1
|
Xia C, Hu J, Zhou K, Li Y, Yuan S, Li Q. Theoretical and Experimental Studies of the Dynamic Damage of Endothelial Cellular Networks Under Ultrasound Cavitation. Cell Mol Bioeng 2025; 18:15-28. [PMID: 39949493 PMCID: PMC11813858 DOI: 10.1007/s12195-024-00834-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/17/2024] [Indexed: 02/16/2025] Open
Abstract
Introduction The interaction between endothelial cells can regulate hemostasis, vasodilation, as well as immune and inflammatory responses. Excessive loading on the endothelial cells leads to endothelial damage and endothelial barrier dysfunction. Understanding and mastering the dynamic nature of cell-cell rupture plays a crucial role in exploring the practical applications related to tumor destruction, vascular remodeling, and drug delivery by employing cavitation-induced damage to soft tissues. Methods To investigate the damage mechanisms of endothelial cellular networks under ultrasound cavitation, we developed a model of junction rupture in cellular networks based on the assumption that the process of intercellular rupture is irreversible when ultrasound-mediated forces exceed the damage threshold, whereas intercellular junctions have reversible behavior before rupture. Simulations using the strain accumulation method show that stress and strain exhibit complex nonlinear dynamic behavior. Ultrasonic cavitation damage was tested and evaluated on human umbilical vein endothelial cells. Results The results indicated that the cellular network damage was positively correlated with force amplitude and pulse frequency and was negatively correlated with driving frequency. The time lag and the internal force of cellular junctions have an important influence on the resistance to damage of the cellular network due to external forces. The damage experiment based on ultrasonic cavitation confirmed the effectiveness of the proposed model. Conclusions The model provided a platform for understanding the damage mechanism of endothelial tissues and ultimately improving options for their prevention and treatment.
Collapse
Affiliation(s)
- Chuangjian Xia
- School of Mathematics and Physics, University of South China, Hengyang, 421001 China
| | - Jiwen Hu
- School of Mathematics and Physics, University of South China, Hengyang, 421001 China
| | - Kun Zhou
- Hengyang Medical School, University of South China, Hengyang, 421001 China
| | - Yingjie Li
- School of Mathematics and Physics, University of South China, Hengyang, 421001 China
| | - Sha Yuan
- School of Mathematics and Physics, University of South China, Hengyang, 421001 China
- School of Electrical Engineering, University of South China, Hengyang, 421001 China
| | - Qinlin Li
- School of Mathematics and Physics, University of South China, Hengyang, 421001 China
- School of Electrical Engineering, University of South China, Hengyang, 421001 China
| |
Collapse
|
2
|
Przystupski D, Ussowicz M. Landscape of Cellular Bioeffects Triggered by Ultrasound-Induced Sonoporation. Int J Mol Sci 2022; 23:ijms231911222. [PMID: 36232532 PMCID: PMC9569453 DOI: 10.3390/ijms231911222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/18/2022] Open
Abstract
Sonoporation is the process of transient pore formation in the cell membrane triggered by ultrasound (US). Numerous studies have provided us with firm evidence that sonoporation may assist cancer treatment through effective drug and gene delivery. However, there is a massive gap in the body of literature on the issue of understanding the complexity of biophysical and biochemical sonoporation-induced cellular effects. This study provides a detailed explanation of the US-triggered bioeffects, in particular, cell compartments and the internal environment of the cell, as well as the further consequences on cell reproduction and growth. Moreover, a detailed biophysical insight into US-provoked pore formation is presented. This study is expected to review the knowledge of cellular effects initiated by US-induced sonoporation and summarize the attempts at clinical implementation.
