1
|
Filippou A, Georgiou A, Nikolaou A, Evripidou N, Damianou C. Advanced software for MRgFUS treatment planning. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 240:107726. [PMID: 37480647 DOI: 10.1016/j.cmpb.2023.107726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023]
Abstract
BACKGROUND AND OBJECTIVES Herein, a user-friendly software platform for 3-dimensional Focused Ultrasound treatment planning based on Magnetic Resonance Imaging (MRI) images is presented. METHODS The software directly retrieves and loads MRI images. Various design tools can be used on the MRI images to define the treatment area and the sonication parameters. Based on the treatment plan, the software controls the robotic motion and motion pattern of Magnetic Resonance guided Focused Ultrasound (MRgFUS) robotic systems to execute the treatment procedure. Real-time treatment monitoring is achieved through MRI images and thermometry. The software's functionality and performance were evaluated in both laboratory and MRI environments. Different treatment plans were designed on MRI images and sonications were executed on agar-based phantoms and polymer films. RESULTS Magnetic Resonance (MR) thermometry maps were acquired in the agar-based phantoms. An exceptional agreement was observed between the software-planned treatment area and the lesions produced on the polymer films. CONCLUSIONS The developed software was successfully integrated with the MRI and robotic system controls for performing accurate treatment planning and real-time monitoring during sonications. The software provides an extremely user-friendly interface, while in the future it could be enhanced by providing dynamic modulation of the ultrasonic parameters during the treatment process.
Collapse
Affiliation(s)
- Antria Filippou
- Cyprus University of Technology, Department of Electrical Engineering, Computer Engineering, and Informatics, 30 Archbishop Kyprianou Str., Limassol 3036, Cyprus.
| | - Andreas Georgiou
- Cyprus University of Technology, Department of Electrical Engineering, Computer Engineering, and Informatics, 30 Archbishop Kyprianou Str., Limassol 3036, Cyprus
| | - Anastasia Nikolaou
- Cyprus University of Technology, Department of Electrical Engineering, Computer Engineering, and Informatics, 30 Archbishop Kyprianou Str., Limassol 3036, Cyprus.
| | - Nikolas Evripidou
- Cyprus University of Technology, Department of Electrical Engineering, Computer Engineering, and Informatics, 30 Archbishop Kyprianou Str., Limassol 3036, Cyprus.
| | - Christakis Damianou
- Cyprus University of Technology, Department of Electrical Engineering, Computer Engineering, and Informatics, 30 Archbishop Kyprianou Str., Limassol 3036, Cyprus.
| |
Collapse
|
2
|
Gunderman A, Montayre R, Ranjan A, Chen Y. Review of Robot-Assisted HIFU Therapy. SENSORS (BASEL, SWITZERLAND) 2023; 23:3707. [PMID: 37050766 PMCID: PMC10098661 DOI: 10.3390/s23073707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/07/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
This paper provides an overview of current robot-assisted high-intensity focused ultrasound (HIFU) systems for image-guided therapies. HIFU is a minimally invasive technique that relies on the thermo-mechanical effects of focused ultrasound waves to perform clinical treatments, such as tumor ablation, mild hyperthermia adjuvant to radiation or chemotherapy, vein occlusion, and many others. HIFU is typically performed under ultrasound (USgHIFU) or magnetic resonance imaging guidance (MRgHIFU), which provide intra-operative monitoring of treatment outcomes. Robot-assisted HIFU probe manipulation provides precise HIFU focal control to avoid damage to surrounding sensitive anatomy, such as blood vessels, nerve bundles, or adjacent organs. These clinical and technical benefits have promoted the rapid adoption of robot-assisted HIFU in the past several decades. This paper aims to present the recent developments of robot-assisted HIFU by summarizing the key features and clinical applications of each system. The paper concludes with a comparison and discussion of future perspectives on robot-assisted HIFU.
Collapse
Affiliation(s)
- Anthony Gunderman
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Rudy Montayre
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Ashish Ranjan
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, USA
| | - Yue Chen
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
3
|
Giannakou M, Antoniou A, Damianou C. Preclinical robotic device for magnetic resonance imaging guided focussed ultrasound. Int J Med Robot 2023; 19:e2466. [PMID: 36169287 PMCID: PMC10078206 DOI: 10.1002/rcs.2466] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/12/2022] [Accepted: 09/27/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND A robotic device featuring three motion axes was manufactured for preclinical research on focussed ultrasound (FUS). The device comprises a 2.75 MHz single element ultrasonic transducer and is guided by Magnetic Resonance Imaging (MRI). METHODS The compatibility of the device with the MRI was evaluated by estimating the influence on the signal-to-noise ratio (SNR). The efficacy of the transducer in generating ablative temperatures was evaluated in phantoms and excised porcine tissue. RESULTS System's activation in the MRI scanner reduced the SNR to an acceptable level without compromising the image quality. The transducer demonstrated efficient heating ability as proved by MR thermometry. Discrete and overlapping thermal lesions were inflicted in excised tissue. CONCLUSIONS The FUS system was proven effective for FUS thermal applications in the MRI setting. It can thus be used for multiple preclinical applications of the emerging MRI-guided FUS technology. The device can be scaled-up for human use with minor modifications.
