1
|
Hashemi HS, Mohammed SK, Zeng Q, Azar RZ, Rohling RN, Salcudean SE. 3-D Ultrafast Shear Wave Absolute Vibro-Elastography Using a Matrix Array Transducer. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:1039-1053. [PMID: 37235463 DOI: 10.1109/tuffc.2023.3280450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Real-time ultrasound imaging plays an important role in ultrasound-guided interventions. The 3-D imaging provides more spatial information compared to conventional 2-D frames by considering the volumes of data. One of the main bottlenecks of 3-D imaging is the long data acquisition time, which reduces practicality and can introduce artifacts from unwanted patient or sonographer motion. This article introduces the first shear wave absolute vibro-elastography (S-WAVE) method with real-time volumetric acquisition using a matrix array transducer. In S-WAVE, an external vibration source generates mechanical vibrations inside the tissue. The tissue motion is then estimated and used in solving a wave equation inverse problem to provide the tissue elasticity. A matrix array transducer is used with a Verasonics ultrasound machine and a frame rate of 2000 volumes/s to acquire 100 radio frequency (RF) volumes in 0.05 s. Using plane wave (PW) and compounded diverging wave (CDW) imaging methods, we estimate axial, lateral, and elevational displacements over 3-D volumes. The curl of the displacements is used with local frequency estimation to estimate elasticity in the acquired volumes. Ultrafast acquisition extends substantially the possible S-WAVE excitation frequency range, now up to 800 Hz, enabling new tissue modeling and characterization. The method was validated on three homogeneous liver fibrosis phantoms and on four different inclusions within a heterogeneous phantom. The homogeneous phantom results show less than 8% (PW) and 5% (CDW) difference between the manufacturer values and the corresponding estimated values over a frequency range of 80-800 Hz. The estimated elasticity values for the heterogeneous phantom at 400-Hz excitation frequency show the average errors of 9% (PW) and 6% (CDW) compared to the provided average values by magnetic resonance elastography (MRE). Furthermore, both imaging methods were able to detect the inclusions within the elasticity volumes. An ex vivo study on a bovine liver sample shows less than 11% (PW) and 9% (CDW) difference between the estimated elasticity ranges by the proposed method and the elasticity ranges provided by MRE and acoustic radiation force impulse (ARFI).
Collapse
|
2
|
Zhang S, Bodian S, Zhang EZ, Beard PC, Noimark S, Desjardins AE, Colchester RJ. Miniaturised dual-modality all-optical ultrasound probe for laser interstitial thermal therapy (LITT) monitoring. BIOMEDICAL OPTICS EXPRESS 2023; 14:3446-3457. [PMID: 37497509 PMCID: PMC10368049 DOI: 10.1364/boe.494892] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 07/28/2023]
Abstract
All-optical ultrasound (OpUS) has emerged as an imaging paradigm well-suited to minimally invasive imaging due to its ability to provide high resolution imaging from miniaturised fibre optic devices. Here, we report a fibre optic device capable of concurrent laser interstitial thermal therapy (LITT) and real-time in situ all-optical ultrasound imaging for lesion monitoring. The device comprised three optical fibres: one each for ultrasound transmission, reception and thermal therapy light delivery. This device had a total lateral dimension of <1 mm and was integrated into a medical needle. Simultaneous LITT and monitoring were performed on ex vivo lamb kidney with lesion depth tracked using M-mode OpUS imaging. Using one set of laser energy parameters for LITT (5 W, 60 s), the lesion depth varied from 3.3 mm to 8.3 mm. In all cases, the full lesion depth could be visualised and measured with the OpUS images and there was a good statistical agreement with stereomicroscope images acquired after ablation (t=1.36, p=0.18). This work demonstrates the feasibility and potential of OpUS to guide LITT in tumour resection.
Collapse
Affiliation(s)
- Shaoyan Zhang
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London WC1E 6BT, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, Charles Bell House, University College London, 43-45 Foley Street, London W1W 7TY, UK
| | - Semyon Bodian
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London WC1E 6BT, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, Charles Bell House, University College London, 43-45 Foley Street, London W1W 7TY, UK
- Materials Chemistry Centre, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Edward Z. Zhang
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London WC1E 6BT, UK
| | - Paul C. Beard
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London WC1E 6BT, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, Charles Bell House, University College London, 43-45 Foley Street, London W1W 7TY, UK
| | - Sacha Noimark
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London WC1E 6BT, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, Charles Bell House, University College London, 43-45 Foley Street, London W1W 7TY, UK
- Materials Chemistry Centre, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Adrien E. Desjardins
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London WC1E 6BT, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, Charles Bell House, University College London, 43-45 Foley Street, London W1W 7TY, UK
| | - Richard J. Colchester
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, London WC1E 6BT, UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, Charles Bell House, University College London, 43-45 Foley Street, London W1W 7TY, UK
| |
Collapse
|
3
|
Zhang S, Zhang EZ, Beard PC, Desjardins AE, Colchester RJ. Dual-modality fibre optic probe for simultaneous ablation and ultrasound imaging. COMMUNICATIONS ENGINEERING 2022; 1:s44172-022-00020-9. [PMID: 37033302 PMCID: PMC7614394 DOI: 10.1038/s44172-022-00020-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/13/2022] [Indexed: 11/08/2022]
Abstract
All-optical ultrasound (OpUS) is an emerging high resolution imaging paradigm utilising optical fibres. This allows both therapeutic and imaging modalities to be integrated into devices with dimensions small enough for minimally invasive surgical applications. Here we report a dual-modality fibre optic probe that synchronously performs laser ablation and real-time all-optical ultrasound imaging for ablation monitoring. The device comprises three optical fibres: one each for transmission and reception of ultrasound, and one for the delivery of laser light for ablation. The total device diameter is < 1 mm. Ablation monitoring was carried out on porcine liver and heart tissue ex vivo with ablation depth tracked using all-optical M-mode ultrasound imaging and lesion boundary identification using a segmentation algorithm. Ablation depths up to 2.1 mm were visualised with a good correspondence between the ultrasound depth measurements and visual inspection of the lesions using stereomicroscopy. This work demonstrates the potential for OpUS probes to guide minimally invasive ablation procedures in real time.
Collapse
Affiliation(s)
- Shaoyan Zhang
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London, WC1E 6BT UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, Charles Bell House, Foley Street, London, W1W 7TY UK
| | - Edward Z. Zhang
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London, WC1E 6BT UK
| | - Paul C. Beard
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London, WC1E 6BT UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, Charles Bell House, Foley Street, London, W1W 7TY UK
| | - Adrien E. Desjardins
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London, WC1E 6BT UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, Charles Bell House, Foley Street, London, W1W 7TY UK
| | - Richard J. Colchester
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London, WC1E 6BT UK
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, Charles Bell House, Foley Street, London, W1W 7TY UK
| |
Collapse
|
4
|
Aboutaleb M, Kheirkhah N, Samani A, Sadeghi-Naini A. An Enhanced Method for Full-Inversion-Based Ultrasound Elastography of the Liver. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:3887-3890. [PMID: 36085977 DOI: 10.1109/embc48229.2022.9871656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Similar to many other types of cancer, liver cancer is associated with biological changes that lead to tissue stiffening. An effective imaging technique that can be used for liver cancer detection through visualizing tissue stiffness is ultrasound elastography. In this paper, we show the effectiveness of an enhanced method of quasi-static ultrasound elastography for liver cancer assessment. The method utilizes initial estimates of axial and lateral displacement fields obtained using conventional time delay estimation (TDE) methods in conjunction with a recently proposed strain refinement algorithm to generate enhanced versions of the axial and lateral strain images. Another primary objective of this work is to investigate the sensitivity of the proposed method to the quality of these initial displacement estimates. The strain refinement algorithm is founded on the tissue mechanics principles of incompressibility and strain compatibility. Tissue strain images can serve as input for full-inversion-based elasticity image reconstruction algorithm. In this work, we use strain images generated by the proposed method with an iterative elasticity reconstruction algorithm. Ultrasound RF data collected from a tissue-mimicking phantom and in-vivo data of a liver cancer patient were used to evaluate the proposed method. Results show that while there is some sensitivity to the displacement field initial estimates, overall, the proposed method is robust to the quality of the initial estimates. Clinical Relevance- Improved elasticity images of the liver can aid in achieving more reliable diagnosis of liver cancer.
