1
|
Jeong SG, Cho SW, Song S, Oh JY, Jeong DG, Han G, Jeong HY, Mohamed AY, Noh WS, Park S, Lee JS, Lee S, Kim YM, Cho DY, Choi WS. Dimensionality Engineering of Magnetic Anisotropy from the Anomalous Hall Effect in Synthetic SrRuO 3 Crystals. NANO LETTERS 2024; 24:7979-7986. [PMID: 38829309 DOI: 10.1021/acs.nanolett.4c01536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Magnetic anisotropy in atomically thin correlated heterostructures is essential for exploring quantum magnetic phases for next-generation spintronics. Whereas previous studies have mostly focused on van der Waals systems, here we investigate the impact of dimensionality of epitaxially grown correlated oxides down to the monolayer limit on structural, magnetic, and orbital anisotropies. By designing oxide superlattices with a correlated ferromagnetic SrRuO3 and nonmagnetic SrTiO3 layers, we observed modulated ferromagnetic behavior with the change of the SrRuO3 thickness. Especially, for three-unit-cell-thick layers, we observe a significant 1500% improvement of the coercive field in the anomalous Hall effect, which cannot be solely attributed to the dimensional crossover in ferromagnetism. The atomic-scale heterostructures further reveal the systematic modulation of anisotropy for the lattice structure and orbital hybridization, explaining the enhanced magnetic anisotropy. Our findings provide valuable insights into engineering the anisotropic hybridization of synthetic magnetic crystals, offering a tunable spin order for various applications.
Collapse
Affiliation(s)
- Seung Gyo Jeong
- Department of Physics, Sungkyunkwan University, Suwon 16419, Korea
| | - Seong Won Cho
- Center for Neuromorphic Engineering, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Sehwan Song
- Department of Physics, Pusan National University, Busan 46241, Korea
| | - Jin Young Oh
- Department of Physics, Sungkyunkwan University, Suwon 16419, Korea
| | - Do Gyeom Jeong
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Gyeongtak Han
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, Korea
| | - Hu Young Jeong
- Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | | | - Woo-Suk Noh
- cCPM, Max Planck POSTECH/Korea Research Initiative, Pohang 37673, Korea
| | - Sungkyun Park
- Department of Physics, Pusan National University, Busan 46241, Korea
| | - Jong Seok Lee
- Department of Physics and Photon Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Suyoun Lee
- Center for Neuromorphic Engineering, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Young-Min Kim
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, Korea
| | - Deok-Yong Cho
- Department of Physics, Jeonbuk National University, Jeonju 54896, Korea
| | - Woo Seok Choi
- Department of Physics, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
2
|
López-Haro M, Gómez-Recio I, Pan H, Delgado JJ, Chen X, Cauqui MA, Pérez-Omil JA, Ruiz-González ML, Hernando M, Parras M, González-Calbet JM, Calvino JJ. Quantitative, Spectro-kinetic Analysis of Oxygen in Electron-Beam Sensitive, Multimetallic Oxide Nanostructures. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:900-912. [PMID: 37749688 DOI: 10.1093/micmic/ozad037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/18/2023] [Accepted: 03/04/2023] [Indexed: 09/27/2023]
Abstract
The oxygen stoichiometry of hollandite, KxMnO2-δ, nanorods has been accurately determined from a quantitative analysis of scanning-transmission electron microscopy (STEM) X-Ray Energy Dispersive Spectroscopy (XEDS) experiments carried out in chrono-spectroscopy mode. A methodology combining 3D reconstructions of high-angle annular dark field electron tomography experiments, using compressed-sensing algorithms, and quantification through the so-called ζ-factors method of XEDS spectra recorded on a high-sensitivity detector has been devised to determine the time evolution of the oxygen content of nanostructures of electron-beam sensitive oxides. Kinetic modeling of O-stoichiometry data provided K0.13MnO1.98 as overall composition for nanorods of the hollandite. The quantitative agreement, within a 1% mol error, observed with results obtained by macroscopic techniques (temperature-programmed reduction and neutron diffraction) validate the proposed methodology for the quantitative analysis, at the nanoscale, of light elements, as it is the case of oxygen, in the presence of heavy ones (K, Mn) in the highly compromised case of nanostructured materials which are prone to electron-beam reduction. Moreover, quantitative comparison of oxygen evolution data measured at macroscopic and nanoscopic levels allowed us to rationalize beam damage effects in structural terms and clarify the exact nature of the different steps involved in the reduction of these oxides with hydrogen.