Collapse
|
3
|
Xie Y, Hu J, Lei W, Qian S. Prediction of vascular injury by cavitation microbubbles in a focused ultrasound field. ULTRASONICS SONOCHEMISTRY 2022; 88:106103. [PMID: 35908343 PMCID: PMC9340509 DOI: 10.1016/j.ultsonch.2022.106103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/10/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Many studies have shown that microbubble cavitation is one mechanism for vascular injury under ultrasonic excitation. Previous work has attributed vascular damage to vessel expansions and invaginations due to the expansion and contraction of microbubbles. However, the mechanisms of vascular damage are not fully understood. In this paper, we investigate, theoretically and experimentally, the vessel injury due to stress induced by ultrasound-induced cavitation (UIC). A bubble-fluid-vessel coupling model is constructed to investigate the interactions of the coupling system. The dynamics process of vessel damage due to UIC is theoretically simulated with a finite element method, and a focused ultrasound (FU) setup is carried out and used to assess the vessel damage. The results show that shear stress contributes to vessel injury by cell detachment while normal stress mainly causes distention injury. Similar changes in cell detachment in a vessel over time can be observed with the experimental setup. The severity of vascular injury is correlated to acoustic parameters, bubble-wall distance, and microbubble sizes, and the duration of insonation..
Collapse
Affiliation(s)
- Yaqian Xie
- College of Mathematics and Physics, University of South China, Hengyang 421001, China
| | - Jiwen Hu
- College of Mathematics and Physics, University of South China, Hengyang 421001, China.
| | - Weirui Lei
- College of Mathematics and Physics, University of South China, Hengyang 421001, China
| | - Shengyou Qian
- College of Physics and Electronics, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
4
|
Escoffre JM, Campomanes P, Tarek M, Bouakaz A. New insights on the role of ROS in the mechanisms of sonoporation-mediated gene delivery. ULTRASONICS SONOCHEMISTRY 2020; 64:104998. [PMID: 32062534 DOI: 10.1016/j.ultsonch.2020.104998] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 01/13/2020] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
Reactive oxygen species (ROS) are hypothesized to play a role in the sonoporation mechanisms. Nevertheless, the acoustical phenomenon behind the ROS production as well as the exact mechanisms of ROS action involved in the increased cell membrane permeability are still not fully understood. Therefore, we investigated the key processes occurring at the molecular level in and around microbubbles subjected to ultrasound using computational chemistry methods. To confirm the molecular simulation predictions, we measured the ROS production by exposing SonoVue® microbubbles (MBs) to ultrasound using biological assays. To investigate the role of ROS in cell membrane permeabilization, cells were subjected to ultrasound in presence of MBs and plasmid encoding reporter gene, and the transfection level was assessed using flow cytometry. The molecular simulations showed that under sonoporation conditions, ROS can form inside the MBs. These radicals could easily diffuse through the MB shell toward the surrounding aqueous phase and participate in the permeabilization of nearby cell membranes. Experimental data confirmed that MBs favor spontaneous formation of a host of free radicals where HO was the main ROS species after US exposure. The presence of ROS scavengers/inhibitors during the sonoporation process decreased both the production of ROS and the subsequent transfection level without significant loss of cell viability. In conclusion, the exposure of MBs to ultrasound might be the origin of chemical effects, which play a role in the cell membrane permeabilization and in the in vitro gene delivery when generated in its proximity.
Collapse
Affiliation(s)
| | - Pablo Campomanes
- Laboratoire de Physique et Chimie Théoriques, UMR 7019, Université de Lorraine, CNRS, Nancy F-54000, France
| | - Mounir Tarek
- Laboratoire de Physique et Chimie Théoriques, UMR 7019, Université de Lorraine, CNRS, Nancy F-54000, France.
| | - Ayache Bouakaz
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.
