway and intermediary mechanisms affect the resulting properties of the cells, in situ studies have been conducted to unravel the mechanisms involved in the formation and evolution of perovskite phases. These studies contributed to the development of procedures to improve the structural, morphological, and optoelectronic properties of the films and to move beyond spin-coating, with the use of scalable techniques. To explore the performance and degradation of devices, operando studies have been conducted on solar cells subjected to normal operating conditions, or stressed with humidity, high temperatures, and light radiation. This review presents an update of studies conducted in situ using a wide range of structural, imaging, and spectroscopic techniques, involving the formation/degradation of halide perovskites. Operando studies are also addressed, emphasizing the latest degradation results for perovskite solar cells. These works demonstrate the importance of in situ and operando studies to achieve the level of stability required for scale-up and consequent commercial deployment of these cells.
Collapse
Affiliation(s)
- Rodrigo Szostak
- Laboratório de Nanotecnologia e Energia Solar (LNES), University of Campinas (UNICAMP), 13083-970, Campinas, SP, Brazil
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, SP, Brazil
| | - Agnaldo de Souza Gonçalves
- Laboratório de Nanotecnologia e Energia Solar (LNES), University of Campinas (UNICAMP), 13083-970, Campinas, SP, Brazil
- Gleb Wataghin Institute of Physics, University of Campinas (UNICAMP), 13083-859 Campinas, SP, Brazil
| | - Jilian Nei de Freitas
- Center for Information Technology Renato Archer (CTI), 13069-901 Campinas, SP, Brazil
| | - Paulo E Marchezi
- Laboratório de Nanotecnologia e Energia Solar (LNES), University of Campinas (UNICAMP), 13083-970, Campinas, SP, Brazil
- Department of Engineering and Physics, Karlstad University, 651 88 Karlstad, Sweden
| | - Francineide Lopes de Araújo
- Laboratório de Nanotecnologia e Energia Solar (LNES), University of Campinas (UNICAMP), 13083-970, Campinas, SP, Brazil
| | - Hélio Cesar Nogueira Tolentino
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, SP, Brazil
| | - Michael F Toney
- Department of Chemical & Biological Engineering, and Renewable and Sustainable Energy Institute, University of Colorado, Boulder, Colorado 80309, United States
| | | | - Ana Flavia Nogueira
- Laboratório de Nanotecnologia e Energia Solar (LNES), University of Campinas (UNICAMP), 13083-970, Campinas, SP, Brazil
| |
Collapse
|
16
|
Time-resolved transmission electron microscopy for nanoscale chemical dynamics. Nat Rev Chem 2023; 7:256-272. [PMID: 37117417 DOI: 10.1038/s41570-023-00469-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2023] [Indexed: 02/24/2023]
Abstract
The ability of transmission electron microscopy (TEM) to image a structure ranging from millimetres to Ångströms has made it an indispensable component of the toolkit of modern chemists. TEM has enabled unprecedented understanding of the atomic structures of materials and how structure relates to properties and functions. Recent developments in TEM have advanced the technique beyond static material characterization to probing structural evolution on the nanoscale in real time. Accompanying advances in data collection have pushed the temporal resolution into the microsecond regime with the use of direct-electron detectors and down to the femtosecond regime with pump-probe microscopy. Consequently, studies have deftly applied TEM for understanding nanoscale dynamics, often in operando. In this Review, time-resolved in situ TEM techniques and their applications for probing chemical and physical processes are discussed, along with emerging directions in the TEM field.
Collapse
|
17
|
Zhao J, Liang L, Tang S, Zhang G, Su Y, Zhao Y, Li M, Zhang L, Fan S, Li Q, Wei Y. Graphene Microheater Chips for In Situ TEM. NANO LETTERS 2023; 23:726-734. [PMID: 36515654 DOI: 10.1021/acs.nanolett.2c03510] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Low-dimensional materials are bringing significant innovations to in situ TEM characterization. Here a new graphene microheater chip for TEM was developed by stacking graphene on a suspended SiNx membrane as the Joule heating element. It could be heated up to 800 °C within 26.31 ms with a low power consumption of 0.025 mW/1000 μm2. The bulging was only ∼50 nm at 650 °C, which is 2 orders of magnitude smaller than those of conventional MEMS heaters at similar temperatures. The performances benefit from the employment of graphene, since its monolayer structure greatly reduces the heat capacity, and the vdW contact significantly reduces the interfacial interaction. The TEM observation on the Sn melting process verifies its great potential in resolving thermodynamic processes. Moreover, more multifunctional in situ chips could be developed by integrating other stimuli to such chips. This work opens a new frontier for both graphene and in situ characterization techniques.
Collapse
Affiliation(s)
- Jie Zhao
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, People's Republic of China
| | - Liang Liang
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, People's Republic of China
| | - Shiyi Tang
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, People's Republic of China
| | - Guangqi Zhang
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yi Su
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yuxin Zhao
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, People's Republic of China
| | - Mengjuan Li
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, People's Republic of China
| | - Lina Zhang
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, People's Republic of China
| | - Shoushan Fan
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, People's Republic of China
| | - Qunqing Li
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yang Wei
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
18
|
Sheyfer D, Mariano RG, Kawaguchi T, Cha W, Harder RJ, Kanan MW, Hruszkewycz SO, You H, Highland MJ. Operando Nanoscale Imaging of Electrochemically Induced Strain in a Locally Polarized Pt Grain. NANO LETTERS 2023; 23:1-7. [PMID: 36541700 DOI: 10.1021/acs.nanolett.2c01015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Developing new methods that reveal the structure of electrode materials under polarization is key to constructing robust structure-property relationships. However, many existing methods lack the spatial resolution in structural changes and fidelity to electrochemical operating conditions that are needed to probe catalytically relevant structures. Here, we combine a nanopipette electrochemical cell with three-dimensional X-ray Bragg coherent diffractive imaging to study how strain in a single Pt grain evolves in response to applied potential. During polarization, marked changes in surface strain arise from the Coulombic attraction between the surface charge on the electrode and the electrolyte ions in the electrochemical double layers, while the strain in the bulk of the crystal remains unchanged. The concurrent surface redox reactions have a strong influence on the magnitude and nature of the strain changes under polarization. Our studies provide a powerful blueprint to understand how structural evolution influences electrochemical performance at the nanoscale.