Collapse
Affiliation(s)
- Miguel López-Haro
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Campus Rio San Pedro, 11510-Puerto Real, Cádiz, Spain
| | - Isabel Gómez-Recio
- Departamento de Quı́ mica Inorgá nica, Facultad de Ciencias Quı́ micas, Universidad Complutense de Madrid, Plaza de las Ciencias, Ciudad Universitaria, Madrid 28040, Spain
| | - Huiyan Pan
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Campus Rio San Pedro, 11510-Puerto Real, Cádiz, Spain
| | - Juan J Delgado
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Campus Rio San Pedro, 11510-Puerto Real, Cádiz, Spain
| | - Xiaowei Chen
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Campus Rio San Pedro, 11510-Puerto Real, Cádiz, Spain
| | - Miguel A Cauqui
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Campus Rio San Pedro, 11510-Puerto Real, Cádiz, Spain
| | - José A Pérez-Omil
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Campus Rio San Pedro, 11510-Puerto Real, Cádiz, Spain
| | - María L Ruiz-González
- Departamento de Quı́ mica Inorgá nica, Facultad de Ciencias Quı́ micas, Universidad Complutense de Madrid, Plaza de las Ciencias, Ciudad Universitaria, Madrid 28040, Spain
| | - María Hernando
- Departamento de Quı́ mica Inorgá nica, Facultad de Ciencias Quı́ micas, Universidad Complutense de Madrid, Plaza de las Ciencias, Ciudad Universitaria, Madrid 28040, Spain
| | - Marina Parras
- Departamento de Quı́ mica Inorgá nica, Facultad de Ciencias Quı́ micas, Universidad Complutense de Madrid, Plaza de las Ciencias, Ciudad Universitaria, Madrid 28040, Spain
| | - José M González-Calbet
- Departamento de Quı́ mica Inorgá nica, Facultad de Ciencias Quı́ micas, Universidad Complutense de Madrid, Plaza de las Ciencias, Ciudad Universitaria, Madrid 28040, Spain
| | - José J Calvino
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Campus Rio San Pedro, 11510-Puerto Real, Cádiz, Spain
| |
Collapse
|
3
|
Seifer S, Elbaum M. Synchronization of scanning probe and pixelated sensor for image-guided diffraction microscopy. HARDWAREX 2023; 14:e00431. [PMID: 37293572 PMCID: PMC10245099 DOI: 10.1016/j.ohx.2023.e00431] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 06/10/2023]
Abstract
A 4-dimensional modality of a scanning transmission electron microscope (4D-STEM) acquires diffraction images formed by a coherent and focused electron beam scanning the specimen. Newly developed ultrafast detectors offer a possibility to acquire high throughput diffraction patterns at each pixel of the scan, enabling rapid tilt series acquisition for 4D-STEM tomography. Here we present a solution to the problem of synchronizing the electron probe scan with the diffraction image acquisition, and demonstrate on a fast hybrid-pixel detector camera (ARINA, DECTRIS). Image-guided tracking and autofocus corrections are handled by the freely-available microscope-control software SerialEM, in conjunction with a high angle annular dark field (HAADF) image acquired simultaneously. The open source SavvyScan system offers a versatile set of scanning patterns, operated by commercially available multi-channel acquisition and signal generator computer cards (Spectrum Instrumentation GmbH). Images are recorded only within a sub-region of the total field, so as to avoid spurious data collection during flyback and/or acceleration periods in the scan. Hence, the trigger of the fast camera follows selected pulses from the scan generator clock gated according to the chosen scan pattern. Software and protocol are provided for gating the trigger pulses via a microcontroller (ST Microelectronics ARM Cortex). We demonstrate the system on a standard replica grating and by diffraction imaging of a ferritin specimen.
Collapse
Affiliation(s)
- Shahar Seifer
- Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Michael Elbaum
- Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
4
|
Liang Z, Song D, Ge B. Optimizing experimental parameters of integrated differential phase contrast (iDPC) for atomic resolution imaging. Ultramicroscopy 2023; 246:113686. [PMID: 36682324 DOI: 10.1016/j.ultramic.2023.113686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 11/30/2022] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
Integrated differential phase contrast scanning transmission electron microscopy (iDPC-STEM) technique has been well developed for studying atomic structures at sub-Å resolution with the capability of simultaneously imaging heavy and light atoms even at an extremely low electron dose. As a direct phase contrast imaging technique, atomic resolution iDPC-STEM is sensitive to the imaging conditions. Although great achievements have been made both in aspect of theory and experiments, the influence of experimental parameters on the contrast of atomic resolution iDPC-STEM images has not been systematically investigated. Here, we perform the iDPC-STEM simulations on the prototypical example of SrTiO3 with respect to the routine experimental factors, including the defocus, specimen thickness, accelerating voltage, convergence angle, collection angle, sample tilt and electron dose. Through the evaluation of image contrast and atom column intensity, the parameters are discussed to improve the image contrast and the visibility of light elements. Moreover, the dose-dependent simulations demonstrate the advantage of low dose iDPC-STEM imaging over other conventional STEM modes. Our results provide a practical guideline to experimentally obtain accessible atomic resolution iDPC-STEM images.
Collapse
Affiliation(s)
- Zhiyao Liang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Dongsheng Song
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China.
| | - Binghui Ge
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China.
| |
Collapse
|
5
|
Comprehensive study upon physicochemical properties of bio-ZnO NCs. Sci Rep 2023; 13:587. [PMID: 36631546 PMCID: PMC9834250 DOI: 10.1038/s41598-023-27564-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
In this study, for the first time, the comparison of commercially available chemical ZnO NCs and bio-ZnO NCs produced extracellularly by two different probiotic isolates (Latilactobacillus curvatus MEVP1 [OM736187] and Limosilactobacillus fermentum MEVP2 [OM736188]) were performed. All types of ZnO formulations were characterized by comprehensive interdisciplinary approach including various instrumental techniques in order to obtain nanocomposites with suitable properties for further applications, i.e. biomedical. Based on the X- ray diffraction analysis results, all tested nanoparticles exhibited the wurtzite structure with an average crystalline size distribution of 21.1 nm (CHEM_ZnO NCs), 13.2 nm (1C_ZnO NCs) and 12.9 nm (4a_ZnO NCs). The microscopy approach with use of broad range of detectors (SE, BF, HAADF) revealed the core-shell structure of bio-ZnO NCs, compared to the chemical one. The nanoparticles core of 1C and 4a_ZnO NCs are coated by the specific organic deposit coming from the metabolites produced by two probiotic strains, L. fermentum and L. curvatus. Vibrational infrared spectroscopy, photoluminescence (PL) and mass spectrometry (LDI-TOF-MS) have been used to monitor the ZnO NCs surface chemistry and allowed for better description of bio-NCs organic coating composition (amino acids residues). The characterized ZnO formulations were then assessed for their photocatalytic properties against methylene blue (MB). Both types of bio-ZnO NCs exhibited good photocatalytic activity, however, the effect of CHEM_ZnO NCs was more potent than bio-ZnO NCs. Finally, the colloidal stability of the tested nanoparticles were investigated based on the zeta potential (ZP) and hydrodynamic diameter measurements in dependence of the nanocomposites concentration and investigation time. During the biosynthesis of nano-ZnO, the increment of pH from 5.7 to around 8 were observed which suggested possible contribution of zinc aquacomplexes and carboxyl-rich compounds resulted in conversion of zinc tetrahydroxy ion complex to ZnO NCs. Overall results in present study suggest that used accessible source such us probiotic strains, L. fermentum and L. curvatus, for extracellular bio-ZnO NCs synthesis are of high interest. What is important, no significant differences between organic deposit (e.g. metabolites) produced by tested strains were noticed-both of them allowed to form the nanoparticles with natural origin coating. In comparison to chemical ZnO NCs, those synthetized via microbiological route are promising material with further biological potential once have shown high stability during 7 days.