Collapse
Affiliation(s)
| | - Anastasia Antoniou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus
| | - Christakis Damianou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
4
|
de Los Ríos Cardenas L, Bermeo Varon LA, de Albuquerque Pereira WC. Parameter estimation in high-intensity focused ultrasound therapy. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2022; 38:e3591. [PMID: 35289112 DOI: 10.1002/cnm.3591] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 01/03/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Hyperthermia using High-Intensity Focused Ultrasound (HIFU) is an acoustic therapy for cancer treatment. This technique consists of an increase in the temperature field of the tumor to achieve coagulative necrosis and immediate cell death. Therefore, for having a successful treatment, the physical problem requires to know several properties due to the high variability from individual to individual, or even for the same individual under different physiological conditions. This article presents a numerical simulation of hyperthermia therapy for cancer treatment using HIFU, as well as the estimation of parameters that influence the physical problem. Two mathematical models were considered to solve the forward problem. The acoustic model based on acoustic pressure performs a frequency-domain study, and the bioheat transfer model a time-dependent study. These models were solved using Comsol Multiphysics® software in a 2D-axisymmetric rectangular domain to determine the temperature field. Parameter estimation was coded in Matlab Mathworks® environment using a Bayesian approach. The Markov Chain Monte Carlo method by the Metropolis-Hastings algorithm was implemented, and the simulated temperature measurements were considered. Results suggest that specific HIFU therapy can be performed for each patient by estimating appropriate parameters for cancer treatment and provides the possibility to define procedures before and during the treatment.
Collapse
|
5
|
Hyvärinen M, Huang Y, David E, Hynynen K. Comparison of computer simulations and clinical treatment results of magnetic resonance-guided focused ultrasound surgery (MRgFUS) of uterine fibroids. Med Phys 2022; 49:2101-2119. [PMID: 34601729 PMCID: PMC9314069 DOI: 10.1002/mp.15263] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 11/15/2022] Open
Abstract
PURPOSE Magnetic resonance-guided focused ultrasound surgery (MRgFUS) can be used to noninvasively treat symptomatic uterine fibroids by heating with focused ultrasound sonications while monitoring the temperature with magnetic resonance (MR) thermometry. While prior studies have compared focused ultrasound simulations to clinical results, studies involving uterine fibroids remain scarce. In our study, we perform such a comparison to assess the suitability of simulations for treatment planning. METHODS Sonications (N = 67) were simulated retrospectively using acoustic and thermal models based on the Rayleigh integral and Pennes bioheat equation followed by MR-thermometry simulation in seven patients who underwent MRgFUS treatment for uterine fibroids. The spatial accuracy of simulated focus location was assessed by evaluating displacements of the centers of mass of the thermal dose distributions between simulated and treatment MR thermometry slices. Temperature-time curves and sizes of 240 equivalent minutes at 43°C (240EM43 ) volumes between treatment and simulation were compared. RESULTS The simulated focus location showed errors of 2.7 ± 4.1, -0.7 ± 2.0, and 1.3 ± 1.2 mm (mean ± SD) in the anterior-posterior, foot-head, and right-left directions for a fibroid absorption coefficient of 4.9 Np m-1 MHz-1 and perfusion parameter of 1.89 kg m-3 s-1 . Linear regression of 240EM43 volumes of 67 sonications of patient treatments and simulations utilizing these parameters yielded a slope of 1.04 and a correlation coefficient of 0.54. The temperature rise ratio of simulation to treatment near the end of sonication was 0.47 ± 0.22, 1.28 ± 0.60, and 1.49 ± 0.71 for 66 sonications simulated utilizing fibroid absorption coefficient of 1.2, 4.9, and 8.6 Np m-1 MHz-1 , respectively, and the aforementioned perfusion value. The impact of perfusion on peak temperature rise is minimal between 1.89 and 10 kg m-3 s-1 , but became more substantial when utilizing a value of 100 kg m-3 s-1 . CONCLUSIONS The results of this study suggest that perfusion, while in some cases having a substantial impact on thermal dose volumes, has less impact than ultrasound absorption for predicting peak temperature elevation at least when using perfusion parameter values up to 10 kg m-3 s-1 for this particular array geometry, frequencies, and tissue target which is good for clinicians to be aware of. The results suggest that simulations show promise in treatment planning, particularly in terms of spatial accuracy. However, in order to use simulations to predict temperature rise due to a sonication, knowledge of the patient-specific tissue parameters, in particular the absorption coefficient is important. Currently, spatially varying patient-specific tissue parameter values are not available during treatment, so simulations can only be used for planning purposes to estimate sonication performance on average.