Collapse
Affiliation(s)
- Dina Sheyfer
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois60439, United States
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois60439, United States
| | - Ruperto G Mariano
- Department of Chemistry, Stanford University, Stanford, California94305, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts02141, United States
| | - Tomoya Kawaguchi
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois60439, United States
- Institute for Materials Research, Tohoku University, Sendai, 9808577, Japan
| | - Wonsuk Cha
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois60439, United States
| | - Ross J Harder
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois60439, United States
| | - Matthew W Kanan
- Department of Chemistry, Stanford University, Stanford, California94305, United States
| | - Stephan O Hruszkewycz
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois60439, United States
| | - Hoydoo You
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois60439, United States
| | - Matthew J Highland
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois60439, United States
| |
Collapse
|
19
|
Ziatdinov M, Ghosh A, Wong CY, Kalinin SV. AtomAI framework for deep learning analysis of image and spectroscopy data in electron and scanning probe microscopy. NAT MACH INTELL 2022. [DOI: 10.1038/s42256-022-00555-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Karabulin AV, Matyushenko VI, Khodos II. Electron-Stimulated Phase Transitions in Tin and Indium–Tin Nanowires Produced by Laser Ablation in Superfluid Helium. HIGH ENERGY CHEMISTRY 2022. [DOI: 10.1134/s001814392206008x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Bradford SD, Ge Y, Zhang J, Trejo M, Tronrud D, Kong W. Electron diffraction of 1,4-dichlorobenzene embedded in superfluid helium droplets. Phys Chem Chem Phys 2022; 24:27722-27730. [PMID: 36377553 PMCID: PMC9731815 DOI: 10.1039/d2cp04492g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
We perform electron diffraction of 1,4-dichlorobenzene (C6H4Cl2, referred to as 2ClB) embedded in superfluid helium droplets to investigate the structure evolution of cluster growth. Multivariable linear regression fittings are used to determine the concentration and the best model structures of the clusters. At a droplet source temperature of 22 K with droplets containing on average 5000 He atoms, the fitting results agree with the doping statistics modeled using the Poisson distribution: the largest molecular clusters are tetramers, while the abundances of monomers and dimers are the highest and are similar. Molecular dimers of 2ClB are determined to have a parallel structure with a 60° rotation for the Cl-Cl molecular axes. However, a better agreement between experiment and fitting is obtained by reducing the interlayer distance that had been calculated using the density functional theory for dimers. Further calculations using the highest level quantum mechanical calculations prove that the reduction in interlayer distance does not significantly increase the energy of the dimer. Cluster trimers adopt a dimer structure with the additional monomer slanted against the dimer, and tetramers take on a stacked structure. The structure evolution with cluster size is extraordinary, because from trimer to tetramer, one monomer needs to be rearranged, and neither the trimer nor the tetramer adopts the corresponding global minimum structure obtained using high level coupled-cluster theory calculations. This phenomenon may be related to the fast cooling process in superfluid helium droplets during cluster formation.
Collapse
Affiliation(s)
- Stephen D Bradford
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA.
| | - Yingbin Ge
- Department of Chemistry, Central Washington University, Ellensburg, WA 98926, USA
| | - Jie Zhang
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA.
| | - Marisol Trejo
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA.
| | - Dale Tronrud
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA.
| | - Wei Kong
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
22
|
Holler M, Aidukas T, Heller L, Appel C, Phillips NW, Müller-Gubler E, Guizar-Sicairos M, Raabe J, Ihli J. Environmental control for X-ray nanotomography. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:1223-1231. [PMID: 36073881 PMCID: PMC9455200 DOI: 10.1107/s1600577522006968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
The acquisition speed and spatial resolution of X-ray nanotomography have continuously improved over the last decades. Coherent diffraction-based techniques breach the 10 nm resolution barrier frequently and thus pose stringent demands on sample positioning accuracy and stability. At the same time there is an increasing desire to accommodate in situ or operando measurements. Here, an environmental control system for X-ray nanotomography is introduced to regulate the temperature of a sample from room temperature up to 850°C in a controlled atmospheric composition. The system allows for a 360° sample rotation, permitting tomographic studies in situ or operando free of missing wedge constraints. The system is implemented and available at the flOMNI microscope at the Swiss Light Source. In addition to the environmental control system itself, the related modifications of flOMNI are described. Tomographic measurements of a nanoporous gold sample at 50°C and 600°C at a resolution of sub-20 nm demonstrate the performance of the device.
Collapse
Affiliation(s)
- Mirko Holler
- Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, Aargau 5232, Switzerland
| | - Tomas Aidukas
- Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, Aargau 5232, Switzerland
| | - Lars Heller
- Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, Aargau 5232, Switzerland
| | - Christian Appel
- Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, Aargau 5232, Switzerland
| | - Nicholas W. Phillips
- Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, Aargau 5232, Switzerland
| | | | | | - Jörg Raabe
- Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, Aargau 5232, Switzerland
| | - Johannes Ihli
- Paul Scherrer Institut, Forschungsstrasse 111, Villigen PSI, Aargau 5232, Switzerland
| |
Collapse
|
23
|
Olszta M, Hopkins D, Fiedler KR, Oostrom M, Akers S, Spurgeon SR. An Automated Scanning Transmission Electron Microscope Guided by Sparse Data Analytics. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:1-11. [PMID: 35686442 DOI: 10.1017/s1431927622012065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Artificial intelligence (AI) promises to reshape scientific inquiry and enable breakthrough discoveries in areas such as energy storage, quantum computing, and biomedicine. Scanning transmission electron microscopy (STEM), a cornerstone of the study of chemical and materials systems, stands to benefit greatly from AI-driven automation. However, present barriers to low-level instrument control, as well as generalizable and interpretable feature detection, make truly automated microscopy impractical. Here, we discuss the design of a closed-loop instrument control platform guided by emerging sparse data analytics. We hypothesize that a centralized controller, informed by machine learning combining limited a priori knowledge and task-based discrimination, could drive on-the-fly experimental decision-making. This platform may unlock practical, automated analysis of a variety of material features, enabling new high-throughput and statistical studies.
Collapse
Affiliation(s)
- Matthew Olszta
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Derek Hopkins
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Kevin R Fiedler
- College of Arts and Sciences, Washington State University - Tri-Cities, Richland, WA 99354, USA
| | - Marjolein Oostrom
- National Security Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Sarah Akers
- National Security Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Steven R Spurgeon
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
- Department of Physics, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
24
|
Lin C, Lan D, Wang J, Li Q, Li Q. Disclosing the Origin of Irreversible Sodiation-Desodiation of a Cu 4SnP 10 Nanowire Anode by Ex Situ Transmission Electron Microscopy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:22095-22103. [PMID: 35506460 DOI: 10.1021/acsami.2c02200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cu4SnP10, a promising phosphide material for sodium-ion battery anode applications, suffers from poor cycling stability, and its mechanism remains unclear. This is largely due to the amorphous nature of the active materials upon cycling and its possible structural change at a small length scale (e.g., nanometers), making it difficult to access the phase/structural evolution of the electrode. In the present work, we show that the phase/structural change of the Cu4SnP10 nanowire electrode can be systematically investigated using a comprehensive set of ex situ transmission electron microscopy-based techniques, which are ideal for decay mechanism analysis of electrode materials of amorphous nature and with nanoscale structural evolution. The compositional elements of Cu4SnP10 nanowires are found to be spatially redistributed at a nanometer scale upon the initial sodiation, and this is partially reversible in the following desodiation process. Damage accumulates until a critical size of phase separation/segregation is reached, when the active material loss takes place, leading to fast deterioration of the entire Cu4SnP10 nanowire structure and thus its electrochemical performance. The phase segregation driven-active material loss is found to dominate the cycle-dependent capacity decay of the Cu4SnP10 nanowire electrode.