Collapse
|
6
|
Double-Bilayer polar nanoregions and Mn antisites in (Ca, Sr) 3Mn 2O 7. Nat Commun 2022; 13:4927. [PMID: 35995791 PMCID: PMC9395386 DOI: 10.1038/s41467-022-32090-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 07/14/2022] [Indexed: 11/12/2022] Open
Abstract
The layered perovskite Ca3Mn2O7 (CMO) is a hybrid improper ferroelectric candidate proposed for room temperature multiferroicity, which also displays negative thermal expansion behavior due to a competition between coexisting polar and nonpolar phases. However, little is known about the atomic-scale structure of the polar/nonpolar phase coexistence or the underlying physics of its formation and transition. In this work, we report the direct observation of double bilayer polar nanoregions (db-PNRs) in Ca2.9Sr0.1Mn2O7 using aberration-corrected scanning transmission electron microscopy (S/TEM). In-situ TEM heating experiments show that the db-PNRs can exist up to 650 °C. Electron energy loss spectroscopy (EELS) studies coupled with first-principles calculations demonstrate that the stabilization mechanism of the db-PNRs is directly related to an Mn oxidation state change (from 4+ to 2+), which is linked to the presence of Mn antisite defects. These findings open the door to manipulating phase coexistence and achieving exotic properties in hybrid improper ferroelectric. The competition between the polar and nonpolar phase in the prototypical hybrid improper ferroelectric crystal Ca3Mn2O7 leads to exotic properties. Here, the authors directly imaged the crystal at atomic resolution to understand its nanostructure and discovered the double bilayer polar nanoregion.
Collapse
|
7
|
Kang S, Jang WS, Morozovska AN, Kwon O, Jin Y, Kim YH, Bae H, Wang C, Yang SH, Belianinov A, Randolph S, Eliseev EA, Collins L, Park Y, Jo S, Jung MH, Go KJ, Cho HW, Choi SY, Jang JH, Kim S, Jeong HY, Lee J, Ovchinnikova OS, Heo J, Kalinin SV, Kim YM, Kim Y. Highly enhanced ferroelectricity in HfO 2-based ferroelectric thin film by light ion bombardment. Science 2022; 376:731-738. [PMID: 35549417 DOI: 10.1126/science.abk3195] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Continuous advancement in nonvolatile and morphotropic beyond-Moore electronic devices requires integration of ferroelectric and semiconductor materials. The emergence of hafnium oxide (HfO2)-based ferroelectrics that are compatible with atomic-layer deposition has opened interesting and promising avenues of research. However, the origins of ferroelectricity and pathways to controlling it in HfO2 are still mysterious. We demonstrate that local helium (He) implantation can activate ferroelectricity in these materials. The possible competing mechanisms, including He ion-induced molar volume changes, vacancy redistribution, vacancy generation, and activation of vacancy mobility, are analyzed. These findings both reveal the origins of ferroelectricity in this system and open pathways for nanoengineered binary ferroelectrics.
Collapse
Affiliation(s)
- Seunghun Kang
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Woo-Sung Jang
- Department of Energy Science, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Anna N Morozovska
- Institute of Physics, National Academy of Sciences of Ukraine, 46, Prospekt. Nauky, 03028 Kyiv, Ukraine
| | - Owoong Kwon
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Yeongrok Jin
- Department of Physics, Pusan National University, Busan 46241, Republic of Korea
| | - Young-Hoon Kim
- Department of Energy Science, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Hagyoul Bae
- Samsung Advanced Institute of Technology, Suwon 16678, Republic of Korea
| | - Chenxi Wang
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Sang-Hyeok Yang
- Department of Energy Science, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Alex Belianinov
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.,Sandia National Laboratories, Albuquerque, NM 87123, USA
| | - Steven Randolph
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Eugene A Eliseev
- Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, Krjijanovskogo 3, 03142 Kyiv, Ukraine
| | - Liam Collins
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Yeehyun Park
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Sanghyun Jo
- Samsung Advanced Institute of Technology, Suwon 16678, Republic of Korea
| | - Min-Hyoung Jung
- Department of Energy Science, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Kyoung-June Go
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hae Won Cho
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Si-Young Choi
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jae Hyuck Jang
- Center for Scientific Instrumentation, Korea Basic Science Institute (KBSI), Daejeon 34133, Republic of Korea
| | - Sunkook Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Hu Young Jeong
- Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jaekwang Lee
- Department of Physics, Pusan National University, Busan 46241, Republic of Korea
| | - Olga S Ovchinnikova
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jinseong Heo
- Samsung Advanced Institute of Technology, Suwon 16678, Republic of Korea
| | - Sergei V Kalinin
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.,Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37920, USA
| | - Young-Min Kim
- Department of Energy Science, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Yunseok Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|
8
|
Sha H, Cui J, Yu R. Deep sub-angstrom resolution imaging by electron ptychography with misorientation correction. SCIENCE ADVANCES 2022; 8:eabn2275. [PMID: 35559675 PMCID: PMC9106290 DOI: 10.1126/sciadv.abn2275] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/30/2022] [Indexed: 05/31/2023]
Abstract
Superresolution imaging of solids is essential to explore local symmetry breaking and derived material properties. Electron ptychography is one of the most promising schemes to realize superresolution imaging beyond aberration correction. However, to reach both deep sub-angstrom resolution imaging and accurate measurement of atomic structures, it is still required for the electron beam to be nearly parallel to the zone axis of crystals. Here, we report an efficient and robust method to correct the specimen misorientation in electron ptychography, giving deep sub-angstrom resolution for specimens with large misorientations. The method largely reduces the experimental difficulties of electron ptychography and paves the way for widespread applications of ptychographic deep sub-angstrom resolution imaging.