Collapse
|
5
|
Ashikuzzaman M, Rivaz H. Second-Order Ultrasound Elastography With L1-Norm Spatial Regularization. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:1008-1019. [PMID: 34995188 DOI: 10.1109/tuffc.2022.3141686] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Time delay estimation (TDE) between two radio-frequency (RF) frames is one of the major steps of quasi-static ultrasound elastography, which detects tissue pathology by estimating its mechanical properties. Regularized optimization-based techniques, a prominent class of TDE algorithms, optimize a nonlinear energy functional consisting of data constancy and spatial continuity constraints to obtain the displacement and strain maps between the time-series frames under consideration. The existing optimization-based TDE methods often consider the L2 -norm of displacement derivatives to construct the regularizer. However, such a formulation over-penalizes the displacement irregularity and poses two major issues to the estimated strain field. First, the boundaries between different tissues are blurred. Second, the visual contrast between the target and the background is suboptimal. To resolve these issues, herein, we propose a novel TDE algorithm where instead of L2 -, L1 -norms of both first- and second-order displacement derivatives are taken into account to devise the continuity functional. We handle the non-differentiability of L1 -norm by smoothing the absolute value function's sharp corner and optimize the resulting cost function in an iterative manner. We call our technique Second-Order Ultrasound eLastography (SOUL) with the L1 -norm spatial regularization ( L1 -SOUL). In terms of both sharpness and visual contrast, L1 -SOUL substantially outperforms GLobal Ultrasound Elastography (GLUE), tOtal Variation rEgulaRization and WINDow-based time delay estimation (OVERWIND), and SOUL, three recently published TDE algorithms in all validation experiments performed in this study. In cases of simulated, phantom, and in vivo datasets, respectively, L1 -SOUL achieves 67.8%, 46.81%, and 117.35% improvements of contrast-to-noise ratio (CNR) over SOUL. The L1 -SOUL code can be downloaded from http://code.sonography.ai.
Collapse
|
6
|
Bianchi L, Cavarzan F, Ciampitti L, Cremonesi M, Grilli F, Saccomandi P. Thermophysical and mechanical properties of biological tissues as a function of temperature: a systematic literature review. Int J Hyperthermia 2022; 39:297-340. [DOI: 10.1080/02656736.2022.2028908] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Leonardo Bianchi
- Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
| | - Fabiana Cavarzan
- Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
| | - Lucia Ciampitti
- Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
| | - Matteo Cremonesi
- Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
| | - Francesca Grilli
- Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
| | - Paola Saccomandi
- Department of Mechanical Engineering, Politecnico di Milano, Milan, Italy
| |
Collapse
|
7
|
Pohlman RM, Hinshaw JL, Ziemlewicz TJ, Lubner MG, Wells SA, Lee FT, Alexander ML, Wergin KL, Varghese T. Differential Imaging of Liver Tumors before and after Microwave Ablation with Electrode Displacement Elastography. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:2138-2156. [PMID: 34011451 PMCID: PMC8243838 DOI: 10.1016/j.ultrasmedbio.2021.03.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 05/17/2023]
Abstract
Liver cancer is a leading cause of cancer-related deaths; however, primary treatment options such as surgical resection and liver transplant may not be viable for many patients. Minimally invasive image-guided microwave ablation (MWA) provides a locally effective treatment option for these patients with an impact comparable to that of surgery for both cancer-specific and overall survival. MWA efficacy is correlated with accurate image guidance; however, conventional modalities such as B-mode ultrasound and computed tomography have limitations. Alternatively, ultrasound elastography has been used to demarcate post-ablation zones, yet has limitations for pre-ablation visualization because of variability in strain contrast between cancer types. This study attempted to characterize both pre-ablation tumors and post-ablation zones using electrode displacement elastography (EDE) for 13 patients with hepatocellular carcinoma or liver metastasis. Typically, MWA ablation margins of 0.5-1.0 cm are desired, which are strongly correlated with treatment efficacy. Our results revealed an average estimated ablation margin inner quartile range of 0.54-1.21 cm with a median value of 0.84 cm. These treatment margins lie within or above the targeted ablative margin, indicating the potential to use EDE for differentiating index tumors and ablated zones during clinical ablations. We also obtained a high correlation between corresponding segmented cross-sectional areas from contrast-enhanced computed tomography, the current clinical gold standard, when compared with EDE strain images, with r2 values of 0.97 and 0.98 for pre- and post-ablation regions.
Collapse
Affiliation(s)
- Robert M Pohlman
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA.
| | - James L Hinshaw
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Timothy J Ziemlewicz
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Meghan G Lubner
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Shane A Wells
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Fred T Lee
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Marci L Alexander
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Kelly L Wergin
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Tomy Varghese
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
8
|
Ashikuzzaman M, Sadeghi-Naini A, Samani A, Rivaz H. Combining First- and Second-Order Continuity Constraints in Ultrasound Elastography. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2407-2418. [PMID: 33710956 DOI: 10.1109/tuffc.2021.3065884] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ultrasound elastography is a prominent noninvasive medical imaging technique that estimates tissue elastic properties to detect abnormalities in an organ. A common approximation to tissue elastic modulus is tissue strain induced after mechanical stimulation. To compute tissue strain, ultrasound radio frequency (RF) data can be processed using energy-based algorithms. These algorithms suffer from ill-posedness to tackle. A continuity constraint along with the data amplitude similarity is imposed to obtain a unique solution to the time-delay estimation (TDE) problem. Existing energy-based methods exploit the first-order spatial derivative of the displacement field to construct a regularizer. This first-order regularization scheme alone is not fully consistent with the mechanics of tissue deformation while perturbed with an external force. As a consequence, state-of-the-art techniques suffer from two crucial drawbacks. First, the strain map is not sufficiently smooth in uniform tissue regions. Second, the edges of the hard or soft inclusions are not well-defined in the image. Herein, we address these issues by formulating a novel regularizer taking both first- and second-order derivatives of the displacement field into account. The second-order constraint, which is the principal novelty of this work, contributes both to background continuity and edge sharpness by suppressing spurious noisy edges and enhancing strong boundaries. We name the proposed technique: Second-Order Ultrasound eLastography (SOUL). Comparative assessment of qualitative and quantitative results shows that SOUL substantially outperforms three recently developed TDE algorithms called Hybrid, GLUE, and MPWC-Net++. SOUL yields 27.72%, 62.56%, and 81.37% improvements of the signal-to-noise ratio (SNR) and 72.35%, 54.03%, and 65.17% improvements of the contrast-to-noise ratio (CNR) over GLUE with data pertaining to simulation, phantom, and in vivo tissue, respectively. The SOUL code can be downloaded from code.sonography.ai.