Collapse
Affiliation(s)
- Mikko Hyvärinen
- Sunnybrook Research InstituteTorontoOntarioCanada
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioCanada
| | - Yuexi Huang
- Sunnybrook Research InstituteTorontoOntarioCanada
| | | | - Kullervo Hynynen
- Sunnybrook Research InstituteTorontoOntarioCanada
- Department of Medical BiophysicsUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
6
|
Spanoudes K, Evripidou N, Giannakou M, Drakos T, Menikou G, Damianou C. A High Intensity Focused Ultrasound System for Veterinary Oncology Applications. J Med Ultrasound 2021; 29:195-202. [PMID: 34729329 PMCID: PMC8515634 DOI: 10.4103/jmu.jmu_130_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/05/2020] [Accepted: 11/18/2020] [Indexed: 11/04/2022] Open
Abstract
Background Magnetic resonance-guided focused ultrasound surgery is an incisionless energy-based thermal method that is used for ablating tumors in the veterinary clinic. Aims and Objectives In this article we describe a prototype of a veterinary system compatible with magnetic resonance imaging intended for small-to-medium-sized companion animals that was developed and tested in vivo in adult rabbits. Methods Real-time monitoring of the ablation during the experiment was possible with MR thermometry. Experiments involved thermal monitoring of sonications applied in the thigh of the rabbits. A 38-mm diameter transducer operating at 2.6 MHz was used with a 60-mm-focal length. The robotic system employed 3 linear axes and one angular axis. For this study, only X and Y axis were enabled. Due to the target size limitations, motion in Z and Θ was not needed. The functionality of the positioning device was evaluated by means of MR thermometry, demonstrating sufficient heating and accurate motion in both axes of operation. Results The postmortem findings confirm the ability of the system to induce thermal ablations in vivo in the absence of adverse effects. Conclusions The device is a reliable and affordable solution for companion animal hospitals, offering and additional tool for the veterinary oncology society.
Collapse
Affiliation(s)
- Kyriakos Spanoudes
- Department of Electrical Engineering, Cyprus University of Technology, Limassol, Cyprus.,Vet Ex Machina Ltd., Nicosia, Cyprus
| | - Nikolas Evripidou
- Department of Electrical Engineering, Cyprus University of Technology, Limassol, Cyprus
| | | | - Theocharis Drakos
- Department of Electrical Engineering, Cyprus University of Technology, Limassol, Cyprus.,Medsonic Ltd., Limassol, Cyprus
| | - George Menikou
- Medical Physics Sector, General Hospital of Nicosia, Nicosia, Cyprus
| | - Christakis Damianou
- Department of Electrical Engineering, Cyprus University of Technology, Limassol, Cyprus
| |
Collapse
|
7
|
Filippou A, Drakos T, Giannakou M, Evripidou N, Damianou C. Experimental evaluation of the near-field and far-field heating of focused ultrasound using the thermal dose concept. ULTRASONICS 2021; 116:106513. [PMID: 34293620 DOI: 10.1016/j.ultras.2021.106513] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Conventional motion algorithms utilized during High Intensity Focused Ultrasound (HIFU) procedures usually sonicate successive tissue cells, thereby inducing excess deposition of thermal dose in the pre-focal region. Long delays (~60 s) are used to reduce the heating around the focal region. In the present study the experimental evaluation of six motion algorithms so as to examine the required delay and algorithm for which the pre-focal (near-field) and post-focal (far-field) heating can be reduced using thermal dose estimations is presented. MATERIALS AND METHODS A single element spherically focused transducer operating at 1.1 MHz and focusing beam at 9 cm, was utilized for sonication on a 400 mm2 area of an agar-based phantom. Movement of the transducer was performed with each algorithm, using 0-60 s (10 s step) delays between sonications. Temperatures were recorded at both near and far-field regions and thermal dose calculations were implemented. RESULTS With the algorithms used in the present study, a delay of 50-60 s was required to reduce heating in the near-field region. A 30 s delay induced a safe thermal dose in the far-field region using all algorithms except sequential which still required 60 s delay. CONCLUSIONS The study verified the conservative need for 60 s delay for the sequential plan treatment. Nevertheless, present findings suggest that prolonged treatment times can be significantly reduced in homogeneous tissues by selection of the optimized nonlinear algorithm and delay.