Collapse
Affiliation(s)
- Haozhi Sha
- National Center for Electron Microscopy in Beijing, Tsinghua University, Beijing 100084, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, Tsinghua University, Beijing 100084, China
- State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084, China
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Jizhe Cui
- National Center for Electron Microscopy in Beijing, Tsinghua University, Beijing 100084, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, Tsinghua University, Beijing 100084, China
- State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084, China
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Rong Yu
- National Center for Electron Microscopy in Beijing, Tsinghua University, Beijing 100084, China
- Key Laboratory of Advanced Materials of Ministry of Education of China, Tsinghua University, Beijing 100084, China
- State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084, China
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
9
|
Kim SJ, Kim YI, Lamichhane B, Kim YH, Lee Y, Cho CR, Cheon M, Kim JC, Jeong HY, Ha T, Kim J, Lee YH, Kim SG, Kim YM, Jeong SY. Flat-surface-assisted and self-regulated oxidation resistance of Cu(111). Nature 2022; 603:434-438. [PMID: 35296844 PMCID: PMC8930770 DOI: 10.1038/s41586-021-04375-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 12/20/2021] [Indexed: 11/09/2022]
Abstract
Oxidation can deteriorate the properties of copper that are critical for its use, particularly in the semiconductor industry and electro-optics applications1-7. This has prompted numerous studies exploring copper oxidation and possible passivation strategies8. In situ observations have, for example, shown that oxidation involves stepped surfaces: Cu2O growth occurs on flat surfaces as a result of Cu adatoms detaching from steps and diffusing across terraces9-11. But even though this mechanism explains why single-crystalline copper is more resistant to oxidation than polycrystalline copper, the fact that flat copper surfaces can be free of oxidation has not been explored further. Here we report the fabrication of copper thin films that are semi-permanently oxidation resistant because they consist of flat surfaces with only occasional mono-atomic steps. First-principles calculations confirm that mono-atomic step edges are as impervious to oxygen as flat surfaces and that surface adsorption of O atoms is suppressed once an oxygen face-centred cubic (fcc) surface site coverage of 50% has been reached. These combined effects explain the exceptional oxidation resistance of ultraflat Cu surfaces.
Collapse
Affiliation(s)
- Su Jae Kim
- Crystal Bank Research Institute, Pusan National University, Busan, Republic of Korea
| | - Yong In Kim
- Department of Energy Science, Sungkyunkwan University, Suwon, Republic of Korea
| | - Bipin Lamichhane
- Department of Physics and Astronomy, Mississippi State University, Mississippi State, MS, USA
| | - Young-Hoon Kim
- Department of Energy Science, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yousil Lee
- Crystal Bank Research Institute, Pusan National University, Busan, Republic of Korea
| | - Chae Ryong Cho
- Department of Nanoenergy Engineering, Pusan National University, Busan, Republic of Korea
| | - Miyeon Cheon
- Crystal Bank Research Institute, Pusan National University, Busan, Republic of Korea
| | - Jong Chan Kim
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Hu Young Jeong
- UNIST Central Research Facilities (UCRF), Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Taewoo Ha
- Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Sungkyunkwan University, Suwon, Republic of Korea
| | - Jungdae Kim
- Department of Physics, University of Ulsan, Ulsan, Republic of Korea
| | - Young Hee Lee
- Department of Energy Science, Sungkyunkwan University, Suwon, Republic of Korea
- Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Sungkyunkwan University, Suwon, Republic of Korea
- Department of Physics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Seong-Gon Kim
- Department of Physics and Astronomy, Mississippi State University, Mississippi State, MS, USA.
| | - Young-Min Kim
- Department of Energy Science, Sungkyunkwan University, Suwon, Republic of Korea.
- Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Sungkyunkwan University, Suwon, Republic of Korea.
| | - Se-Young Jeong
- Department of Optics and Mechatronics Engineering, Pusan National University, Busan, Republic of Korea.
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan, Republic of Korea.
| |
Collapse
|
10
|
Robert HL, Lobato I, Lyu FJ, Chen Q, Van Aert S, Van Dyck D, Müller-Caspary K. Dynamical diffraction of high-energy electrons investigated by focal series momentum-resolved scanning transmission electron microscopy at atomic resolution. Ultramicroscopy 2022; 233:113425. [PMID: 34800894 DOI: 10.1016/j.ultramic.2021.113425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/01/2021] [Accepted: 10/31/2021] [Indexed: 10/19/2022]
Abstract
We report a study of scattering dynamics in crystals employing momentum-resolved scanning transmission electron microscopy under varying illumination conditions. As we perform successive changes of the probe focus, multiple real-space signals are obtained in dependence of the shape of the incident electron wave. With support from extensive simulations, each signal is shown to be characterised by an optimum focus for which the contrast is maximum and which differs among different signals. For instance, a systematic focus mismatch is found between images formed by high-angle scattering, being sensitive to thickness and chemical composition, and the first moment in diffraction space, being sensitive to electric fields. It follows that a single recording at one specific probe focus is usually insufficient to characterise materials comprehensively. Most importantly, we demonstrate in experiment and simulation that the second moment μ20+μ02=〈p2〉 of the diffracted intensity exhibits a contrast maximum when the electron probe is focused at the top and bottom faces of the specimen, making the presented concept attractive for measuring local topography. Given the versatility of 〈p2〉, we furthermore present a detailed study of its large-angle convergence both analytically using the Mott scattering approach, and by dynamical simulations using the multislice algorithm including thermal diffuse scattering. Both approaches are in very good agreement and yield logarithmic divergence with increasing scattering angle.