Collapse
Affiliation(s)
- Chao Lin
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territory, Hong Kong 999077, China
| | - Danni Lan
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territory, Hong Kong 999077, China
| | - Jiangpeng Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territory, Hong Kong 999077, China
| | - Qidong Li
- Engineering Lab for Next Generation Power & Energy Storage Batteries, Tsinghua Shenzhen International Graduation School, Shenzhen 518055, P. R. China
- Lab Advanced Materials, School of Materials Science & Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Quan Li
- Department of Physics, The Chinese University of Hong Kong, Shatin, New Territory, Hong Kong 999077, China
| |
Collapse
|
25
|
Sainju R, Rathnayake D, Tan H, Bollas G, Dongare AM, Suib SL, Zhu Y. In Situ Studies of Single-Nanoparticle-Level Nickel Thermal Oxidation: From Early Oxide Nucleation to Diffusion-Balanced Oxide Thickening. ACS NANO 2022; 16:6468-6479. [PMID: 35413193 DOI: 10.1021/acsnano.2c00742] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
High-temperature oxidation mechanisms of metallic nanoparticles have been extensively investigated; however, it is challenging to determine whether the kinetic modeling is applicable at the nanoscale and how the differences in nanoparticle size influence the oxidation mechanisms. In this work, we study thermal oxidation of pristine Ni nanoparticles ranging from 4 to 50 nm in 1 bar 1%O2/N2 at 600 °C using in situ gas-cell environmental transmission electron microscopy. Real-space in situ oxidation videos revealed an unexpected nanoparticle surface refacetting before oxidation and a strong Ni nanoparticle size dependence, leading to distinct structural development during the oxidation and different final NiO morphology. By quantifying the NiO thickness/volume change in real space, individual nanoparticle-level oxidation kinetics was established and directly correlated with nanoparticle microstructural evolution with specified fast and slow oxidation directions. Thus, for the size-dependent Ni nanoparticle oxidation, we propose a unified oxidation theory with a two-stage oxidation process: stage 1: dominated by the early NiO nucleation (Avrami-Erofeev model) and stage 2: the Wagner diffusion-balanced NiO shell thickening (Wanger model). In particular, to what extent the oxidation would proceed into stage 2 dictates the final NiO morphology, which depends on the Ni starting radius with respect to the critical thickness under given oxidation conditions. The overall oxidation duration is controlled by both the diffusivity of Ni2+ in NiO and the Ni in Ni self-diffusion. We also compare the single-particle kinetic curve with the collective one and discuss the effects of nanoparticle size differences on kinetic model analysis.
Collapse
|
26
|
Zhang J, Kong W. Electron diffraction as a structure tool for charged and neutral nanoclusters formed in superfluid helium droplets. Phys Chem Chem Phys 2022; 24:6349-6362. [PMID: 35257134 PMCID: PMC10508180 DOI: 10.1039/d2cp00048b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This perspective presents the current status and future directions in using electron diffraction to determine the structures of clusters formed in superfluid helium droplets. The details of the experimental setup and data treatment procedures are explained, and several examples are illustrated. The ease of forming atomic and molecular clusters has been recognized since the invention of superfluid helium droplet beams. To resolve atomic structures from clusters formed in droplets, substantial efforts have been devoted to minimizing the contribution of helium to diffraction signals. With active background subtraction, we have obtained structures from clusters containing a few to more than 10 monomers, with and without heavy atoms to assist with the diffraction intensity, for both neutral and ionic species. From fittings of the diffraction profiles using model structures, we have observed that some small clusters adopt the structures of the corresponding solid sample, even for dimers such as iodine and pyrene, while others require trimers or tetramers to reach the structural motif of bulk solids, and smaller clusters such as CS2 dimers adopt gas phase structures. Cationic clusters of argon clusters contain an Ar3+ core, while pyrene dimers demonstrate a change in the intermolecular distance, from 3.5 Å for neutral dimers to 3.0 Å for cations. Future improvements in reducing the background of helium, and in expanding the information content of electron diffraction such as detection of charge distributions, are also discussed.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA.
| | - Wei Kong
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
27
|
Dyck O, Swett JL, Evangeli C, Lupini AR, Mol JA, Jesse S. Mapping Conductance and Switching Behavior of Graphene Devices In Situ. SMALL METHODS 2022; 6:e2101245. [PMID: 35312230 DOI: 10.1002/smtd.202101245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/15/2021] [Indexed: 06/14/2023]
Abstract
Graphene is proposed for use in various nanodevice designs, many of which harness emergent quantum properties for device functionality. However, visualization, measurement, and manipulation become nontrivial at nanometer and atomic scales, representing a significant challenge for device fabrication, characterization, and optimization at length scales where quantum effects emerge. Here, proof of principle results at the crossroads between 2D nanoelectronic devices, e-beam-induced modulation, and imaging with secondary electron e-beam induced currents (SEEBIC) is presented. A device platform compatible with scanning transmission electron microscopy investigations is introduced. Then how the SEEBIC imaging technique can be used to visualize conductance and connectivity in single layer graphene nanodevices, even while supported on a thicker substrate (conditions under which conventional imaging fails) is shown. Finally, it is shown that the SEEBIC imaging technique can detect subtle differences in charge transport through time in nonohmic graphene nanoconstrictions indicating the potential to reveal dynamic electronic processes.
Collapse
Affiliation(s)
- Ondrej Dyck
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Jacob L Swett
- Department of Materials, University of Oxford, Oxford, OX1 3PH, UK
| | | | - Andrew R Lupini
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Jan A Mol
- Department of Materials, University of Oxford, Oxford, OX1 3PH, UK
- School of Physics and Astronomy, Queen Mary University of London, London, E1 4NS, UK
| | - Stephen Jesse
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| |
Collapse
|
28
|
Lei L, Zhang J, Trejo M, Bradford SD, Kong W. Resolving the interlayer distance of cationic pyrene clusters embedded in superfluid helium droplets using electron diffraction. J Chem Phys 2022; 156:051101. [DOI: 10.1063/5.0080365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Lei Lei
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| | - Jie Zhang
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| | - Marisol Trejo
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| | - Stephen D. Bradford
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| | - Wei Kong
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| |
Collapse
|
29
|
Geng X, Liu J, Yang H, Guo W, Bai J, Wen XD. Surface morphology evolution of cobalt nanoparticles induced by hydrogen adsorption: a theoretical study. NEW J CHEM 2022. [DOI: 10.1039/d2nj00356b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Determining the surface structure and morphology under working conditions is essential to obtain facet-dependent catalytic performance.