| |
Collapse
|
5
|
Bressand D, Novell A, Girault A, Raoul W, Fromont-Hankard G, Escoffre JM, Lecomte T, Bouakaz A. Enhancing Nab-Paclitaxel Delivery Using Microbubble-Assisted Ultrasound in a Pancreatic Cancer Model. Mol Pharm 2019; 16:3814-3822. [DOI: 10.1021/acs.molpharmaceut.9b00416] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Diane Bressand
- UMR 1253, iBrain, Université de Tours, Inserm, 10 boulevard Tonnellé, 37032 Tours, France
- Department of Hepato-Gastroenterology and Digestive Cancerology, Université de Tours, EA7501 GICC, Team PATCH, CHRU de Tours, 10 boulevard Tonnellé, 37032 Tours, France
| | - Anthony Novell
- UMR 1253, iBrain, Université de Tours, Inserm, 10 boulevard Tonnellé, 37032 Tours, France
| | - Alban Girault
- Department of Hepato-Gastroenterology and Digestive Cancerology, Université de Tours, EA7501 GICC, Team PATCH, CHRU de Tours, 10 boulevard Tonnellé, 37032 Tours, France
| | - William Raoul
- Department of Hepato-Gastroenterology and Digestive Cancerology, Université de Tours, EA7501 GICC, Team PATCH, CHRU de Tours, 10 boulevard Tonnellé, 37032 Tours, France
| | - Gaëlle Fromont-Hankard
- Department of Pathological Anatomy and Cytology, Université de Tours, Inserm, UMR 1069, Nutrition, Croissance, Cancer, CHRU de Tours, 37032 Tours, France
| | - Jean-Michel Escoffre
- UMR 1253, iBrain, Université de Tours, Inserm, 10 boulevard Tonnellé, 37032 Tours, France
| | - Thierry Lecomte
- Department of Hepato-Gastroenterology and Digestive Cancerology, Université de Tours, EA7501 GICC, Team PATCH, CHRU de Tours, 10 boulevard Tonnellé, 37032 Tours, France
| | - Ayache Bouakaz
- UMR 1253, iBrain, Université de Tours, Inserm, 10 boulevard Tonnellé, 37032 Tours, France
| |
Collapse
|
6
|
Cardiac shock wave therapy promotes arteriogenesis of coronary micrangium, and ILK is involved in the biomechanical effects by proteomic analysis. Sci Rep 2018; 8:1814. [PMID: 29379038 PMCID: PMC5788936 DOI: 10.1038/s41598-018-19393-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 12/28/2017] [Indexed: 01/04/2023] Open
Abstract
Cardiac Shock Wave Therapy (CSWT) improves myocardial perfusion and ameliorates cardiac remodeling after acute myocardial infarction (AMI), but the precise mechanisms remain obscure. Herein, we have applied CSWT to a rat model of AMI to demonstrate the arteriogenesis of coronary micrangium and protein expression changes in ischemic myocardium after CSWT. Four weeks after CSWT, the fraction shortening of rats was improved greatly and the cardiomyocyte apoptosis index was significantly lower than the AMI group (P < 0.05). Besides, the fibrotic area was markedly decreased in the CSWT group. In the infarction border zone, the thickness of smooth muscle layer was expanded apparently after CSWT. Label-free quantitative proteomic analysis and bioinformatics analysis revealed that the differentially expressed proteins were largely enriched in the focal adhesion signaling pathway. And integrin linked kinase (ILK) may be a key factor contributed to arteriogenesis of coronary micrangium during CSWT. In conclusion, non-invasive cardiac shock wave could promote arteriogenesis of coronary micrangium and alleviate myocardial apoptosis and fibrosis after AMI. Furthermore, focal adhesion signaling pathway may have a central role in the related signal network and ILK was closely related to the arteriogenesis of coronary micrangium during CSWT.