Collapse
|
9
|
Kok HP, Cressman ENK, Ceelen W, Brace CL, Ivkov R, Grüll H, Ter Haar G, Wust P, Crezee J. Heating technology for malignant tumors: a review. Int J Hyperthermia 2021; 37:711-741. [PMID: 32579419 DOI: 10.1080/02656736.2020.1779357] [Citation(s) in RCA: 147] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The therapeutic application of heat is very effective in cancer treatment. Both hyperthermia, i.e., heating to 39-45 °C to induce sensitization to radiotherapy and chemotherapy, and thermal ablation, where temperatures beyond 50 °C destroy tumor cells directly are frequently applied in the clinic. Achievement of an effective treatment requires high quality heating equipment, precise thermal dosimetry, and adequate quality assurance. Several types of devices, antennas and heating or power delivery systems have been proposed and developed in recent decades. These vary considerably in technique, heating depth, ability to focus, and in the size of the heating focus. Clinically used heating techniques involve electromagnetic and ultrasonic heating, hyperthermic perfusion and conductive heating. Depending on clinical objectives and available technology, thermal therapies can be subdivided into three broad categories: local, locoregional, or whole body heating. Clinically used local heating techniques include interstitial hyperthermia and ablation, high intensity focused ultrasound (HIFU), scanned focused ultrasound (SFUS), electroporation, nanoparticle heating, intraluminal heating and superficial heating. Locoregional heating techniques include phased array systems, capacitive systems and isolated perfusion. Whole body techniques focus on prevention of heat loss supplemented with energy deposition in the body, e.g., by infrared radiation. This review presents an overview of clinical hyperthermia and ablation devices used for local, locoregional, and whole body therapy. Proven and experimental clinical applications of thermal ablation and hyperthermia are listed. Methods for temperature measurement and the role of treatment planning to control treatments are discussed briefly, as well as future perspectives for heating technology for the treatment of tumors.
Collapse
Affiliation(s)
- H Petra Kok
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Erik N K Cressman
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wim Ceelen
- Department of GI Surgery, Ghent University Hospital, Ghent, Belgium
| | - Christopher L Brace
- Department of Radiology and Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Robert Ivkov
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA.,Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Holger Grüll
- Department of Diagnostic and Interventional Radiology, Faculty of Medicine, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Gail Ter Haar
- Department of Physics, The Institute of Cancer Research, London, UK
| | - Peter Wust
- Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Johannes Crezee
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Sayseng V, Grondin J, Salgaonkar VA, Grubb CS, Basij M, Mehrmohammadi M, Iyer V, Wang D, Garan H, Wan EY, Konofagou EE. Catheter Ablation Lesion Visualization With Intracardiac Strain Imaging in Canines and Humans. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:1800-1810. [PMID: 32305909 PMCID: PMC7483419 DOI: 10.1109/tuffc.2020.2987480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Catheter ablation is a common treatment for arrhythmia, but can fail if lesion lines are noncontiguous. Identification of gaps and nontransmural lesions can reduce the likelihood of treatment failure and recurrent arrhythmia. Intracardiac myocardial elastography (IME) is a strain imaging technique that provides visualization of the lesion line. Estimation of lesion size and gap resolution were evaluated in an open-chest canine model ( n = 3 ), and clinical feasibility was investigated in patients undergoing ablation to treat typical cavotricuspid isthmus (CTI) atrial flutter ( n = 5 ). A lesion line consisting of three lesions and two gaps was generated on the canine left ventricle via epicardial ablation. One lesion was generated in one canine right ventricle. Average lesion and gap areas were measured with high agreement (33 ± 14 and 30 ± 15 mm2, respectively) when compared against gross pathology (34 ± 19 and 26 ± 11 mm2, respectively). Gaps as small as 11 mm2 (3.6 mm on epicardial surface) were identifiable. Absolute error and relative error in estimated lesion area were 9.3 ± 8.4 mm2 and 31% ± 34%; error in estimated gap area was 11 ± 9.0 mm2 and 40% ± 29%. Flutter patients were imaged throughout the procedure. Strain was shown to be capable of differentiating between baseline and after ablation completion as confirmed by conduction block. In all patients, strain decreased in the CTI after ablation (mean paired difference of -17% ± 11%, ). IME could potentially become a useful ablation monitoring tool in health facilities.
Collapse
|
11
|
Martelletti C, Armandi A, Caviglia GP, Saracco GM, Pellicano R. Elastography for characterization of focal liver lesions: current evidence and future perspectives. Minerva Gastroenterol (Torino) 2020; 67:196-208. [PMID: 32677420 DOI: 10.23736/s2724-5985.20.02747-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Focal liver lesions (FLLs) are a common finding during routine abdominal ultrasound (US). The differential diagnosis between diverse types of FLLs, especially between benign and malignant ones, is extremely important and can often be particularly challenging. Radiological techniques with contrast administration and/or liver biopsy are mostly necessary for establishing diagnosis, but they have several contraindications or complications. Due to limitations of these tools, there is urgent and still unmet need to develop a first line, non-invasive and simple method to diagnose FLLs. Elastography is an US-based imaging modality that provides information about the physical parameter corresponding to the tissue stiffness and can be considered a virtual biopsy. Several elastographic approaches have been developed, such as transient elastography, strain imaging and share wave imaging, which include point shear wave elastography and 2D shear wave elastography. These tools are already in use for evaluating liver fibrosis and in the assessment of focal lesions in other organs, like breast and thyroid gland. This review aims to assess the current evidence of different techniques based on elastography in the setting of FLLs, in order to evaluate accuracy, limitations and future perspectives. In particular, we focused on two contexts: the ability of discriminating between benign and malignant lesions, especially hepatocellular carcinoma and liver metastasis, and the surveillance after percutaneous therapy. This could have a high clinical impact making elastography crucial to identify the appropriate management of FLLs.
Collapse
Affiliation(s)
- Carolina Martelletti
- School of Gastroenterology, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Angelo Armandi
- School of Gastroenterology, Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Giorgio M Saracco
- School of Gastroenterology, Department of Medical Sciences, University of Turin, Turin, Italy.,Department of Medical Sciences, University of Turin, Turin, Italy.,Unit of Gastroenterology, Molinette-SGAS Hospital, Turin, Italy
| | | |
Collapse
|
12
|
Wang H, Mills B, Mislati R, Ahmed R, Gerber SA, Linehan D, Doyley MM. Shear Wave Elastography Can Differentiate between Radiation-Responsive and Non-responsive Pancreatic Tumors: An ex Vivo Study with Murine Models. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:393-404. [PMID: 31727378 PMCID: PMC7060930 DOI: 10.1016/j.ultrasmedbio.2019.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/01/2019] [Accepted: 10/09/2019] [Indexed: 05/04/2023]
Abstract
Neither contrast-enhanced computed tomography nor magnetic resonance imaging can monitor changes in the pancreatic ductal adenocarcinoma microenvironment during therapy. We hypothesized that shear wave elastography could overcome this limitation. To test this hypothesis, we measured the shear modulus of two groups of murine pancreatic tumors (KCKO, n = 30; PAN02, n = 30) treated with stereotactic body radiation therapy (SBRT). The mean shear modulus of KCKO tumors was 7.651 kPa higher than that of PAN02 tumors (p < 0.001). SBRT reduced the shear modulus in KCKO tumors by 8.914 kPa (p < 0.001). No significant difference in the shear modulus of SBRT-treated PAN02 tumors was observed. Additionally, necrotic and collagen densities were reduced only in the SBRT-treated KCKO tumors. Shear modulus was dependent on collagen distribution and histological texture parameters (i.e., entropy and fractional dimension). Shear wave elastography imaging differentiates between SBRT-responsive (KCKO) and non-responsive (PAN02) tumors.