Collapse
Affiliation(s)
- Xiaobin Geng
- Inner Mongolia University of Technology, Huhhot, 010000, China
- National Energy Center for Coal to Liquids, Synfuels China Co., Ltd., Huairou District, Beijing, 101400, China
| | - Jinjia Liu
- National Energy Center for Coal to Liquids, Synfuels China Co., Ltd., Huairou District, Beijing, 101400, China
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
| | - Hui Yang
- National Energy Center for Coal to Liquids, Synfuels China Co., Ltd., Huairou District, Beijing, 101400, China
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Wenping Guo
- National Energy Center for Coal to Liquids, Synfuels China Co., Ltd., Huairou District, Beijing, 101400, China
| | - Jie Bai
- Inner Mongolia University of Technology, Huhhot, 010000, China
| | - Xiao-Dong Wen
- National Energy Center for Coal to Liquids, Synfuels China Co., Ltd., Huairou District, Beijing, 101400, China
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
| |
Collapse
|
30
|
Petersen H, Weidenthaler C. A review of recent developments for the in situ/operando characterization of nanoporous materials. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00977c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This is a review on up-to-date in situ/operando methods for a comprehensive characterization of nanoporous materials. The group of nanoporous materials is constantly growing, and with it, the variety of...
Collapse
|
31
|
Wardini JL, Vahidi H, Guo H, Bowman WJ. Probing Multiscale Disorder in Pyrochlore and Related Complex Oxides in the Transmission Electron Microscope: A Review. Front Chem 2021; 9:743025. [PMID: 34917587 PMCID: PMC8668443 DOI: 10.3389/fchem.2021.743025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/15/2021] [Indexed: 11/13/2022] Open
Abstract
Transmission electron microscopy (TEM), and its counterpart, scanning TEM (STEM), are powerful materials characterization tools capable of probing crystal structure, composition, charge distribution, electronic structure, and bonding down to the atomic scale. Recent (S)TEM instrumentation developments such as electron beam aberration-correction as well as faster and more efficient signal detection systems have given rise to new and more powerful experimental methods, some of which (e.g., 4D-STEM, spectrum-imaging, in situ/operando (S)TEM)) facilitate the capture of high-dimensional datasets that contain spatially-resolved structural, spectroscopic, time- and/or stimulus-dependent information across the sub-angstrom to several micrometer length scale. Thus, through the variety of analysis methods available in the modern (S)TEM and its continual development towards high-dimensional data capture, it is well-suited to the challenge of characterizing isometric mixed-metal oxides such as pyrochlores, fluorites, and other complex oxides that reside on a continuum of chemical and spatial ordering. In this review, we present a suite of imaging and diffraction (S)TEM techniques that are uniquely suited to probe the many types, length-scales, and degrees of disorder in complex oxides, with a focus on disorder common to pyrochlores, fluorites and the expansive library of intermediate structures they may adopt. The application of these techniques to various complex oxides will be reviewed to demonstrate their capabilities and limitations in resolving the continuum of structural and chemical ordering in these systems.
Collapse
Affiliation(s)
- Jenna L. Wardini
- Materials Science and Engineering, University of California, Irvine, Irvine, CA, United States
| | - Hasti Vahidi
- Materials Science and Engineering, University of California, Irvine, Irvine, CA, United States
| | - Huiming Guo
- Materials Science and Engineering, University of California, Irvine, Irvine, CA, United States
| | - William J. Bowman
- Materials Science and Engineering, University of California, Irvine, Irvine, CA, United States
- Irvine Materials Research Institute, Irvine, CA, United States
| |
Collapse
|
32
|
Grosse P, Yoon A, Rettenmaier C, Herzog A, Chee SW, Roldan Cuenya B. Dynamic transformation of cubic copper catalysts during CO 2 electroreduction and its impact on catalytic selectivity. Nat Commun 2021; 12:6736. [PMID: 34795221 PMCID: PMC8602378 DOI: 10.1038/s41467-021-26743-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 10/21/2021] [Indexed: 11/09/2022] Open
Abstract
To rationally design effective and stable catalysts for energy conversion applications, we need to understand how they transform under reaction conditions and reveal their underlying structure-property relationships. This is especially important for catalysts used in the electroreduction of carbon dioxide where product selectivity is sensitive to catalyst structure. Here, we present real-time electrochemical liquid cell transmission electron microscopy studies showing the restructuring of copper(I) oxide cubes during reaction. Fragmentation of the solid cubes, re-deposition of new nanoparticles, catalyst detachment and catalyst aggregation are observed as a function of the applied potential and time. Using cubes with different initial sizes and loading, we further correlate this dynamic morphology with the catalytic selectivity through time-resolved scanning electron microscopy measurements and product analysis. These comparative studies reveal the impact of nanoparticle re-deposition and detachment on the catalyst reactivity, and how the increased surface metal loading created by re-deposited nanoparticles can lead to enhanced C2+ selectivity and stability.
Collapse
Affiliation(s)
- Philipp Grosse
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, 14195, Berlin, Germany
| | - Aram Yoon
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, 14195, Berlin, Germany
| | - Clara Rettenmaier
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, 14195, Berlin, Germany
| | - Antonia Herzog
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, 14195, Berlin, Germany
| | - See Wee Chee
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, 14195, Berlin, Germany.
| | - Beatriz Roldan Cuenya
- Department of Interface Science, Fritz-Haber Institute of the Max Planck Society, 14195, Berlin, Germany.
| |
Collapse
|
33
|
Zhang J, Trejo M, Bradford SD, Lei L, Kong W. Electron Diffraction of Ionic Argon Nanoclusters Embedded in Superfluid Helium Droplets. J Phys Chem Lett 2021; 12:9644-9650. [PMID: 34586826 PMCID: PMC8550877 DOI: 10.1021/acs.jpclett.1c02712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We report electron diffraction of cationic argon nanoclusters embedded in superfluid helium droplets. Superfluid helium droplets are first doped with neutral argon atoms to form nanoclusters, and then the doped droplets are ionized by electrons. The much lower ionization energy of argon ensures that the positive charge resides on the Ar nanocluster. Using different stagnation temperatures and therefore droplets with different sizes, we have been able to preferentially form a small ionic cluster containing 2-4 Ar atoms and a larger cluster containing 7-11 atoms. The fitting results of the diffraction profiles agree with structures reported from theoretical calculations, containing a cationic trimer core with the remaining atoms largely neutral. This work testifies to the feasibility of performing electron diffraction from ionic species embedded in superfluid helium droplets, dispelling the concern over the particle density in the diffraction region. However, the large number of neutral helium atoms surrounding the cationic nanoclusters poses a challenge for the detection of the helium solvation layer, and the detection of which awaits further technological improvements.