Collapse
|
7
|
Escoffre JM, Derieppe M, Lammertink B, Bos C, Moonen C. Microbubble-Assisted Ultrasound-Induced Transient Phosphatidylserine Translocation. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:838-851. [PMID: 28109698 DOI: 10.1016/j.ultrasmedbio.2016.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 11/26/2016] [Accepted: 12/07/2016] [Indexed: 06/06/2023]
Abstract
Microbubble-assisted ultrasound (sonopermeabilization) results in reversible permeabilization of the plasma membrane of cells. This method is increasingly used in vivo because of its potential to deliver therapeutic molecules with limited cell damage. Nevertheless, the effects of sonopermeabilization on the plasma membrane remain not fully understood. We investigated the influence of sonopermeabilization on the transverse mobility of phospholipids, especially on phosphatidylserine (PS) externalization. We performed studies using optical imaging with Annexin V and FM1-43 probes to monitor PS externalization of rat glioma C6 cells. Sonopermeabilization induced transient membrane permeabilization, which is positively correlated with reversible PS externalization. This membrane disorganization was temporary and not associated with loss of cell viability. Sonopermeabilization did not induce PS externalization via activation of the scramblase. We hypothesize that acoustically induced membrane pores may provide a new pathway for PS migration between both membrane leaflets. During the membrane-resealing phase, PS asymmetry may be re-established by amino-phospholipid flippase activity and/or endocytosis, along with exocytosis processes.
Collapse
Affiliation(s)
| | - Marc Derieppe
- Imaging Division, UMC Utrecht, Utrecht, The Netherlands
| | | | - Clemens Bos
- Imaging Division, UMC Utrecht, Utrecht, The Netherlands
| | - Chrit Moonen
- Imaging Division, UMC Utrecht, Utrecht, The Netherlands
| |
Collapse
|
8
|
|
9
|
Adhikari U, Goliaei A, Berkowitz ML. Nanobubbles, cavitation, shock waves and traumatic brain injury. Phys Chem Chem Phys 2016; 18:32638-32652. [DOI: 10.1039/c6cp06704b] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Shock wave induced cavitation denaturates blood–brain barrier tight junction proteins; this may result in various neurological complications.
Collapse
Affiliation(s)
- Upendra Adhikari
- Department of Chemistry
- University of North Carolina at Chapel Hill
- Chapel Hill
- USA
| | - Ardeshir Goliaei
- Department of Biochemistry and Biophysics and Program in Molecular and Cellular Biophysics
- University of North Carolina at Chapel Hill
- Chapel Hill
- USA
| | - Max L. Berkowitz
- Department of Chemistry
- University of North Carolina at Chapel Hill
- Chapel Hill
- USA
| |
Collapse
|
10
|
Abstract
The combination of microbubbles and ultrasound has emerged as a promising method for local drug delivery. Microbubbles can be locally activated by a targeted ultrasound beam, which can result in several bio-effects. For drug delivery, microbubble-assisted ultrasound is used to increase vascular- and plasma membrane permeability for facilitating drug extravasation and the cellular uptake of drugs in the treated region, respectively. In the case of drug-loaded microbubbles, these two mechanisms can be combined with local release of the drug following destruction of the microbubble. The use of microbubble-assisted ultrasound to deliver chemotherapeutic agents is also referred to as sonochemotherapy. In this review, the basic principles of sonochemotherapy are discussed, including aspects such as the type of (drug-loaded) microbubbles used, the routes of administration used in vivo, ultrasound devices and parameters, treatment schedules and safety issues. Finally, the clinical translation of sonochemotherapy is discussed, including the first clinical study using sonochemotherapy.