Collapse
Affiliation(s)
- Antria Filippou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus.
| | | | | | - Nikolas Evripidou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus.
| | - Christakis Damianou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus.
| |
Collapse
|
8
|
Drakos T, Giannakou M, Menikou G, Damianou C. Magnetic Resonance Imaging-Guided Focused Ultrasound Positioning System for Preclinical Studies in Small Animals. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2021; 40:1343-1352. [PMID: 33031567 PMCID: PMC8246715 DOI: 10.1002/jum.15514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/06/2020] [Accepted: 09/07/2020] [Indexed: 06/01/2023]
Abstract
OBJECTIVES A positioning device compatible with magnetic resonance imaging (MRI) used for preclinical studies in small animals was developed that fits in MRI scanners up to 7 T. The positioning device was designed with two computer-controlled linear stages. METHODS The positioning device was evaluated in an agar-based phantom, which mimics soft tissues, and in a rabbit. Experiments with this positioning device were performed in an MRI system using the agar-based phantom. The transducer used had a diameter of 50 mm, operated at 0.5 MHz, and focused energy at 60 mm. RESULTS Magnetic resonance thermometry was used to assess the functionality of the device, which showed adequate deposition of thermal energy and sufficient positional accuracy in all axes. CONCLUSIONS The proposed system fits in MRI scanners up to 7 T. Because of the size of the positioning device, at the moment, it can be used to perform preclinical studies on small animals such as mice, rats, and rabbits.
Collapse
Affiliation(s)
| | | | - Georgios Menikou
- Department of Electrical EngineeringCyprus University of TechnologyLimassolCyprus
| | - Christakis Damianou
- Department of Electrical EngineeringCyprus University of TechnologyLimassolCyprus
| |
Collapse
|
9
|
Damianou C, Giannakou M, Evripidou N, Kegel S, Huber P, Jenne J. Focused ultrasound robotic system for very small bore magnetic resonance imaging. Int J Med Robot 2020; 16:1-9. [PMID: 32927501 PMCID: PMC7816236 DOI: 10.1002/rcs.2165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/01/2020] [Accepted: 09/05/2020] [Indexed: 11/06/2022]
Abstract
Background A magnetic resonance imaging (MRI) compatible robotic system for focused ultrasound was developed for small animal like mice or rats that fits into a 9.4 T MRI scanner (Bruker Biospec 9420, Bruker Biospin, Ettlingen, Germany). The robotic system includes two computer‐controlled linear stages. Materials and Methods The robotic system was evaluated in a mouse‐shaped, real‐size agar‐based mimicking material, which has similar acoustical properties as soft tissues. The agar content was 6% weight per volume (w/v), 4% w/v silica while the rest was degassed water. The transducer used has a diameter of 4 cm, operates with 2.6 MHz and focuses energy at 5 cm. Results The MRI compatibility of the robotic system was evaluated in a 9.4 T small animal scanner. The efficacy of the ultrasonic transducer was evaluated in the mimicking material using temperature measurements. Conclusions The proposed robotic system can be utilized in a 9.4 T small animal MRI scanner. The proposed system is functional, compact and simple thus providing a useful tool for preclinical research in mice and rats.
Collapse
Affiliation(s)
- Christakis Damianou
- Electrical Engineering and Computer Engineering and Informatics Department, Cyprus University of Technology, Limassol, Cyprus
| | - Marinos Giannakou
- Electrical Engineering and Computer Engineering and Informatics Department, Cyprus University of Technology, Limassol, Cyprus.,MEDSONIC LTD, Limassol, Cyprus
| | - Nikolas Evripidou
- Electrical Engineering and Computer Engineering and Informatics Department, Cyprus University of Technology, Limassol, Cyprus
| | - Stefan Kegel
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Huber
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | |
Collapse
|
10
|
Menikou G, Yiallouras C, Yiannakou M, Damianou C. MRI-guided focused ultrasound robotic system for the treatment of bone cancer. Int J Med Robot 2016; 13. [DOI: 10.1002/rcs.1753] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 04/28/2016] [Accepted: 04/28/2016] [Indexed: 12/12/2022]
Affiliation(s)
| | - Christos Yiallouras
- Cyprus University of Technology; Limassol Cyprus
- Medsonic Ltd; Limassol Cyprus
| | | | | |
Collapse
|