Collapse
Affiliation(s)
| | | | | | | | - Wei Kong
- Corresponding author, , 541-737-6714
| |
Collapse
|
34
|
Kalinin SV, Ziatdinov M, Hinkle J, Jesse S, Ghosh A, Kelley KP, Lupini AR, Sumpter BG, Vasudevan RK. Automated and Autonomous Experiments in Electron and Scanning Probe Microscopy. ACS NANO 2021; 15:12604-12627. [PMID: 34269558 DOI: 10.1021/acsnano.1c02104] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Machine learning and artificial intelligence (ML/AI) are rapidly becoming an indispensable part of physics research, with domain applications ranging from theory and materials prediction to high-throughput data analysis. In parallel, the recent successes in applying ML/AI methods for autonomous systems from robotics to self-driving cars to organic and inorganic synthesis are generating enthusiasm for the potential of these techniques to enable automated and autonomous experiments (AE) in imaging. Here, we aim to analyze the major pathways toward AE in imaging methods with sequential image formation mechanisms, focusing on scanning probe microscopy (SPM) and (scanning) transmission electron microscopy ((S)TEM). We argue that automated experiments should necessarily be discussed in a broader context of the general domain knowledge that both informs the experiment and is increased as the result of the experiment. As such, this analysis should explore the human and ML/AI roles prior to and during the experiment and consider the latencies, biases, and prior knowledge of the decision-making process. Similarly, such discussion should include the limitations of the existing imaging systems, including intrinsic latencies, non-idealities, and drifts comprising both correctable and stochastic components. We further pose that the role of the AE in microscopy is not the exclusion of human operators (as is the case for autonomous driving), but rather automation of routine operations such as microscope tuning, etc., prior to the experiment, and conversion of low latency decision making processes on the time scale spanning from image acquisition to human-level high-order experiment planning. Overall, we argue that ML/AI can dramatically alter the (S)TEM and SPM fields; however, this process is likely to be highly nontrivial and initiated by combined human-ML workflows and will bring challenges both from the microscope and ML/AI sides. At the same time, these methods will enable opportunities and paradigms for scientific discovery and nanostructure fabrication.
Collapse
|
35
|
Meng AC, Low KB, Foucher AC, Li Y, Petrovic I, Stach EA. Anomalous metal vaporization from Pt/Pd/Al 2O 3 under redox conditions. NANOSCALE 2021; 13:11427-11438. [PMID: 34160525 DOI: 10.1039/d1nr01733k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Al2O3-supported Pt/Pd bimetallic catalysts were studied using in situ atmospheric pressure and ex situ transmission electron microscopy. Real-time observation during separate oxidation and reduction processes provides nanometer-scale structural details - both morphology and chemistry - of supported Pt/Pd particles at intermediate states not observable through typical ex situ experiments. Significant metal vaporization was observed at temperatures above 600 °C, both in pure oxygen and in air. This behavior implies that material transport through the vapor during typical catalyst aging processes for oxidation can play a more significant role in catalyst structural evolution than previously thought. Concomitantly, Pd diffusion away from metallic nanoparticles on the surface of Al2O3 can also contribute to the disappearance of metal particles. Electron micrographs from in situ oxidation experiments were mined for data, including particle number, size, and aspect ratio using machine learning image segmentation. Under oxidizing conditions, we observe not only a decrease in the number of metal particles but also a decrease in the surface area to volume ratio. Some of the metal that diffuses away from particles on the oxide support can be regenerated and reappears back on the catalyst support surface under reducing conditions. These observations provide insight on how rapid cycling between oxidative and reductive catalytic operating conditions affects catalyst structure.
Collapse
Affiliation(s)
- Andrew C Meng
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | - Alexandre C Foucher
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Yuejin Li
- BASF Corporation, Iselin, NJ 08830, USA
| | | | - Eric A Stach
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA. and Laboratory for Research on the Structure of Matter, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
36
|
Pishgar S, Gulati S, Strain JM, Liang Y, Mulvehill MC, Spurgeon JM. In Situ Analytical Techniques for the Investigation of Material Stability and Interface Dynamics in Electrocatalytic and Photoelectrochemical Applications. SMALL METHODS 2021; 5:e2100322. [PMID: 34927994 DOI: 10.1002/smtd.202100322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/17/2021] [Indexed: 06/14/2023]
Abstract
Electrocatalysis and photoelectrochemistry are critical to technologies like fuel cells, electrolysis, and solar fuels. Material stability and interfacial phenomena are central to the performance and long-term viability of these technologies. Researchers need tools to uncover the fundamental processes occurring at the electrode/electrolyte interface. Numerous analytical instruments are well-developed for material characterization, but many are ex situ techniques often performed under vacuum and without applied bias. Such measurements miss dynamic phenomena in the electrolyte under operational conditions. However, innovative advancements have allowed modification of these techniques for in situ characterization in liquid environments at electrochemically relevant conditions. This review explains some of the main in situ electrochemical characterization techniques, briefly explaining the principle of operation and highlighting key work in applying the method to investigate material stability and interfacial properties for electrocatalysts and photoelectrodes. Covered methods include spectroscopy (in situ UV-vis, ambient pressure X-ray photoelectron spectroscopy (APXPS), and in situ Raman), mass spectrometry (on-line inductively coupled plasma mass spectrometry (ICP-MS) and differential electrochemical mass spectrometry (DEMS)), and microscopy (in situ transmission electron microscopy (TEM), electrochemical atomic force microscopy (EC-AFM), electrochemical scanning tunneling microscopy (EC-STM), and scanning electrochemical microscopy (SECM)). Each technique's capabilities and advantages/disadvantages are discussed and summarized for comparison.
Collapse
Affiliation(s)
- Sahar Pishgar
- Conn Center for Renewable Energy Research, University of Louisville, Louisville, KY, 40292, USA
| | - Saumya Gulati
- Conn Center for Renewable Energy Research, University of Louisville, Louisville, KY, 40292, USA
| | - Jacob M Strain
- Conn Center for Renewable Energy Research, University of Louisville, Louisville, KY, 40292, USA
| | - Ying Liang
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510006, China
| | - Matthew C Mulvehill
- Conn Center for Renewable Energy Research, University of Louisville, Louisville, KY, 40292, USA
| | - Joshua M Spurgeon
- Conn Center for Renewable Energy Research, University of Louisville, Louisville, KY, 40292, USA
| |
Collapse
|
37
|
Kim J, Choi H, Kim D, Park JY. Operando Surface Studies on Metal-Oxide Interfaces of Bimetal and Mixed Catalysts. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02340] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jeongjin Kim
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Hanseul Choi
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Daeho Kim
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jeong Young Park
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
38
|
Horwath JP, Voorhees PW, Stach EA. Quantifying Competitive Degradation Processes in Supported Nanocatalyst Systems. NANO LETTERS 2021; 21:5324-5329. [PMID: 34109786 DOI: 10.1021/acs.nanolett.1c01516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The stability of supported metal nanoparticles determines the activity and lifetime of heterogeneous catalysts. Catalysts can destabilize through several thermodynamic and kinetic pathways, and the competition between these mechanisms complicates efforts to quantify and predict the overall evolution of supported nanoparticles in reactive environments. Pairing in situ transmission electron microscopy with unsupervised machine learning, we quantify the destabilization of hundreds of supported Au nanoparticles in real-time to develop a model describing the observed particle evolution as a competition between evaporation and surface diffusion. Data mining of particle evolution statistics allows us to determine physically reasonable values for the model parameters, quantify the particle size at which the Gibbs-Thomson pressure accelerates the evaporation process, and explore how individual particle interactions deviate from the mean-field model. This approach can be applied to a wide range of supported nanoparticle systems, allowing quantitative insight into the mechanisms that control their evolution in reactive environments.