Collapse
Affiliation(s)
- H L Robert
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C), Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, 52428 Jülich, Germany; 2nd Institute of Physics, RWTH Aachen University, Templergraben 55, 52062 Aachen, Germany.
| | - I Lobato
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - F J Lyu
- Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, 5 Yiheyuan Rd, Haidian Qu, 100871 Beijing, China
| | - Q Chen
- Key Laboratory for the Physics and Chemistry of Nanodevices, Department of Electronics, Peking University, 5 Yiheyuan Rd, Haidian Qu, 100871 Beijing, China
| | - S Van Aert
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - D Van Dyck
- Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - K Müller-Caspary
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C), Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, 52428 Jülich, Germany; Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-13, 81377 Munich, Germany
| |
Collapse
|
11
|
Zachman MJ, Yang Z, Du Y, Chi M. Robust Atomic-Resolution Imaging of Lithium in Battery Materials by Center-of-Mass Scanning Transmission Electron Microscopy. ACS NANO 2022; 16:1358-1367. [PMID: 35000379 DOI: 10.1021/acsnano.1c09374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The performance of energy storage materials is often governed by their structure at the atomic scale. Conventional electron microscopy can provide detailed information about materials at these length scales, but direct imaging of light elements such as lithium presents a challenge. While several recent techniques allow lithium columns to be distinguished, these typically either involve complex contrast mechanisms that make image interpretation difficult or require significant expertise to perform. Here, we demonstrate how center-of-mass scanning transmission electron microscopy (CoM-STEM) provides an enhanced ability for simultaneous imaging of lithium and heavier element columns in lithium ion conductors. Through a combination of experiments and multislice electron scattering calculations, we show that CoM-STEM is straightforward to perform and produces directly interpretable contrast for thin samples, while being more robust to variations in experimental parameters than previously demonstrated techniques. As a result, CoM-STEM is positioned to become a reliable and facile method for directly probing all elements within energy storage materials at the atomic scale.
Collapse
Affiliation(s)
- Michael J Zachman
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Zhenzhong Yang
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Yingge Du
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Miaofang Chi
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
12
|
Liu JJ. Advances and Applications of Atomic-Resolution Scanning Transmission Electron Microscopy. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2021; 27:1-53. [PMID: 34414878 DOI: 10.1017/s1431927621012125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Although scanning transmission electron microscopy (STEM) images of individual heavy atoms were reported 50 years ago, the applications of atomic-resolution STEM imaging became wide spread only after the practical realization of aberration correctors on field-emission STEM/TEM instruments to form sub-Ångstrom electron probes. The innovative designs and advances of electron optical systems, the fundamental understanding of electron–specimen interaction processes, and the advances in detector technology all played a major role in achieving the goal of atomic-resolution STEM imaging of practical materials. It is clear that tremendous advances in computer technology and electronics, image acquisition and processing algorithms, image simulations, and precision machining synergistically made atomic-resolution STEM imaging routinely accessible. It is anticipated that further hardware/software development is needed to achieve three-dimensional atomic-resolution STEM imaging with single-atom chemical sensitivity, even for electron-beam-sensitive materials. Artificial intelligence, machine learning, and big-data science are expected to significantly enhance the impact of STEM and associated techniques on many research fields such as materials science and engineering, quantum and nanoscale science, physics and chemistry, and biology and medicine. This review focuses on advances of STEM imaging from the invention of the field-emission electron gun to the realization of aberration-corrected and monochromated atomic-resolution STEM and its broad applications.
Collapse
Affiliation(s)
- Jingyue Jimmy Liu
- Department of Physics, Arizona State University, Tempe, AZ85287, USA
| |
Collapse
|
13
|
Yang S, Choi W, Cho BW, Agyapong‐Fordjour FO, Park S, Yun SJ, Kim H, Han Y, Lee YH, Kim KK, Kim Y. Deep Learning-Assisted Quantification of Atomic Dopants and Defects in 2D Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101099. [PMID: 34081415 PMCID: PMC8373156 DOI: 10.1002/advs.202101099] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/10/2021] [Indexed: 05/16/2023]
Abstract
Atomic dopants and defects play a crucial role in creating new functionalities in 2D transition metal dichalcogenides (2D TMDs). Therefore, atomic-scale identification and their quantification warrant precise engineering that widens their application to many fields, ranging from development of optoelectronic devices to magnetic semiconductors. Scanning transmission electron microscopy with a sub-Å probe has provided a facile way to observe local dopants and defects in 2D TMDs. However, manual data analytics of experimental images is a time-consuming task, and often requires subjective decisions to interpret observed signals. Therefore, an approach is required to automate the detection and classification of dopants and defects. In this study, based on a deep learning algorithm, fully convolutional neural network that shows a superior ability of image segmentation, an efficient and automated method for reliable quantification of dopants and defects in TMDs is proposed with single-atom precision. The approach demonstrates that atomic dopants and defects are precisely mapped with a detection limit of ≈1 × 1012 cm-2 , and with a measurement accuracy of ≈98% for most atomic sites. Furthermore, this methodology is applicable to large volume of image data to extract atomic site-specific information, thus providing insights into the formation mechanisms of various defects under stimuli.