Collapse
Affiliation(s)
- Hexuan Wang
- Department of Electrical & Computer Engineering, University of Rochester, Rochester, New York, USA
| | - Bradley Mills
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Reem Mislati
- Department of Electrical & Computer Engineering, University of Rochester, Rochester, New York, USA
| | - Rifat Ahmed
- Department of Electrical & Computer Engineering, University of Rochester, Rochester, New York, USA
| | - Scott A Gerber
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - David Linehan
- Department of Surgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Marvin M Doyley
- Department of Electrical & Computer Engineering, University of Rochester, Rochester, New York, USA.
| |
Collapse
|
13
|
Guo LH, Wang D, Li XL, Liu BJ, Chen S, Li DD, Xu HX. Stiffness distribution in the ablated zone after radiofrequency ablation for liver: An ex-vivo study with a tissue elastometer. Clin Hemorheol Microcirc 2019; 72:151-160. [PMID: 30689559 DOI: 10.3233/ch-180404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Le-Hang Guo
- Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, Nanjing Medical University, Shanghai, China
- Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Ultrasound Research and Education Institute, Tongji University School of Medicine, Shanghai, China
| | - Dan Wang
- Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Ultrasound Research and Education Institute, Tongji University School of Medicine, Shanghai, China
| | - Xiao-Long Li
- Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Ultrasound Research and Education Institute, Tongji University School of Medicine, Shanghai, China
| | - Bo-Ji Liu
- Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Ultrasound Research and Education Institute, Tongji University School of Medicine, Shanghai, China
| | - Shigao Chen
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Dan-Dan Li
- Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Ultrasound Research and Education Institute, Tongji University School of Medicine, Shanghai, China
| | - Hui-Xiong Xu
- Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, Nanjing Medical University, Shanghai, China
- Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Ultrasound Research and Education Institute, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Ingle AN, Varghese T. A kernel smoothing algorithm for ablation visualization in ultrasound elastography. ULTRASONICS 2019; 96:267-275. [PMID: 30723026 PMCID: PMC6541505 DOI: 10.1016/j.ultras.2018.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 08/10/2018] [Accepted: 12/12/2018] [Indexed: 06/09/2023]
Abstract
Three-dimensional visualization of tumor ablation procedures have significant clinical value because the ability to accurately visualize ablated volumes can help clinicians gauge the extent of ablated tissue necrosis and plan future treatment steps. Better control over ablation volume can prevent recurrence of tumors treated using ablative procedures. This paper presents a kernel based smoothing algorithm called MatérnSmooth to reconstruct shear wave velocity maps from data acquired through ultrasound electrode vibration elastography. Shear wave velocity estimates are acquired on several intersecting imaging planes that share a common axis of intersection collinear with the ablation needle. An objective method of choosing smoothing parameters from underlying data is outlined through simulations. Experimental validation was performed on data acquired from a tissue mimicking phantom. Volume estimates were found to be within 20% of the true value.
Collapse
Affiliation(s)
- Atul N Ingle
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; Department of Electrical and Computer Engineering, University of Wisconsin - Madison, Madison, WI 53705, USA.
| | - Tomy Varghese
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; Department of Electrical and Computer Engineering, University of Wisconsin - Madison, Madison, WI 53705, USA.
| |
Collapse
|
15
|
Pohlman RM, Varghese T, Jiang J, Ziemlewicz TJ, Alexander ML, Wergin KL, Hinshaw JL, Lubner MG, Wells SA, Lee FT. Comparison of Displacement Tracking Algorithms for in Vivo Electrode Displacement Elastography. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:218-232. [PMID: 30318122 PMCID: PMC6324563 DOI: 10.1016/j.ultrasmedbio.2018.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/21/2018] [Accepted: 09/03/2018] [Indexed: 05/09/2023]
Abstract
Hepatocellular carcinoma and liver metastases are common hepatic malignancies presenting with high mortality rates. Minimally invasive microwave ablation (MWA) yields high success rates similar to surgical resection. However, MWA procedures require accurate image guidance during the procedure and for post-procedure assessments. Ultrasound electrode displacement elastography (EDE) has demonstrated utility for non-ionizing imaging of regions of thermal necrosis created with MWA in the ablation suite. Three strategies for displacement vector tracking and strain tensor estimation, namely coupled subsample displacement estimation (CSDE), a multilevel 2-D normalized cross-correlation method, and quality-guided displacement tracking (QGDT) have previously shown accurate estimations for EDE. This paper reports on a qualitative and quantitative comparison of these three algorithms over 79 patients after an MWA procedure. Qualitatively, CSDE presents sharply delineated, clean ablated regions with low noise except for the distal boundary of the ablated region. Multilevel and QGDT contain more visible noise artifacts, but delineation is seen over the entire ablated region. Quantitative comparison indicates CSDE with more consistent mean and standard deviations of region of interest within the mass of strain tensor magnitudes and higher contrast, while Multilevel and QGDT provide higher CNR. This fact along with highest success rates of 89% and 79% on axial and lateral strain tensor images for visualization of thermal necrosis using the Multilevel approach leads to it being the best choice in a clinical setting. All methods, however, provide consistent and reproducible delineation for EDE in the ablation suite.
Collapse
Affiliation(s)
- Robert M Pohlman
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Tomy Varghese
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA.
| | - Jingfeng Jiang
- Department of Biomedical Engineering, Michigan Technological University, Houghton, Michigan, USA
| | - Timothy J Ziemlewicz
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Marci L Alexander
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Kelly L Wergin
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - James L Hinshaw
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Meghan G Lubner
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Shane A Wells
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Fred T Lee
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
16
|
Han M, Wang N, Guo S, Chang N, Lu S, Wan M. Nakagami-m parametric imaging for characterization of thermal coagulation and cavitation erosion induced by HIFU. ULTRASONICS SONOCHEMISTRY 2018; 45:78-85. [PMID: 29705328 DOI: 10.1016/j.ultsonch.2018.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 06/08/2023]
Abstract
Nowadays, both thermal and mechanical ablation techniques of HIFU associated with cavitation have been developed for noninvasive treatment. A specific challenge for the successful clinical implementation of HIFU is to achieve real-time imaging for the evaluation and determination of therapy outcomes such as necrosis or homogenization. Ultrasound Nakagami-m parametric imaging highlights the degrading shadowing effects of bubbles and can be used for tissue characterization. The aim of this study is to investigate the performance of Nakagami-m parametric imaging for evaluating and differentiating thermal coagulation and cavitation erosion induced by HIFU. Lesions were induced in basic bovine serum albumin (BSA) phantoms and ex vivo porcine livers using a 1.6 MHz single-element transducer. Thermal and mechanical lesions induced by two types of HIFU sequences respectively were evaluated using Nakagami-m parametric imaging and ultrasound B-mode imaging. The lesion sizes estimated using Nakagami-m parametric imaging technique were all closer to the actual sizes than those of B-mode imaging. The p-value obtained from the t-test between the mean m values of thermal coagulation and cavitation erosion was smaller than 0.05, demonstrating that the m values of thermal lesions were significantly different from that of mechanical lesions, which was confirmed by ex vivo experiments and histologic examination showed that different changes result from HIFU exposure, one of tissue dehydration resulting from the thermal effect, and the other of tissue homogenate resulting from mechanical effect. This study demonstrated that Nakagami-m parametric imaging is a potential real-time imaging technique for evaluating and differentiating thermal coagulation and cavitation erosion.