Collapse
Affiliation(s)
- James P Horwath
- University of Pennsylvania, Department of Materials Science and Engineering, Philadelphia, Pennsylvania 19104, United States
| | - Peter W Voorhees
- Northwestern University, Department of Materials Science and Engineering, Evanston, Illinois 60208, United States
| | - Eric A Stach
- University of Pennsylvania, Department of Materials Science and Engineering, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
39
|
Matthews BE, Sassi M, Barr C, Ophus C, Kaspar TC, Jiang W, Hattar K, Spurgeon SR. Percolation of Ion-Irradiation-Induced Disorder in Complex Oxide Interfaces. NANO LETTERS 2021; 21:5353-5359. [PMID: 34110157 DOI: 10.1021/acs.nanolett.1c01651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Mastery of order-disorder processes in highly nonequilibrium nanostructured oxides has significant implications for the development of emerging energy technologies. However, we are presently limited in our ability to quantify and harness these processes at high spatial, chemical, and temporal resolution, particularly in extreme environments. Here, we describe the percolation of disorder at the model oxide interface LaMnO3/SrTiO3, which we visualize during in situ ion irradiation in the transmission electron microscope. We observe the formation of a network of disorder during the initial stages of ion irradiation and track the global progression of the system to full disorder. We couple these measurements with detailed structural and chemical probes, examining possible underlying defect mechanisms responsible for this unique percolative behavior.
Collapse
Affiliation(s)
- Bethany E Matthews
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Michel Sassi
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Christopher Barr
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87195, United States
| | - Colin Ophus
- NCEM, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States of America
| | - Tiffany C Kaspar
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Weilin Jiang
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Khalid Hattar
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87195, United States
| | - Steven R Spurgeon
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
40
|
Direct Characterization of the Relation between the Mechanical Response and Microstructure Evolution in Aluminum by Transmission Electron Microscopy In Situ Straining. MATERIALS 2021; 14:ma14061431. [PMID: 33804269 PMCID: PMC7998695 DOI: 10.3390/ma14061431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 11/17/2022]
Abstract
Transmission electron microscopy in situ straining experiments of Al single crystals with different initial lattice defect densities have been performed. The as-focused ion beam (FIB)-processed pillar sample contained a high density of prismatic dislocation loops with the <111> Burgers vector, while the post-annealed specimen had an almost defect-free microstructure. In both specimens, plastic deformation occurred with repetitive stress drops (∆σ). The stress drops were accompanied by certain dislocation motions, suggesting the dislocation avalanche phenomenon. ∆σ for the as-FIB Al pillar sample was smaller than that for the post-annealed Al sample. This can be considered to be because of the interaction of gliding dislocations with immobile prismatic dislocation loops introduced by the FIB. The reloading process after stress reduction was dominated by elastic behavior because the slope of the load–displacement curve for reloading was close to the Young’s modulus of Al. Microplasticity was observed during the load-recovery process, suggesting that microyielding and a dislocation avalanche repeatedly occurred, leading to intermittent plasticity as an elementary step of macroplastic deformation.
Collapse
|
41
|
Chee SW, Lunkenbein T, Schlögl R, Cuenya BR. In situand operandoelectron microscopy in heterogeneous catalysis-insights into multi-scale chemical dynamics. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:153001. [PMID: 33825698 DOI: 10.1088/1361-648x/abddfd] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
This review features state-of-the-artin situandoperandoelectron microscopy (EM) studies of heterogeneous catalysts in gas and liquid environments during reaction. Heterogeneous catalysts are important materials for the efficient production of chemicals/fuels on an industrial scale and for energy conversion applications. They also play a central role in various emerging technologies that are needed to ensure a sustainable future for our society. Currently, the rational design of catalysts has largely been hampered by our lack of insight into the working structures that exist during reaction and their associated properties. However, elucidating the working state of catalysts is not trivial, because catalysts are metastable functional materials that adapt dynamically to a specific reaction condition. The structural or morphological alterations induced by chemical reactions can also vary locally. A complete description of their morphologies requires that the microscopic studies undertaken span several length scales. EMs, especially transmission electron microscopes, are powerful tools for studying the structure of catalysts at the nanoscale because of their high spatial resolution, relatively high temporal resolution, and complementary capabilities for chemical analysis. Furthermore, recent advances have enabled the direct observation of catalysts under realistic environmental conditions using specialized reaction cells. Here, we will critically discuss the importance of spatially-resolvedoperandomeasurements and the available experimental setups that enable (1) correlated studies where EM observations are complemented by separate measurements of reaction kinetics or spectroscopic analysis of chemical species during reaction or (2) real-time studies where the dynamics of catalysts are followed with EM and the catalytic performance is extracted directly from the reaction cell that is within the EM column or chamber. Examples of current research in this field will be presented. Challenges in the experimental application of these techniques and our perspectives on the field's future directions will also be discussed.
Collapse
Affiliation(s)
- See Wee Chee
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society, 14195 Berlin, Germany
| | - Thomas Lunkenbein
- Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society, 14195 Berlin, Germany
| | - Robert Schlögl
- Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society, 14195 Berlin, Germany
- Department of Heterogeneous Reactions, Max Planck Institute for Chemical Energy Conversion, 45413 Mülheim an der Ruhr, Germany
| | - Beatriz Roldan Cuenya
- Department of Interface Science, Fritz Haber Institute of the Max Planck Society, 14195 Berlin, Germany
| |
Collapse
|
42
|
Abstract
Abstract
Collapse
|
43
|
Olshin P, Bongiovanni G, Drabbels M, Lorenz UJ. Atomic-Resolution Imaging of Fast Nanoscale Dynamics with Bright Microsecond Electron Pulses. NANO LETTERS 2021; 21:612-618. [PMID: 33301321 PMCID: PMC7809695 DOI: 10.1021/acs.nanolett.0c04184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/03/2020] [Indexed: 05/29/2023]
Abstract
Atomic-resolution electron microscopy is a crucial tool to elucidate the structure of matter. Recently, fast electron cameras have added the time domain to high-resolution imaging, allowing static images to be acquired as movies from which sample drift can later be removed computationally and enabling real-time observations of atomic-scale dynamics on the millisecond time scale. Even higher time resolution can be achieved with short electron pulses, yet their potential for atomic-resolution imaging remains unexplored. Here, we generate high-brightness microsecond electron pulses from a Schottky emitter whose current we briefly drive to near its limit. We demonstrate that drift-corrected imaging with such pulses can achieve atomic resolution in the presence of much larger amounts of drift than with a continuous electron beam. Moreover, such pulses enable atomic-resolution observations on the microsecond time scale, which we employ to elucidate the crystallization pathways of individual metal nanoparticles as well as the high-temperature transformation of perovskite nanocrystals.