Collapse
Affiliation(s)
- Bart H A Lammertink
- Image Guided Therapy, Imaging Division, University Medical Center Utrecht Utrecht, Netherlands
| | - Clemens Bos
- Image Guided Therapy, Imaging Division, University Medical Center Utrecht Utrecht, Netherlands
| | - Roel Deckers
- Image Guided Therapy, Imaging Division, University Medical Center Utrecht Utrecht, Netherlands
| | - Gert Storm
- Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University Utrecht, Netherlands ; Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente Enschede, Netherlands
| | - Chrit T W Moonen
- Image Guided Therapy, Imaging Division, University Medical Center Utrecht Utrecht, Netherlands
| | - Jean-Michel Escoffre
- Image Guided Therapy, Imaging Division, University Medical Center Utrecht Utrecht, Netherlands
| |
Collapse
|
11
|
Wang S, Wu N. Selecting the swimming mechanisms of colloidal particles: bubble propulsion versus self-diffusiophoresis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:3477-86. [PMID: 24593832 DOI: 10.1021/la500182f] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Bubble propulsion and self-diffusiophoresis are two common mechanisms that can drive autonomous motion of microparticles in hydrogen peroxide. Although microtubular particles, when coated with platinum in their interior concave surfaces, can propel due to the formation and release of bubbles from one end, the convex Janus particles usually do not generate any visible bubble. They move primarily due to the self-diffusiophoresis. Coincidentally, the platinum films on those particles were typically coated by physical evaporation. In this paper, we use a simple chemical deposition method to make platinum-polystyrene Janus dimers. Surprisingly, those particles are propelled by periodic growth and collapse of bubbles on the platinum-coated lobes. We find that both high catalytic activity and rough surface are necessary to change the propulsion mode from self-diffusiophoresis to bubble propulsion. Our Janus dimers, with combined geometric and interfacial anisotropy, also exhibit distinctive motions at the respective stages of bubble growth and collapse, which differ by 5-6 orders of magnitude in time. Our study not only provides insight into the link between self-diffusiophoresis and bubble propulsion but also reveals the intriguing impacts of the combined geometric and interfacial anisotropy on self-propulsion of particles.
Collapse
Affiliation(s)
- Sijia Wang
- Department of Chemical and Biological Engineering, Colorado School of Mines , Golden, Colorado 80401, United States
| | | |
Collapse
|
12
|
Baac HW, Frampton J, Ok JG, Takayama S, Guo LJ. Localized micro-scale disruption of cells using laser-generated focused ultrasound. JOURNAL OF BIOPHOTONICS 2013; 6:905-10. [PMID: 23420806 DOI: 10.1002/jbio.201200247] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 01/23/2013] [Indexed: 05/18/2023]
Abstract
We utilize laser-generated focused ultrasound (LGFU) to create targeted mechanical disturbance on a few cells. The LGFU is transmitted through an optoacoustic lens that converts laser pulses into focused ultrasound. The tight focusing (<100 µm) and high peak pressure of the LGFU produces cavitational disturbances at a localized spot with micro-jetting and secondary shock-waves arising from micro-bubble collapse. We demonstrate that LGFU can be used as a non-contact, non-ionizing, high-precision tool to selectively detach a single cell from its culture substrate. Furthermore, we explore the possibility of biomolecule delivery in a small population of cells targeted by LGFU at pressure amplitudes below and above the cavitation threshold. We experimentally confirm that cavitational disruption is required for delivery of propidium iodide, a membrane-impermeable nucleic acid-binding dye, into cells.