Collapse
Affiliation(s)
- Meng Han
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Na Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Shifang Guo
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Nan Chang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Shukuan Lu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Mingxi Wan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China.
| |
Collapse
|
17
|
Yang W, Varghese T, Ziemlewicz T, Alexander M, Lubner M, Hinshaw JL, Wells S, Lee FT. Delineation of Post-Procedure Ablation Regions with Electrode Displacement Elastography with a Comparison to Acoustic Radiation Force Impulse Imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:1953-1962. [PMID: 28595851 PMCID: PMC5523876 DOI: 10.1016/j.ultrasmedbio.2017.04.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 04/12/2017] [Accepted: 04/20/2017] [Indexed: 05/03/2023]
Abstract
We compared a quasi-static ultrasound elastography technique, referred to as electrode displacement elastography (EDE), with acoustic radiation force impulse imaging (ARFI) for monitoring microwave ablation (MWA) procedures on patients diagnosed with liver neoplasms. Forty-nine patients recruited to this study underwent EDE and ARFI with a Siemens Acuson S2000 system after an MWA procedure. On the basis of visualization results from two observers, the ablated region in ARFI images was recognizable on 20 patients on average in conjunction with B-mode imaging, whereas delineable ablation boundaries could be generated on 4 patients on average. With EDE, the ablated region was delineable on 40 patients on average, with less imaging depth dependence. Study of tissue-mimicking phantoms revealed that the ablation region dimensions measured on EDE and ARFI images were within 8%, whereas the image contrast and contrast-to-noise ratio with EDE was two to three times higher than that obtained with ARFI. This study indicated that EDE provided improved monitoring results for minimally invasive MWA in clinical procedures for liver cancer and metastases.
Collapse
Affiliation(s)
- Wenjun Yang
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| | - Tomy Varghese
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Timothy Ziemlewicz
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Marci Alexander
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Meghan Lubner
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - James Louis Hinshaw
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Shane Wells
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Fred T Lee
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
18
|
Liu D, Brace CL. Numerical simulation of microwave ablation incorporating tissue contraction based on thermal dose. Phys Med Biol 2017; 62:2070-2086. [PMID: 28151729 DOI: 10.1088/1361-6560/aa5de4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tissue contraction plays an important role during high temperature tumor ablation, particularly during device characterization, treatment planning and imaging follow up. We measured such contraction in 18 ex vivo bovine liver samples during microwave ablation by tracking fiducial motion on CT imaging. Contraction was then described using a thermal dose dependent model and a negative thermal expansion coefficient based on the empirical data. FEM simulations with integrated electromagnetic wave propagation, heat transfer, and structural mechanics were evaluated using temperature-dependent dielectric properties and the negative thermal expansion models. Simulated temperature and displacement curves were then compared with the ex vivo experimental results on different continuous output powers. The optimized thermal dose model indicated over 50% volumetric contraction occurred at the temperature over 102.1 °C. The numerical simulation results on temperature and contraction-induced displacement showed a good agreement with experimental results. At microwave powers of 55 W, the mean errors on temperature between simulation and experimental results were 8.25%, 2.19% and 5.67% at 5 mm, 10 mm and 20 mm radially from the antenna, respectively. The simulated displacements had mean errors of 16.60%, 14.08% and 23.45% at the same radial locations. Compared to the experimental results, the simulations at the other microwave powers had larger errors with 10-40% mean errors at 40 W, and 10-30% mean errors at 25 W. The proposed model is able to predict temperature elevation and simulate tissue deformation during microwave ablation, and therefore may be incorporated into treatment planning and clinical translation from numerical simulations.
Collapse
Affiliation(s)
- Dong Liu
- Department of Radiology and Biomedical Engineering, University of Wisconsin-Madison, 1111 Highland Ave, Madison WI 53705, United States of America
| | | |
Collapse
|
19
|
Yang W, Ingle A, Varghese T. Comparison of three dimensional strain volume reconstructions using SOUPR and wobbler based acquisitions: A phantom study. Med Phys 2016; 43:1615. [PMID: 27036561 DOI: 10.1118/1.4942814] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
PURPOSE Ultrasound strain imaging is a relatively low cost and portable modality for monitoring percutaneous thermal ablation of liver neoplasms. However, a 3D strain volume reconstruction from existing 2D strain images is necessary to fully delineate the thermal dose distribution. Tissue mimicking (TM) phantom experiments were performed to validate a novel volume reconstruction algorithm referred to as sheaf of ultrasound planes reconstruction (SOUPR), based on a series of 2D rotational imaging planes. METHODS Reconstruction using SOUPR was formulated as an optimization problem with constraints on data consistency with 2D strain images and data smoothness of the volume data. Reconstructed ablation inclusion dimensions, volume, and elastographic signal to noise ratio (SNRe) and contrast to noise ratio (CNRe) were compared with conventional 3D ultrasound strain imaging based on interpolating a series of quasiparallel 2D strain images with a wobbler transducer. RESULTS Volume estimates of the phantom inclusion were in a similar range for both acquisition approaches. SNRe and CNRe obtained with SOUPR were significantly higher on the order of 250% and 166%, respectively. The mean error of the inclusion dimension reconstructed with a wobbler transducer was on the order of 10.4%, 3.5%, and 19.0% along the X, Y, and Z axes, respectively, while the error with SOUPR was on the order of 2.6%, 2.8%, and 9.6%. A qualitative comparison of SOUPR and wobbler reconstruction was also performed using a thermally ablated region created in ex vivo bovine liver tissue. CONCLUSIONS The authors have demonstrated using experimental evaluations with a TM phantom that the reconstruction results obtained with SOUPR were superior when compared with a conventional wobbler transducer in terms of inclusion shape preservation and detectability.