Collapse
|
44
|
Liu C, Ma C, Xu J, Qiao R, Sun H, Li X, Xu Z, Gao P, Wang E, Liu K, Bai X. Development of in situ optical spectroscopy with high temporal resolution in an aberration-corrected transmission electron microscope. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:013704. [PMID: 33514196 DOI: 10.1063/5.0031115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/01/2021] [Indexed: 06/12/2023]
Abstract
Exploring the corresponding relation between structural and physical properties of materials at the atomic scale remains the fundamental problem in science. With the development of the aberration-corrected transmission electron microscopy (AC-TEM) and the ultrafast optical spectroscopy technique, sub-angstrom-scale spatial resolution and femtosecond-scale temporal resolution can be achieved, respectively. However, the attempt to combine both their advantages is still a great challenge. Here, we develop in situ optical spectroscopy with high temporal resolution in AC-TEM by utilizing a self-designed and manufactured TEM specimen holder, which has the capacity of sub-angstrom-scale spatial resolution and femtosecond-scale temporal resolution. The key and unique design of our apparatus is the use of the fiber bundle, which enables the delivery of focused pulse beams into TEM and collection of optical response simultaneously. The generated focused spot has a size less than 2 µm and can be scanned in plane with an area larger than 75 × 75 µm2. Most importantly, the positive group-velocity dispersion caused by glass fiber is compensated by a pair of diffraction gratings, thus resulting in the generation of pulse beams with a pulse width of about 300 fs (@ 3 mW) in TEM. The in situ experiment, observing the atomic structure of CdSe/ZnS quantum dots in AC-TEM and obtaining the photoluminescence lifetime (∼4.3 ns) in the meantime, has been realized. Further ultrafast optical spectroscopy with femtosecond-scale temporal resolution could be performed in TEM by utilizing this apparatus.
Collapse
Affiliation(s)
- Chang Liu
- School of Physics, Peking University, Beijing 100871, China
| | - Chaojie Ma
- School of Physics, Peking University, Beijing 100871, China
| | - Jinjing Xu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Ruixi Qiao
- School of Physics, Peking University, Beijing 100871, China
| | - Huacong Sun
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaomin Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhi Xu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Peng Gao
- School of Physics, Peking University, Beijing 100871, China
| | - Enge Wang
- School of Physics, Peking University, Beijing 100871, China
| | - Kaihui Liu
- School of Physics, Peking University, Beijing 100871, China
| | - Xuedong Bai
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
45
|
Dembélé K, Bahri M, Hirlimann C, Moldovan S, Berliet A, Maury S, Gay A, Ersen O. Operando
Electron Microscopy Study of Cobalt‐based Fischer‐Tropsch Nanocatalysts. ChemCatChem 2020. [DOI: 10.1002/cctc.202001074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kassiogé Dembélé
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) UMR 7504 CNRS – Université de Strasbourg 23 rue du Lœss BP 43, 67034 Strasbourg cedex 2 France
- IFP Énergies Nouvelles Rond-point de l'échangeur de Solaize 69360 Solaize France
| | - Mounib Bahri
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) UMR 7504 CNRS – Université de Strasbourg 23 rue du Lœss BP 43, 67034 Strasbourg cedex 2 France
| | - Charles Hirlimann
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) UMR 7504 CNRS – Université de Strasbourg 23 rue du Lœss BP 43, 67034 Strasbourg cedex 2 France
| | - Simona Moldovan
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) UMR 7504 CNRS – Université de Strasbourg 23 rue du Lœss BP 43, 67034 Strasbourg cedex 2 France
| | - Adrien Berliet
- IFP Énergies Nouvelles Rond-point de l'échangeur de Solaize 69360 Solaize France
| | - Sylvie Maury
- IFP Énergies Nouvelles Rond-point de l'échangeur de Solaize 69360 Solaize France
| | - Anne‐Sophie Gay
- IFP Énergies Nouvelles Rond-point de l'échangeur de Solaize 69360 Solaize France
| | - Ovidiu Ersen
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) UMR 7504 CNRS – Université de Strasbourg 23 rue du Lœss BP 43, 67034 Strasbourg cedex 2 France
- Institut Universitaire de France (IUF) 1 Rue Descartes Paris 75231 France
| |
Collapse
|
46
|
Boniface M, Plodinec M, Schlögl R, Lunkenbein T. Quo Vadis Micro-Electro-Mechanical Systems for the Study of Heterogeneous Catalysts Inside the Electron Microscope? Top Catal 2020. [DOI: 10.1007/s11244-020-01398-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
AbstractDuring the last decade, modern micro-electro-mechanical systems (MEMS) technology has been used to create cells that can act as catalytic nanoreactors and fit into the sample holders of transmission electron microscopes. These nanoreactors can maintain atmospheric or higher pressures inside the cells as they seal gases or liquids from the vacuum of the TEM column and can reach temperatures exceeding 1000 °C. This has led to a paradigm shift in electron microscopy, which facilitates the local characterization of structural and morphological changes of solid catalysts under working conditions. In this review, we outline the development of state-of-the-art nanoreactor setups that are commercially available and are currently applied to study catalytic reactions in situ or operando in gaseous or liquid environments. We also discuss challenges that are associated with the use of environmental cells. In catalysis studies, one of the major challenge is the interpretation of the results while considering the discrepancies in kinetics between MEMS based gas cells and fixed bed reactors, the interactions of the electron beam with the sample, as well as support effects. Finally, we critically analyze the general role of MEMS based nanoreactors in electron microscopy and catalysis communities and present possible future directions.
Collapse
|
47
|
De Wael A, De Backer A, Van Aert S. Hidden Markov model for atom-counting from sequential ADF STEM images: Methodology, possibilities and limitations. Ultramicroscopy 2020; 219:113131. [PMID: 33091707 DOI: 10.1016/j.ultramic.2020.113131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 10/23/2022]
Abstract
We present a quantitative method which allows us to reliably measure dynamic changes in the atomic structure of monatomic crystalline nanomaterials from a time series of atomic resolution annular dark field scanning transmission electron microscopy images. The approach is based on the so-called hidden Markov model and estimates the number of atoms in each atomic column of the nanomaterial in each frame of the time series. We discuss the origin of the improved performance for time series atom-counting as compared to the current state-of-the-art atom-counting procedures, and show that the so-called transition probabilities that describe the probability for an atomic column to lose or gain one or more atoms from frame to frame are particularly important. Using these transition probabilities, we show that the method can also be used to estimate the probability and cross section related to structural changes. Furthermore, we explore the possibilities for applying the method to time series recorded under variable environmental conditions. The method is shown to be promising for a reliable quantitative analysis of dynamic processes such as surface diffusion, adatom dynamics, beam effects, or in situ experiments.