Collapse
Affiliation(s)
- Hyoung Won Baac
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | |
Collapse
|
13
|
Development of an In Situ Detachment Protocol of Vero Cells Grown on Cytodex1 Microcarriers Under Animal Component-Free Conditions in Stirred Bioreactor. Appl Biochem Biotechnol 2013; 170:1724-37. [DOI: 10.1007/s12010-013-0307-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 05/20/2013] [Indexed: 11/30/2022]
|
14
|
Link KA, Koenig JB, Silveira A, Plattner BL, Lillie BN. Effect of unfocused extracorporeal shock wave therapy on growth factor gene expression in wounds and intact skin of horses. Am J Vet Res 2013; 74:324-32. [DOI: 10.2460/ajvr.74.2.324] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Baac HW, Lee T, Guo LJ. Micro-ultrasonic cleaving of cell clusters by laser-generated focused ultrasound and its mechanisms. BIOMEDICAL OPTICS EXPRESS 2013; 4:1442-50. [PMID: 24010006 PMCID: PMC3756566 DOI: 10.1364/boe.4.001442] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 07/03/2013] [Accepted: 07/10/2013] [Indexed: 05/17/2023]
Abstract
Laser-generated focused ultrasound (LGFU) is a unique modality that can produce single-pulsed cavitation and strong local disturbances on a tight focal spot (<100 μm). We utilize LGFU as a non-contact, non-thermal, high-precision tool to fractionate and cleave cell clusters cultured on glass substrates. Fractionation processes are investigated in detail, which confirms distinct cell behaviors in the focal center and the periphery of LGFU spot. For better understanding of local disturbances under LGFU, we use a high-speed laser-flash shadowgraphy technique and then fully visualize instantaneous microscopic processes from the ultrasound wave focusing to the micro-bubble collapse. Based on these visual evidences, we discuss possible mechanisms responsible for the focal and peripheral disruptions, such as a liquid jet-induced wall shear stress and shock emissions due to bubble collapse. The ultrasonic micro-fractionation is readily available for in vitro cell patterning and harvesting. Moreover, it is significant as a preliminary step towards high-precision surgery applications in future.
Collapse
Affiliation(s)
- Hyoung Won Baac
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA
- Currently with Harvard Medical School and Massachusetts General Hospital, Wellman Center for Photomedicine, Boston, MA 02114, USA
| | - Taehwa Lee
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - L. Jay Guo
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
16
|
Agarwal A, Xu H, Ng WJ, Liu Y. Biofilm detachment by self-collapsing air microbubbles: a potential chemical-free cleaning technology for membrane biofouling. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c1jm14439a] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Different effects of therapeutic ultrasound parameters and culture conditions on gene transfection efficiency. Chin J Cancer Res 2009. [DOI: 10.1007/s11670-008-0249-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
18
|
Hellman AN, Rau KR, Yoon HH, Venugopalan V. Biophysical response to pulsed laser microbeam-induced cell lysis and molecular delivery. JOURNAL OF BIOPHOTONICS 2008; 1:24-35. [PMID: 19343632 PMCID: PMC3155384 DOI: 10.1002/jbio.200710010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Cell lysis and molecular delivery in confluent monolayers of PtK(2) cells are achieved by the delivery of 6 ns, lambda = 532 nm laser pulses via a 40x, 0.8 NA microscope objective. With increasing distance from the point of laser focus we find regions of (a) immediate cell lysis; (b) necrotic cells that detach during the fluorescence assays; (c) permeabilized cells sufficient to facilitate the uptake of small (3 kDa) FITC-conjugated Dextran molecules in viable cells; and (d) unaffected, viable cells. The spatial extent of cell lysis, cell detachment, and molecular delivery increased with laser pulse energy. Hydrodynamic analysis from time-resolved imaging studies reveal that the maximum wall shear stress associated with the pulsed laser microbeam-induced cavitation bubble expansion governs the location and spatial extent of each of these regions independent of laser pulse energy. Specifically, cells exposed to maximum wall shear stresses tau(w, max) > 190 +/- 20 kPa are immediately lysed while cells exposed to tau(w, max) > 18 +/- 2 kPa are necrotic and subsequently detach. Cells exposed to tau(w, max) in the range 8-18 kPa are viable and successfully optoporated with 3 kDa Dextran molecules. Cells exposed to tau(w, max) < 8 +/- 1 kPa remain viable without molecular delivery. These findings provide the first direct correlation between pulsed laser microbeam-induced shear stresses and subsequent cellular outcome.