Collapse
Affiliation(s)
- Wenjun Yang
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Atul Ingle
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Tomy Varghese
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705 and Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
20
|
Yang W, Ziemlewicz TJ, Varghese T, Alexander ML, Rubert N, Ingle AN, Lubner MG, Hinshaw JL, Wells SA, Lee FT, Zagzebski JA. Post-Procedure Evaluation of Microwave Ablations of Hepatocellular Carcinomas Using Electrode Displacement Elastography. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:2893-2902. [PMID: 27592561 PMCID: PMC5116412 DOI: 10.1016/j.ultrasmedbio.2016.07.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 05/02/2016] [Accepted: 07/13/2016] [Indexed: 05/04/2023]
Abstract
Microwave ablation has been used clinically as an alternative to surgical resection. However, lack of real-time imaging to assess treated regions may compromise treatment outcomes. We previously introduced electrode displacement elastography (EDE) for strain imaging and verified its feasibility in vivo on porcine animal models. In this study, we evaluated EDE on 44 patients diagnosed with hepatocellular carcinoma, treated using microwave ablation. The ablated region was identified on EDE images for 40 of the 44 patients. Ablation areas averaged 13.38 ± 4.99 cm2 on EDE, compared with 7.61 ± 3.21 cm2 on B-mode imaging. Contrast and contrast-to-noise ratios obtained with EDE were 232% and 98%, respectively, significantly higher than values measured on B-mode images (p < 0.001). This study indicates that EDE is feasible in patients and provides improved visualization of the ablation zone compared with B-mode ultrasound.
Collapse
Affiliation(s)
- Wenjun Yang
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Timothy J Ziemlewicz
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Tomy Varghese
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| | - Marci L Alexander
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nicholas Rubert
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Atul N Ingle
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Meghan G Lubner
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - James L Hinshaw
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Shane A Wells
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Fred T Lee
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - James A Zagzebski
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
21
|
Aho JM, Nenadic IZ, Aristizabal S, Wigle DA, Tschumperlin DJ, Urban MW. Use of Shear Wave Ultrasound Vibrometry for Detection of Simulated Esophageal Malignancy in Ex Vivo Porcine Esophagi. Biomed Phys Eng Express 2016; 2:065002. [PMID: 28948043 PMCID: PMC5609727 DOI: 10.1088/2057-1976/2/6/065002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Esophageal cancer is a malignant neoplasm with poor outcomes. Determination of local disease progression is a major determining factor in treatment modality, radiation dose, radiation field and subsequent surgical therapy. Discrimination of true tumor extent is difficult given the similarity of soft tissues of the malignancy compared to non-malignant tissues using current imaging modalities. A possible method to discriminate between these tissues may be to exploit mechanical properties to diagnostic advantage, as malignant tissues tend to be stiffer relative to normal adjacent tissue. Shear waves propagate faster in stiffer tissues relative to softer tissues. This may be measured by using ultrasound based shear wave vibrometry. In this method, acoustic radiation force is used to create a shear wave in the tissue of interest and ultrafast ultrasound imaging is used to track the propagating wave to measure the wave velocity and estimate the shear moduli. In this study we created simulated malignant lesions (1.5 cm length) using radiofrequency ablation in ex vivo esophageal samples with varied progression (partial thickness n = 4, and full thickness n = 5) and used normal regions of the same esophageal specimen as controls. Shear wave vibrometry was used to measure shear wave group velocity and shear wave phase velocity in the ex vivo specimens. These values were used to estimate shear moduli using an elastic shear wave model and elastic and viscoelastic Lamb wave models. Our results show that the group and phase velocities increase due to both full and mucosal ablation, and that discrimination may be provided by higher order analysis using viscoelastic Lamb wave fitting. This technique may have application for determination of extent of early esophageal malignancy and warrants further investigation using in vivo approaches to determine performance compared to current imaging modalities.
Collapse
Affiliation(s)
- Johnathon M. Aho
- Division of General Thoracic Surgery, Department of Surgery, Mayo Clinic College of Medicine, Rochester, MN 55905
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Ivan Z. Nenadic
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Sara Aristizabal
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Dennis A. Wigle
- Division of General Thoracic Surgery, Department of Surgery, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Daniel J. Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Matthew W. Urban
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905
- Department of Radiology, Mayo Clinic College of Medicine, Rochester, MN 55905
| |
Collapse
|
22
|
Suomi V, Han Y, Konofagou E, Cleveland RO. The effect of temperature dependent tissue parameters on acoustic radiation force induced displacements. Phys Med Biol 2016; 61:7427-7447. [PMID: 27694703 DOI: 10.1088/0031-9155/61/20/7427] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Multiple ultrasound elastography techniques rely on acoustic radiation force (ARF) in monitoring high-intensity focused ultrasound (HIFU) therapy. However, ARF is dependent on tissue attenuation and sound speed, both of which are also known to change with temperature making the therapy monitoring more challenging. Furthermore, the viscoelastic properties of tissue are also temperature dependent, which affects the displacements induced by ARF. The aim of this study is to quantify the temperature dependent changes in the acoustic and viscoelastic properties of liver and investigate their effect on ARF induced displacements by using both experimental methods and simulations. Furthermore, the temperature dependent viscoelastic properties of liver are experimentally measured over a frequency range of 0.1-200 Hz at temperatures reaching 80 °C, and both conventional and fractional Zener models are used to fit the data. The fractional Zener model was found to fit better with the experimental viscoelasticity data with respect to the conventional model with up to two orders of magnitude lower sum of squared errors (SSE). The characteristics of experimental displacement data were also seen in the simulations due to the changes in attenuation coefficient and lesion development. At low temperatures before thermal ablation, attenuation was found to affect the displacement amplitude. At higher temperature, the decrease in displacement amplitude occurs approximately at 60-70 °C due to the combined effect of viscoelasticity changes and lesion growth overpowering the effect of attenuation. The results suggest that it is necessary to monitor displacement continuously during HIFU therapy in order to ascertain when ablation occurs.
Collapse
Affiliation(s)
- Visa Suomi
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
| | | | | | | |
Collapse
|
23
|
Peng B, Wang Y, Yang W, Varghese T, Jiang J. Relative Elastic Modulus Imaging Using Sector Ultrasound Data for Abdominal Applications: An Evaluation of Strategies and Feasibility. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2016; 63:1432-40. [PMID: 27411219 PMCID: PMC5291116 DOI: 10.1109/tuffc.2016.2589270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We reconstruct the elastic modulus distribution for one tissue mimicking (TM) phantom and two in vivo biopsy-confirmed liver tumors using curvilinear ultrasound echo data. Spatial distribution of the relative elastic modulus values is determined by solving an inverse problem within a region of interest (ROI). This inverse problem solution requires knowledge of the ultrasonically measured displacement field in a uniform rectilinear grid to ensure that the resolution on the resultant relative elastic modulus elastogram will be uniform over the entire ROI. Taking advantage of a new speckle tracking algorithm, two different displacement tracking strategies are investigated: 1) sector-shaped ultrasound data were converted to ultrasound data on a rectilinear grid prior to speckle tracking and 2) axial and lateral displacements directly obtained from sector-shaped data were converted to vertical and horizontal displacements on a rectilinear grid after speckle tracking. Compared with strain elastography (SE), TM phantom results show that relative elastic modulus imaging (REMI) using Strategy 2 provided higher contrast-to-noise ratios (>300% and 25% increases compared with SE and REMI using Strategy 1, respectively). Furthermore, in phantoms, REMI using Strategy 2 more accurately (a 1.3% difference to shear wave elastography measurements) estimated the elastic contrast ratio between the target and the background, compared with both SE (20%-25%) and REMI using Strategy 1 (4.1%). It was also observed that relative modulus elastograms were more consistent with anatomical structures visualized on corresponding B-mode images for the two in vivo liver cases. Overall, we conclude that applying REMI is feasible for abdominal organs such as the liver. Strategy 2 offered improved and consistent results for the data investigated.