Collapse
Affiliation(s)
- Sang‐Hyeok Yang
- Department of Energy ScienceSungkyunkwan University (SKKU)Suwon16419Republic of Korea
| | - Wooseon Choi
- Department of Energy ScienceSungkyunkwan University (SKKU)Suwon16419Republic of Korea
| | - Byeong Wook Cho
- Department of Energy ScienceSungkyunkwan University (SKKU)Suwon16419Republic of Korea
- Center for Integrated Nanostructure PhysicsInstitute for Basic Science (IBS)Suwon16419Republic of Korea
| | | | - Sehwan Park
- Department of Energy ScienceSungkyunkwan University (SKKU)Suwon16419Republic of Korea
- Center for Integrated Nanostructure PhysicsInstitute for Basic Science (IBS)Suwon16419Republic of Korea
| | - Seok Joon Yun
- Center for Integrated Nanostructure PhysicsInstitute for Basic Science (IBS)Suwon16419Republic of Korea
| | - Hyung‐Jin Kim
- Department of Energy and Materials EngineeringDongguk UniversitySeoul04620Republic of Korea
| | - Young‐Kyu Han
- Department of Energy and Materials EngineeringDongguk UniversitySeoul04620Republic of Korea
| | - Young Hee Lee
- Department of Energy ScienceSungkyunkwan University (SKKU)Suwon16419Republic of Korea
- Center for Integrated Nanostructure PhysicsInstitute for Basic Science (IBS)Suwon16419Republic of Korea
| | - Ki Kang Kim
- Department of Energy ScienceSungkyunkwan University (SKKU)Suwon16419Republic of Korea
- Center for Integrated Nanostructure PhysicsInstitute for Basic Science (IBS)Suwon16419Republic of Korea
| | - Young‐Min Kim
- Department of Energy ScienceSungkyunkwan University (SKKU)Suwon16419Republic of Korea
- Center for Integrated Nanostructure PhysicsInstitute for Basic Science (IBS)Suwon16419Republic of Korea
| |
Collapse
|
14
|
Min T, Choi W, Seo J, Han G, Song K, Ryu S, Lee H, Lee J, Eom K, Eom CB, Jeong HY, Kim YM, Lee J, Oh SH. Cooperative evolution of polar distortion and nonpolar rotation of oxygen octahedra in oxide heterostructures. SCIENCE ADVANCES 2021; 7:7/17/eabe9053. [PMID: 33883134 PMCID: PMC8059930 DOI: 10.1126/sciadv.abe9053] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/05/2021] [Indexed: 05/23/2023]
Abstract
Polarity discontinuity across LaAlO3/SrTiO3 (LAO/STO) heterostructures induces electronic reconstruction involving the formation of two-dimensional electron gas (2DEG) and structural distortions characterized by antiferrodistortive (AFD) rotation and ferroelectric (FE) distortion. We show that AFD and FE modes are cooperatively coupled in LAO/STO (111) heterostructures; they coexist below the critical thickness (t c) and disappear simultaneously above t c with the formation of 2DEG. Electron energy-loss spectroscopy and density functional theory (DFT) calculations provide direct evidence of oxygen vacancy (V O) formation at the LAO (111) surface, which acts as the source of 2DEG. Tracing the AFD rotation and FE distortion of LAO reveals that their evolution is strongly correlated with V O distribution. The present study demonstrates that AFD and FE modes in oxide heterostructures emerge as a consequence of interplay between misfit strain and polar field, and further that their combination can be tuned to competitive or cooperative coupling by changing the interface orientation.
Collapse
Affiliation(s)
- Taewon Min
- Department of Physics, Pusan National University, Busan 46241, Republic of Korea
| | - Wooseon Choi
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jinsol Seo
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Gyeongtak Han
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Kyung Song
- Materials Testing and Reliability Division, Korea Institute of Materials Science (KIMS), Changwon 51508, Republic of Korea
| | - Sangwoo Ryu
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Hyungwoo Lee
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jungwoo Lee
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kitae Eom
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Chang-Beom Eom
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Hu Young Jeong
- UNIST Central Research Facilities (UCRF), Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Young-Min Kim
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Jaekwang Lee
- Department of Physics, Pusan National University, Busan 46241, Republic of Korea.
| | - Sang Ho Oh
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
15
|
Kumar A, Baker JN, Bowes PC, Cabral MJ, Zhang S, Dickey EC, Irving DL, LeBeau JM. Atomic-resolution electron microscopy of nanoscale local structure in lead-based relaxor ferroelectrics. NATURE MATERIALS 2021; 20:62-67. [PMID: 32895506 DOI: 10.1038/s41563-020-0794-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 08/04/2020] [Indexed: 05/13/2023]
Abstract
Relaxor ferroelectrics, which can exhibit exceptional electromechanical coupling, are some of the most important functional materials, with applications ranging from ultrasound imaging to actuators. Since their discovery, their complex nanoscale chemical and structural heterogeneity has made the origins of their electromechanical properties extremely difficult to understand. Here, we employ aberration-corrected scanning transmission electron microscopy to quantify various types of nanoscale heterogeneities and their connection to local polarization in the prototypical relaxor ferroelectric system Pb(Mg1/3Nb2/3)O3-PbTiO3. We identify three main contributions that each depend on Ti content: chemical order, oxygen octahedral tilt and oxygen octahedral distortion. These heterogeneities are found to be spatially correlated with low-angle polar domain walls, indicating their role in disrupting long-range polarization and leading to nanoscale domain formation and the relaxor response. We further locate nanoscale regions of monoclinic-like distortion that correlate directly with Ti content and electromechanical performance. Through this approach, the connections between chemical heterogeneity, structural heterogeneity and local polarization are revealed, validating models that are needed to develop the next generation of relaxor ferroelectrics.
Collapse
Affiliation(s)
- Abinash Kumar
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jonathon N Baker
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC, USA
| | - Preston C Bowes
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC, USA
| | - Matthew J Cabral
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC, USA
| | - Shujun Zhang
- Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Wollongong, New South Wales, Australia
| | - Elizabeth C Dickey
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC, USA
| | - Douglas L Irving
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC, USA
| | - James M LeBeau
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
16
|
Paterson GW, Webster RWH, Ross A, Paton KA, Macgregor TA, McGrouther D, MacLaren I, Nord M. Fast Pixelated Detectors in Scanning Transmission Electron Microscopy. Part II: Post-Acquisition Data Processing, Visualization, and Structural Characterization. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2020; 26:944-963. [PMID: 32883393 DOI: 10.1017/s1431927620024307] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fast pixelated detectors incorporating direct electron detection (DED) technology are increasingly being regarded as universal detectors for scanning transmission electron microscopy (STEM), capable of imaging under multiple modes of operation. However, several issues remain around the post-acquisition processing and visualization of the often very large multidimensional STEM datasets produced by them. We discuss these issues and present open source software libraries to enable efficient processing and visualization of such datasets. Throughout, we provide examples of the analysis methodologies presented, utilizing data from a 256 × 256 pixel Medipix3 hybrid DED detector, with a particular focus on the STEM characterization of the structural properties of materials. These include the techniques of virtual detector imaging; higher-order Laue zone analysis; nanobeam electron diffraction; and scanning precession electron diffraction. In the latter, we demonstrate a nanoscale lattice parameter mapping with a fractional precision ≤6 × 10−4 (0.06%).