Collapse
Affiliation(s)
- Amy N. Hellman
- Dept. of Bioengineering, University of California, San Diego, La Jolla, CA USA 92093-0412
- Dept. of Chemical Engineering & Materials Science, University of California, Irvine, Irvine, CA USA 92697-2575
- Laser Microbeam and Medical Program, Beckman Laser Institute and Medical Clinic, University of California, Irvine, Irvine, CA USA 92612
| | - Kaustubh R. Rau
- Dept. of Chemical Engineering & Materials Science, University of California, Irvine, Irvine, CA USA 92697-2575
- Laser Microbeam and Medical Program, Beckman Laser Institute and Medical Clinic, University of California, Irvine, Irvine, CA USA 92612
- National Centre for Biological Sciences, TATA Institute of Fundamental Research, Bangalore, INDIA
| | - Helen H. Yoon
- Dept. of Chemistry, University of California, Irvine, Irvine, CA
| | - Vasan Venugopalan
- Dept. of Chemical Engineering & Materials Science, University of California, Irvine, Irvine, CA USA 92697-2575
- Laser Microbeam and Medical Program, Beckman Laser Institute and Medical Clinic, University of California, Irvine, Irvine, CA USA 92612
| |
Collapse
|
19
|
Dijkink R, Le Gac S, Nijhuis E, van den Berg A, Vermes I, Poot A, Ohl CD. Controlled cavitation-cell interaction: trans-membrane transport and viability studies. Phys Med Biol 2007; 53:375-90. [PMID: 18184993 DOI: 10.1088/0031-9155/53/2/006] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cavitation bubble dynamics close to a rigid surface gives rise to a rapid and transient fluid flow. A single bubble is created with a laser pulse at different stand-off distances from the rigid surface, where the stand-off distance gamma is defined by gamma = h/R(max), with h being the initial distance and R(max) being the maximum bubble radius. When the surface is covered with adherent cells, molecular delivery and cell detachment after single cavitation activity are observed at different locations. We find a maximum of cell detachment at a normalized stand-off distance of gamma approximately 0.65. In contrast, the maximum of the molecular uptake is found when gamma approaches 0. The single cavitation event has only little effect on the viability of cells in the non-detached area. We find apoptosis of cells only very close to the area of detachment and, additionally, the metabolism of the non-detached cells shows no pronounced difference compared to control cells according to an MTS assay. Thus, although the cavitation event is responsible for the detachment of cells, only few of the remaining cells undergo a permanent change.
Collapse
Affiliation(s)
- Rory Dijkink
- Physics of Fluids, Faculty of Science and Technology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
20
|
Ohl CD, Arora M, Ikink R, de Jong N, Versluis M, Delius M, Lohse D. Sonoporation from jetting cavitation bubbles. Biophys J 2006; 91:4285-95. [PMID: 16950843 PMCID: PMC1635670 DOI: 10.1529/biophysj.105.075366] [Citation(s) in RCA: 261] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Accepted: 08/18/2006] [Indexed: 11/18/2022] Open
Abstract
The fluid dynamic interaction of cavitation bubbles with adherent cells on a substrate is experimentally investigated. We find that the nonspherical collapse of bubbles near to the boundary is responsible for cell detachment. High-speed photography reveals that a wall bounded flow leads to the detachment of cells. Cells at the edge of the circular area of detachment are found to be permanently porated, whereas cells at some distance from the detachment area undergo viable cell membrane poration (sonoporation). The wall flow field leading to cell detachment is modeled with a self-similar solution for a wall jet, together with a kinetic ansatz of adhesive bond rupture. The self-similar solution for the delta-type wall jet compares very well with the full solution of the Navier-Stokes equation for a jet of finite thickness. Apart from annular sites of sonoporation we also find more homogenous patterns of molecule delivery with no cell detachment.