Collapse
|
24
|
Hou GY, Marquet F, Wang S, Apostolakis IZ, Konofagou EE. High-intensity focused ultrasound monitoring using harmonic motion imaging for focused ultrasound (HMIFU) under boiling or slow denaturation conditions. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2015; 62:1308-19. [PMID: 26168177 PMCID: PMC4556239 DOI: 10.1109/tuffc.2014.006969] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Harmonic motion imaging for focused ultrasound (HMIFU) is a recently developed high-intensity focused ultrasound (HIFU) treatment monitoring method that utilizes an amplitude-modulated therapeutic ultrasound beam to induce an oscillatory radiation force at the HIFU focus and estimates the focal tissue displacement to monitor the HIFU thermal treatment. In this study, the performance of HMIFU under acoustic, thermal, and mechanical effects was investigated. The performance of HMIFU was assessed in ex vivo canine liver specimens (n = 13) under slow denaturation or boiling regimes. A passive cavitation detector (PCD) was used to assess the acoustic cavitation activity, and a bare-wire thermocouple was used to monitor the focal temperature change. During lesioning with slow denaturation, high quality displacements (correlation coefficient above 0.97) were observed under minimum cavitation noise, indicating the tissue initial-softening-then- stiffening property change. During HIFU with boiling, HMIFU monitored a consistent change in lesion-to-background displacement contrast (0.46 ± 0.37) despite the presence of strong cavitation noise due to boiling during lesion formation. Therefore, HMIFU effectively monitored softening-then-stiffening during lesioning under slow denaturation, and detected lesioning under boiling with a distinct change in displacement contrast under boiling in the presence of cavitation. In conclusion, HMIFU was shown under both boiling and slow denaturation regimes to be effective in HIFU monitoring and lesioning identification without being significantly affected by cavitation noise.
Collapse
Affiliation(s)
- Gary Y. Hou
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Fabrice Marquet
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Shutao Wang
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | | | - Elisa E. Konofagou
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Radiology, Columbia University, New York, NY, USA
| |
Collapse
|
25
|
Abstract
In this review we present the current status of ultrasound thermometry and ablation monitoring, with emphasis on the diverse approaches published in the literature and with an eye on which methods are closest to clinical reality. It is hoped that this review will serve as a guide to the expansion of sonographic methods for treatment monitoring and thermometry since the last brief review in 2007.
Collapse
Affiliation(s)
- Matthew A. Lewis
- Department of Radiology, UT Southwestern Medical Center at Dallas
| | - Robert M. Staruch
- Department of Radiology, UT Southwestern Medical Center at Dallas
- Ultrasound Imaging & Interventions, Philips Research North America
| | - Rajiv Chopra
- Department of Radiology, UT Southwestern Medical Center at Dallas
- Advanced Imaging Research Center, UT Southwestern Medical Center at Dallas
| |
Collapse
|
26
|
Hooi FM, Nagle A, Subramanian S, Douglas Mast T. Analysis of tissue changes, measurement system effects, and motion artifacts in echo decorrelation imaging. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2015; 137:585-97. [PMID: 25697993 PMCID: PMC4336259 DOI: 10.1121/1.4906580] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Echo decorrelation imaging, a method for mapping ablation-induced ultrasound echo changes, is analyzed. Local echo decorrelation is shown to approximate the decoherence spectrum of tissue reflectivity. Effects of the ultrasound measurement system, echo signal windowing, electronic noise, and tissue motion on echo decorrelation images are determined theoretically, leading to a method for reduction of motion and noise artifacts. Theoretical analysis is validated by simulations and experiments. Simulated decoherence of the scattering medium was recovered with root-mean-square error less than 10% with accuracy dependent on the correlation window size. Motion-induced decorrelation measured in an ex vivo pubovisceral muscle model showed similar trends to theoretical motion-induced decorrelation for a 2.1 MHz curvilinear array with decorrelation approaching unity for 3-4 mm elevational displacement or 1-1.6 mm range displacement. For in vivo imaging of porcine liver by a 7 MHz linear array, theoretical decorrelation computed using image-based motion estimates correlated significantly with measured decorrelation (r = 0.931, N = 10). Echo decorrelation artifacts incurred during in vivo radiofrequency ablation in the same porcine liver were effectively compensated based on the theoretical echo decorrelation model and measured pre-treatment decorrelation. These results demonstrate the potential of echo decorrelation imaging for quantification of heat-induced changes to the scattering tissue medium during thermal ablation.
Collapse
Affiliation(s)
- Fong Ming Hooi
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio 45267-0586
| | - Anna Nagle
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio 45267-0586
| | - Swetha Subramanian
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio 45267-0586
| | - T Douglas Mast
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio 45267-0586
| |
Collapse
|
27
|
Hou GY, Provost J, Grondin J, Wang S, Marquet F, Bunting E, Konofagou EE. Sparse matrix beamforming and image reconstruction for 2-D HIFU monitoring using harmonic motion imaging for focused ultrasound (HMIFU) with in vitro validation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2014; 33:2107-17. [PMID: 24960528 PMCID: PMC4327913 DOI: 10.1109/tmi.2014.2332184] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Harmonic motion imaging for focused ultrasound (HMIFU) utilizes an amplitude-modulated HIFU beam to induce a localized focal oscillatory motion simultaneously estimated. The objective of this study is to develop and show the feasibility of a novel fast beamforming algorithm for image reconstruction using GPU-based sparse-matrix operation with real-time feedback. In this study, the algorithm was implemented onto a fully integrated, clinically relevant HMIFU system. A single divergent transmit beam was used while fast beamforming was implemented using a GPU-based delay-and-sum method and a sparse-matrix operation. Axial HMI displacements were then estimated from the RF signals using a 1-D normalized cross-correlation method and streamed to a graphic user interface with frame rates up to 15 Hz, a 100-fold increase compared to conventional CPU-based processing. The real-time feedback rate does not require interrupting the HIFU treatment. Results in phantom experiments showed reproducible HMI images and monitoring of 22 in vitro HIFU treatments using the new 2-D system demonstrated reproducible displacement imaging, and monitoring of 22 in vitro HIFU treatments using the new 2-D system showed a consistent average focal displacement decrease of 46.7 ±14.6% during lesion formation. Complementary focal temperature monitoring also indicated an average rate of displacement increase and decrease with focal temperature at 0.84±1.15%/(°)C, and 2.03±0.93%/(°)C , respectively. These results reinforce the HMIFU capability of estimating and monitoring stiffness related changes in real time. Current ongoing studies include clinical translation of the presented system for monitoring of HIFU treatment for breast and pancreatic tumor applications.