Collapse
Affiliation(s)
- Annelies De Wael
- EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; NANOlab Center of Excellence, University of Antwerp, Belgium
| | - Annick De Backer
- EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; NANOlab Center of Excellence, University of Antwerp, Belgium
| | - Sandra Van Aert
- EMAT, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; NANOlab Center of Excellence, University of Antwerp, Belgium.
| |
Collapse
|
48
|
Gosse C, Stanescu S, Frederick J, Lefrançois S, Vecchiola A, Moskura M, Swaraj S, Belkhou R, Watts B, Haltebourg P, Blot C, Daillant J, Guenoun P, Chevallard C. A pressure-actuated flow cell for soft X-ray spectromicroscopy in liquid media. LAB ON A CHIP 2020; 20:3213-3229. [PMID: 32735308 DOI: 10.1039/c9lc01127g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We present and fully characterize a flow cell dedicated to imaging in liquid at the nanoscale. Its use as a routine sample environment for soft X-ray spectromicroscopy is demonstrated, in particular through the spectral analysis of inorganic particles in water. The care taken in delineating the fluidic pathways and the precision associated with pressure actuation ensure the efficiency of fluid renewal under the beam, which in turn guarantees a successful utilization of this microfluidic tool for in situ kinetic studies. The assembly of the described flow cell necessitates no sophisticated microfabrication and can be easily implemented in any laboratory. Furthermore, the design principles we relied on are transposable to all microscopies involving strongly absorbed radiation (e.g. X-ray, electron), as well as to all kinds of X-ray diffraction/scattering techniques.
Collapse
Affiliation(s)
- Charlie Gosse
- Laboratoire de Photonique et de Nanostructures, LPN-CNRS, Route de Nozay, 91460 Marcoussis, France.
| | - Stefan Stanescu
- Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin - BP 48, 91192 Gif-sur-Yvette Cedex, France
| | - Joni Frederick
- Laboratoire de Photonique et de Nanostructures, LPN-CNRS, Route de Nozay, 91460 Marcoussis, France. and Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette, France.
| | - Stéphane Lefrançois
- Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin - BP 48, 91192 Gif-sur-Yvette Cedex, France
| | - Aymeric Vecchiola
- Laboratoire de Photonique et de Nanostructures, LPN-CNRS, Route de Nozay, 91460 Marcoussis, France. and Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette, France.
| | - Mélanie Moskura
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette, France.
| | - Sufal Swaraj
- Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin - BP 48, 91192 Gif-sur-Yvette Cedex, France
| | - Rachid Belkhou
- Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin - BP 48, 91192 Gif-sur-Yvette Cedex, France
| | - Benjamin Watts
- Photon Science Division, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Patrick Haltebourg
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette, France.
| | - Christian Blot
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette, France.
| | - Jean Daillant
- Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin - BP 48, 91192 Gif-sur-Yvette Cedex, France and Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette, France.
| | - Patrick Guenoun
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette, France.
| | - Corinne Chevallard
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette, France.
| |
Collapse
|
49
|
Deng Y, Zhang R, Pekin TC, Gammer C, Ciston J, Ercius P, Ophus C, Bustillo K, Song C, Zhao S, Guo H, Zhao Y, Dong H, Chen Z, Minor AM. Functional Materials Under Stress: In Situ TEM Observations of Structural Evolution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906105. [PMID: 31746516 DOI: 10.1002/adma.201906105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/07/2019] [Indexed: 06/10/2023]
Abstract
The operating conditions of functional materials usually involve varying stress fields, resulting in structural changes, whether intentional or undesirable. Complex multiscale microstructures including defects, domains, and new phases, can be induced by mechanical loading in functional materials, providing fundamental insight into the deformation process of the involved materials. On the other hand, these microstructures, if induced in a controllable fashion, can be used to tune the functional properties or to enhance certain performance. In situ nanomechanical tests conducted in scanning/transmission electron microscopes (STEM/TEM) provide a critical tool for understanding the microstructural evolution in functional materials. Here, select results on a variety of functional material systems in the field are presented, with a brief introduction into some newly developed multichannel experimental capabilities to demonstrate the impact of these techniques.
Collapse
Affiliation(s)
- Yu Deng
- Solid State Microstructure National Key Lab and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Ruopeng Zhang
- National Center of Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
| | - Thomas C Pekin
- National Center of Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
| | - Christoph Gammer
- Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, Jahnstrasse 12, 8700, Leoben, Austria
| | - Jim Ciston
- National Center of Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Peter Ercius
- National Center of Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Colin Ophus
- National Center of Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Karen Bustillo
- National Center of Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Chengyu Song
- National Center of Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Shiteng Zhao
- National Center of Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
| | - Hua Guo
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77251, USA
| | - Yunlei Zhao
- Solid State Microstructure National Key Lab and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Hongliang Dong
- Center for High Pressure Science and Technology Advanced Research, Shanghai, 201203, China
| | - Zhiqiang Chen
- Center for High Pressure Science and Technology Advanced Research, Shanghai, 201203, China
| | - Andrew M Minor
- National Center of Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
50
|
Zhang C, Firestein KL, Fernando JFS, Siriwardena D, von Treifeldt JE, Golberg D. Recent Progress of In Situ Transmission Electron Microscopy for Energy Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1904094. [PMID: 31566272 DOI: 10.1002/adma.201904094] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/01/2019] [Indexed: 05/12/2023]
Abstract
In situ transmission electron microscopy (TEM) is one of the most powerful approaches for revealing physical and chemical process dynamics at atomic resolutions. The most recent developments for in situ TEM techniques are summarized; in particular, how they enable visualization of various events, measure properties, and solve problems in the field of energy by revealing detailed mechanisms at the nanoscale. Related applications include rechargeable batteries such as Li-ion, Na-ion, Li-O2 , Na-O2 , Li-S, etc., fuel cells, thermoelectrics, photovoltaics, and photocatalysis. To promote various applications, the methods of introducing the in situ stimuli of heating, cooling, electrical biasing, light illumination, and liquid and gas environments are discussed. The progress of recent in situ TEM in energy applications should inspire future research on new energy materials in diverse energy-related areas.
Collapse
Affiliation(s)
- Chao Zhang
- Science and Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4001, Australia
| | - Konstantin L Firestein
- Science and Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4001, Australia
| | - Joseph F S Fernando
- Science and Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4001, Australia
| | - Dumindu Siriwardena
- Science and Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4001, Australia
| | - Joel E von Treifeldt
- Science and Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4001, Australia
| | - Dmitri Golberg
- Science and Engineering, Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD, 4001, Australia
| |
Collapse
|