Collapse
Affiliation(s)
- Claus-Dieter Ohl
- Faculty of Science and Technology, Physics of Fluids, University of Twente, Enschede, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
21
|
Hajri Z, Boukadoum M, Hamam H, Fontaine R. An investigation of the physical forces leading to thrombosis disruption by cavitation. J Thromb Thrombolysis 2005; 20:27-32. [PMID: 16133892 DOI: 10.1007/s11239-005-2221-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Ultrasound therapy has proven to be an efficient and safe modality for the treatment of acute arterial occlusions, and the use of therapeutic ultrasound for the treatment of thrombosis and vascular diseases holds great promise in overcoming the limitations of other available therapies. Still, there exists little published work that covers the different phenomena that take place in a thorough and comprehensive way. In this paper, we endeavor to address the subject by reviewing work on the physical properties of ultrasound propagation in the blood arteries as it relates to the cavitation of microbubbles, and we compare the impact of the different forces at work for clot disruption. Our conclusion is that the most important effect of ultrasound in the treatment of thrombotic disorders is the liquid-jet impact forces that result from strong bubble collapses in the vicinity of solid boundaries.
Collapse
|
22
|
Arora M, Junge L, Ohl CD. Cavitation cluster dynamics in shock-wave lithotripsy: part 1. Free field. ULTRASOUND IN MEDICINE & BIOLOGY 2005; 31:827-39. [PMID: 15936498 DOI: 10.1016/j.ultrasmedbio.2005.02.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Revised: 01/29/2005] [Accepted: 02/03/2005] [Indexed: 05/02/2023]
Abstract
The spatiotemporal dynamics of cavitation bubble growth and collapse in shock-wave lithotripsy in a free field was studied experimentally. The lithotripter was equipped with two independently triggerable layers of piezoceramics. The front and back layers generated positive pressure amplitudes of 30 MPa and 15 MPa, respectively, and -10 MPa negative amplitude. The time interval between the launch of the shock waves was varied from 0 and 0.1 s, covering the regimens of pulse-modification (regimen A, delay 0 to 4 micros), shock wave-cavitation cluster interaction (B, 4 micros to 64 micros) and shock wave-gas bubble interaction (C, 256 micros to 0.1 s). The time-integrated cavitation activity was most strongly influenced in regimen A and, in regimen B, the spatial distribution of bubbles was altered, whereas enhancement of cavitation activity was observed in regimen C. Quantitative measurements of the spatial- and time-integrated void fractions were obtained with a photographic and light-scattering technique. The preconditions for a reproducible experiment are explained, with the existence of two distinct types of cavitation nuclei, small particles suspended in the liquid and residuals of bubbles from prior cavitation clusters.
Collapse
Affiliation(s)
- M Arora
- Department of Applied Physics, Physics of Fluids, University of Twente, Enschede, The Netherlands
| | | | | |
Collapse
|
23
|
Chen WS, Lu X, Liu Y, Zhong P. The effect of surface agitation on ultrasound-mediated gene transfer in vitro. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2004; 116:2440-2450. [PMID: 15534963 DOI: 10.1121/1.1777855] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This article reports the effect of surface agitation of culture medium on ultrasound-mediated gene transfection in vitro and its possible mechanisms. The possibility of active induction of bubbles without using contrast microbubbles for effective gene transfer was also demonstrated. Cultured HeLa cells mixed with green fluorescent protein plasmid were exposed to 1.0 MHz ultrasound in 24-well culture plates. Up to 26% transfection efficiency in the survival cell population was achieved in samples exposed to 0.44 MPa ultrasound pulses with the presence of surface agitation. Inertial cavitation and bubble generation were observed throughout the ultrasound exposure. When surface agitation was suppressed by covering the medium surface with a thin membrane, bubble generation and gene transfection were significantly suppressed. Interestingly, transfection efficiency could be partially resumed by adding a small amount of culture medium onto the covering membrane to rebuild the surface agitation and bubble generation. Pressure fluctuation and transient high-pressure loci were found in samples with surface agitation. Numerical simulations of bubble dynamics showed that transient high pressures above the inertial cavitation threshold could generate bubbles, which might be subsequently stabilized at lower pressures by rectified diffusion, and exert strong shear forces that might create transient pores on cell membranes to facilitate gene transfer.
Collapse
Affiliation(s)
- Wen-Shiang Chen
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, USA
| | | | | | | |
Collapse
|