Collapse
Affiliation(s)
- Gary W Paterson
- SUPA, School of Physics and Astronomy, University of Glasgow, GlasgowG12 8QQ, UK
| | - Robert W H Webster
- SUPA, School of Physics and Astronomy, University of Glasgow, GlasgowG12 8QQ, UK
| | - Andrew Ross
- SUPA, School of Physics and Astronomy, University of Glasgow, GlasgowG12 8QQ, UK
| | - Kirsty A Paton
- SUPA, School of Physics and Astronomy, University of Glasgow, GlasgowG12 8QQ, UK
| | - Thomas A Macgregor
- SUPA, School of Physics and Astronomy, University of Glasgow, GlasgowG12 8QQ, UK
| | - Damien McGrouther
- SUPA, School of Physics and Astronomy, University of Glasgow, GlasgowG12 8QQ, UK
| | - Ian MacLaren
- SUPA, School of Physics and Astronomy, University of Glasgow, GlasgowG12 8QQ, UK
| | - Magnus Nord
- SUPA, School of Physics and Astronomy, University of Glasgow, GlasgowG12 8QQ, UK
- EMAT, Department of Physics, University of Antwerp, Antwerp2000, Belgium
| |
Collapse
|
17
|
Zhang C, Feng Y, Han Z, Gao S, Wang M, Wang P. Electrochemical and Structural Analysis in All-Solid-State Lithium Batteries by Analytical Electron Microscopy: Progress and Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1903747. [PMID: 31660670 DOI: 10.1002/adma.201903747] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/14/2019] [Indexed: 06/10/2023]
Abstract
Advanced scanning transmission electron microscopy (STEM) and its associated instruments have made significant contributions to the characterization of all-solid-state (ASS) Li batteries, as these tools provide localized information on the structure, morphology, chemistry, and electronic state of electrodes, electrolytes, and their interfaces at the nano- and atomic scale. Furthermore, the rapid development of in situ techniques has enabled a deep understanding of interfacial dynamic behavior and heterogeneous characteristics during the cycling process. However, due to the beam-sensitive nature of light elements in the interphases, e.g., Li and O, thorough and reliable studies of the interfacial structure and chemistry at an ultrahigh spatial resolution without beam damage is still a formidable challenge. Herein, the following points are discussed: (1) the recent contributions of advanced STEM to the study of ASS Li batteries; (2) current challenges associated with using this method; and (3) potential opportunities for combining cryo-electron microscopy and the STEM phase contrast imaging techniques.
Collapse
Affiliation(s)
- Chunchen Zhang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Yuzhang Feng
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Zhen Han
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Si Gao
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Meiyu Wang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Peng Wang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
18
|
Campanini M, Erni R, Rossell MD. Probing local order in multiferroics by transmission electron microscopy. PHYSICAL SCIENCES REVIEWS 2020. [DOI: 10.1515/psr-2019-0068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The ongoing trend toward miniaturization has led to an increased interest in the magnetoelectric effect, which could yield entirely new device concepts, such as electric field-controlled magnetic data storage. As a result, much work is being devoted to developing new robust room temperature (RT) multiferroic materials that combine ferromagnetism and ferroelectricity. However, the development of new multiferroic devices has proved unexpectedly challenging. Thus, a better understanding of the properties of multiferroic thin films and the relation with their microstructure is required to help drive multiferroic devices toward technological application. This review covers in a concise manner advanced analytical imaging methods based on (scanning) transmission electron microscopy which can potentially be used to characterize complex multiferroic materials. It consists of a first broad introduction to the topic followed by a section describing the so-called phase-contrast methods, which can be used to map the polar and magnetic order in magnetoelectric multiferroics at different spatial length scales down to atomic resolution. Section 3 is devoted to electron nanodiffraction methods. These methods allow measuring local strains, identifying crystal defects and determining crystal structures, and thus offer important possibilities for the detailed structural characterization of multiferroics in the ultrathin regime or inserted in multilayers or superlattice architectures. Thereafter, in Section 4, methods are discussed which allow for analyzing local strain, whereas in Section 5 methods are addressed which allow for measuring local polarization effects on a length scale of individual unit cells. Here, it is shown that the ferroelectric polarization can be indirectly determined from the atomic displacements measured in atomic resolution images. Finally, a brief outlook is given on newly established methods to probe the behavior of ferroelectric and magnetic domains and nanostructures during in situ heating/electrical biasing experiments. These in situ methods are just about at the launch of becoming increasingly popular, particularly in the field of magnetoelectric multiferroics, and shall contribute significantly to understanding the relationship between the domain dynamics of multiferroics and the specific microstructure of the films providing important guidance to design new devices and to predict and mitigate failures.
Collapse
|
19
|
Feng Y, Wu J, Chi Q, Li W, Yu Y, Fei W. Defects and Aliovalent Doping Engineering in Electroceramics. Chem Rev 2020; 120:1710-1787. [DOI: 10.1021/acs.chemrev.9b00507] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Yu Feng
- Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, P. R. China
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, P. R. China
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Jiagang Wu
- Department of Materials Science, Sichuan University, Chengdu 610064, P. R. China
| | - Qingguo Chi
- Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, P. R. China
| | - Weili Li
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Yang Yu
- Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, P. R. China
| | - Weidong Fei
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, P. R. China
| |
Collapse
|
20
|
Liberti E, Lozano JG, Pérez Osorio MA, Roberts MR, Bruce PG, Kirkland AI. Quantifying oxygen distortions in lithium-rich transition-metal-oxide cathodes using ABF STEM. Ultramicroscopy 2019; 210:112914. [PMID: 31811959 DOI: 10.1016/j.ultramic.2019.112914] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/11/2019] [Accepted: 11/22/2019] [Indexed: 11/26/2022]
Abstract
Lithium-rich cathodes can store excess charge beyond the transition metal redox capacity by participation of oxygen in reversible anionic redox reactions. Although these processes are crucial for achieving high energy densities, their structural origins are not yet fully understood. Here, we explore the use of annular bright-field (ABF) imaging in scanning transmission electron microscopy (STEM) to measure oxygen distortions in charged Li1.2Ni0.2Mn0.6O2. We show that ABF STEM data can provide positional accuracies below 20 pm but this is restricted to cases where no specimen mistilt is present, and only for a range of thicknesses above 3.5 nm. The reliability of these measurements is compromised even when the experimental and post-processing designs are optimised for accuracy and precision, indicating that extreme care must be taken when attempting to quantify distortions in these materials.
Collapse
Affiliation(s)
- E Liberti
- Department of Materials, University of Oxford, Parks Road OX1 3PH, UK.
| | - J G Lozano
- Department of Materials, University of Oxford, Parks Road OX1 3PH, UK
| | - M A Pérez Osorio
- Department of Materials, University of Oxford, Parks Road OX1 3PH, UK
| | - M R Roberts
- Department of Materials, University of Oxford, Parks Road OX1 3PH, UK
| | - P G Bruce
- Department of Materials, University of Oxford, Parks Road OX1 3PH, UK
| | - A I Kirkland
- Department of Materials, University of Oxford, Parks Road OX1 3PH, UK
| |
Collapse
|
21
|
Zachman MJ, Hachtel JA, Idrobo JC, Chi M. Emerging Electron Microscopy Techniques for Probing Functional Interfaces in Energy Materials. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Michael J. Zachman
- Center for Nanophase Materials Sciences Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Jordan A. Hachtel
- Center for Nanophase Materials Sciences Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Juan Carlos Idrobo
- Center for Nanophase Materials Sciences Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Miaofang Chi
- Center for Nanophase Materials Sciences Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| |
Collapse
|
22
|
Zachman MJ, Hachtel JA, Idrobo JC, Chi M. Emerging Electron Microscopy Techniques for Probing Functional Interfaces in Energy Materials. Angew Chem Int Ed Engl 2019; 59:1384-1396. [PMID: 31081976 DOI: 10.1002/anie.201902993] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/01/2019] [Indexed: 11/10/2022]
Abstract
Interfaces play a fundamental role in many areas of chemistry. However, their localized nature requires characterization techniques with high spatial resolution in order to fully understand their structure and properties. State-of-the-art atomic resolution or in situ scanning transmission electron microscopy and electron energy-loss spectroscopy are indispensable tools for characterizing the local structure and chemistry of materials with single-atom resolution, but they are not able to measure many properties that dictate function, such as vibrational modes or charge transfer, and are limited to room-temperature samples containing no liquids. Here, we outline emerging electron microscopy techniques that are allowing these limitations to be overcome and highlight several recent studies that were enabled by these techniques. We then provide a vision for how these techniques can be paired with each other and with in situ methods to deliver new insights into the static and dynamic behavior of functional interfaces.
Collapse
Affiliation(s)
- Michael J Zachman
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Jordan A Hachtel
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Juan Carlos Idrobo
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Miaofang Chi
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| |
Collapse
|
23
|
Pennycook SJ, Li C, Li M, Tang C, Okunishi E, Varela M, Kim YM, Jang JH. Material structure, properties, and dynamics through scanning transmission electron microscopy. J Anal Sci Technol 2018; 9:11. [PMID: 31258949 PMCID: PMC6560782 DOI: 10.1186/s40543-018-0142-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/14/2018] [Indexed: 12/03/2022] Open
Abstract
Scanning transmission electron microscopy (STEM) has advanced rapidly in the last decade thanks to the ability to correct the major aberrations of the probe-forming lens. Now, atomic-sized beams are routine, even at accelerating voltages as low as 40 kV, allowing knock-on damage to be minimized in beam sensitive materials. The aberration-corrected probes can contain sufficient current for high-quality, simultaneous, imaging and analysis in multiple modes. Atomic positions can be mapped with picometer precision, revealing ferroelectric domain structures, composition can be mapped by energy-dispersive X-ray spectroscopy (EDX) and electron energy loss spectroscopy (EELS), and charge transfer can be tracked unit cell by unit cell using the EELS fine structure. Furthermore, dynamics of point defects can be investigated through rapid acquisition of multiple image scans. Today STEM has become an indispensable tool for analytical science at the atomic level, providing a whole new level of insights into the complex interplays that control material properties.
Collapse
Affiliation(s)
- Stephen J. Pennycook
- Department of Materials Science and Engineering, National University of Singapore, Block EA 07-14, 9 Engineering Drive 1, Singapore, 117575 Singapore
| | - Changjian Li
- Department of Materials Science and Engineering, National University of Singapore, Block EA 07-14, 9 Engineering Drive 1, Singapore, 117575 Singapore
| | - Mengsha Li
- Department of Materials Science and Engineering, National University of Singapore, Block EA 07-14, 9 Engineering Drive 1, Singapore, 117575 Singapore
| | - Chunhua Tang
- Department of Materials Science and Engineering, National University of Singapore, Block EA 07-14, 9 Engineering Drive 1, Singapore, 117575 Singapore
| | | | - Maria Varela
- Dpt. Física de Materiales, Instituto de Magnetismo Aplicado & Instituto Pluridisciplinar, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Young-Min Kim
- Department of Energy Science, Sungkyunkwan University (SKKU), Suwon, 16419 Republic of Korea
| | - Jae Hyuck Jang
- Electron Microscopy Research Center, Korea Basic Science Institute, Daejeon, 34133 South Korea
| |
Collapse
|
24
|
Picometer-scale atom position analysis in annular bright-field STEM imaging. Ultramicroscopy 2017; 184:177-187. [PMID: 28934631 DOI: 10.1016/j.ultramic.2017.09.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/05/2017] [Accepted: 09/10/2017] [Indexed: 11/23/2022]
Abstract
We study the effects of specimen mistilt on the picometer-scale measurement of local structure by combing experiment and simulation in annular bright-field scanning transmission electron microscopy (ABF-STEM). A relative distance measurement method is proposed to separate the tilt effects from the scan noise and sample drift induced image distortion. We find that under a typical experimental condition a small specimen tilt (∼6 mrad) in 25 nm thick SrTiO3 along [001] causes 11.9 pm artificial displacement between O and Sr/TiO columns in ABF image, which is more than 3 times of scan noise and sample drift induced image distortion ∼3.2 pm, suggesting the tilt effect could be dominant for the quantitative analysis of ABF images. The artifact depends on the crystal mistilt angle, specimen thickness, defocus, convergence angle and uncorrected aberration. Our study provides useful insights into detecting and correcting tilt effects during both experiment operation and data analysis to extract the real structure information and avoid mis-interpretations of atomic structure as well as the properties such as oxygen octahedral distortion/shift.
Collapse
|