Collapse
Affiliation(s)
- Gary Y. Hou
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Jean Provost
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Julien Grondin
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Shutao Wang
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Fabrice Marquet
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Ethan Bunting
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Elisa E. Konofagou
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Radiology, Columbia University, New York, NY, USA
| |
Collapse
|
28
|
Zhou Z, Wu W, Wu S, Xia J, Wang CY, Yang C, Lin CC, Tsui PH. A survey of ultrasound elastography approaches to percutaneous ablation monitoring. Proc Inst Mech Eng H 2014; 228:1069-82. [DOI: 10.1177/0954411914554438] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Percutaneous thermal ablation has been widely used as a minimally invasive treatment for tumors. Treatment monitoring is essential for preventing complications while ensuring treatment efficacy. Mechanical testing measurements on tissue reveal that tissue stiffness increases with temperature and ablation duration. Different types of imaging methods can be used to monitor ablation procedures, including temperature or thermal strain imaging, strain imaging, modulus imaging, and shear modulus imaging. Ultrasound elastography demonstrates the potential to become the primary imaging modality for monitoring percutaneous ablation. This review briefly presented the state-of-the-art ultrasound elastography approaches for monitoring radiofrequency ablation and microwave ablation. These techniques were divided into four groups: quasi-static elastography, acoustic radiation force elastography, sonoelastography, and applicator motion elastography. Their advantages and limitations were compared and discussed. Future developments were proposed with respect to heat-induced bubbles, tissue inhomogeneities, respiratory motion, three-dimensional monitoring, multi-parametric monitoring, real-time monitoring, experimental data center for percutaneous ablation, and microwave ablation monitoring.
Collapse
Affiliation(s)
- Zhuhuang Zhou
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Weiwei Wu
- College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing, China
| | - Shuicai Wu
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Jingjing Xia
- School of Electronic Information Engineering, Tianjin University, Tianjin, China
| | - Chiao-Yin Wang
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chunlan Yang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Chung-Chih Lin
- Department of Computer Science and Information Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Po-Hsiang Tsui
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Medical Image Research Center, Institute for Radiological Research, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
29
|
Rubert N, Varghese T. Alterations in Ultrasound Scattering Following Thermal Ablation in ex vivo Bovine Liver. IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM : [PROCEEDINGS]. IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM 2014; 2014:1904-1907. [PMID: 26185596 PMCID: PMC4500940 DOI: 10.1109/ultsym.2014.0473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Thermal ablation is a minimally invasive cancer treatment which has been rapidly gaining clinical acceptance. It is well known that thermal ablation increases the acoustic attenuation and shear modulus of tissue. In this work, we examine changes to the spatial distribution of scatterers in liver tissue following thermal ablation. Acoustic scatterers within liver tissue have frequently been modeled as pseudo-periodic. The positions of pseudo-periodic scatterers have been Gamma distributed along the beam dimension, and these scatterers are characterized by their mean scatterer spacing (MSS). Prior work have demonstrated significant changes in MSS due to diffuse liver disease, such as steatosis progressing to cirrhosis. However, relatively few results have been reported regarding changes in MSS following thermal ablation. In this study, we estimated MSS in ex vivo bovine liver by detecting local maxima in spectral coherence functions calculated using Thomson's multi-taper method. We examined a large number of uncorrelated regions of interest recorded from five normal bovine livers (~300 images from each animal). We also examined a large number of ROI's from five bovine livers following thermal coagulation. All bovine livers were obtained from a commercial meat production facility immediately following animal sacrifice and imaged within 12 hours. Thermal coagulation was induced by heating liver in saline water baths at 80° C for 45 minutes. For normal, unheated liver an MSS of approximately 1.5 mm was estimated. Following thermal ablation, an MSS of approximately 0.5 mm in thermally coagulated tissue was obtained. Frequently, studies estimating MSS in liver tissue provide an MSS estimate regardless of the state of tissue. Authors rarely present what their MSS estimation algorithm would produce if it were applied to tissue which is better modeled as a collection of uniformly, randomly distributed scatterers lacking periodicity. In this study, we found that thermal coagulation results in a loss of periodicity. The MSS of 0.5 mm corresponds to the value that a spectral coherence-based MSS algorithm would produce if presented with a signal that was generated from uniform, randomly distributed scatterers.
Collapse
Affiliation(s)
- Nicholas Rubert
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Tomy Varghese
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
30
|
Wang TY, Hall TL, Xu Z, Fowlkes JB, Cain CA. Imaging feedback for histotripsy by characterizing dynamics of acoustic radiation force impulse (ARFI)-induced shear waves excited in a treated volume. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2014; 61:1137-1151. [PMID: 24960703 DOI: 10.1109/tuffc.2014.3013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Our previous study indicated that shear waves decay and propagate at a lower speed as they propagate into a tissue volume mechanically fractionated by histotripsy. In this paper, we hypothesize that the change in the shear dynamics is related to the degree of tissue fractionation, and can be used to predict histotripsy treatment outcomes. To test this hypothesis, lesions with different degrees of tissue fractionation were created in agar-graphite tissue phantoms and ex vivo kidneys with increasing numbers of therapy pulses, from 0 to 2000 pulses per treatment location. The therapy pulses were 3-cycle 750-kHz focused ultrasound delivered at a peak negative/positive pressure of 17/108 MPa and a repetition rate of 50 Hz. The shear waves were excited by acoustic radiation force impulse (ARFI) focused at the center of the lesion. The spatial and temporal behavior of the propagating shear waves was measured with ultrasound plane wave imaging. The temporal displacement profile at a lateral location 10 mm offset to the shear excitation region was detected with M-mode imaging. The decay and delay of the shear waves were quantitatively characterized on the temporal displacement profile. Results showed significant changes in two characteristics on the temporal displacement profile: the peak-to-peak displacement decayed exponentially with increasing numbers of therapy pulses; the relative time-to-peak displacement increased with increasing numbers of therapy pulses, and appeared to saturate at higher numbers of pulses. Correspondingly, the degree of tissues fractionation, as indicated by the percentage of structurally intact cell nuclei, decreased exponentially with increasing numbers of therapy pulses. Strong linear correlations were found between the two characteristics and the degree of tissue fractionation. These results suggest that the characteristics of the shear temporal displacement profile may provide useful feedback information regarding the treatment outcomes.
Collapse
|
31
|
Considering angle selection when using ultrasound electrode displacement elastography to evaluate radiofrequency ablation of tissues. BIOMED RESEARCH INTERNATIONAL 2014; 2014:764320. [PMID: 24971347 PMCID: PMC4058241 DOI: 10.1155/2014/764320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 05/07/2014] [Indexed: 11/22/2022]
Abstract
Percutaneous radiofrequency ablation (RFA) is a minimally invasive treatment to thermally destroy tumors. Ultrasound-based electrode-displacement elastography is an emerging technique for evaluating the region of RFA-induced lesions. The angle between the imaging probe and the RFA electrode can influence electrode-displacement elastography when visualizing the ablation zone. We explored the angle effect on electrode-displacement elastography to measure the ablation zone. Phantoms embedded with meatballs were fabricated and then ablated using an RFA system to simulate RFA-induced lesions. For each phantom, a commercial ultrasound scanner with a 7.5 MHz linear probe was used to acquire raw image data at different angles, ranging from 30° to 90° at increments of 10°, to construct electrode-displacement images and facilitate comparisons with tissue section images. The results revealed that the ablation regions detected using electrode-displacement elastography were highly correlated with those from tissue section images when the angle was between 30° and 60°. However, the boundaries of lesions were difficult to distinguish, when the angle was larger than 60°. The experimental findings suggest that angle selection should be considered to achieve reliable electrode-displacement elastography to describe ablation zones.
Collapse
|
32
|
Wex C, Stoll A, Fröhlich M, Arndt S, Lippert H. Mechanics of fresh, frozen-thawed and heated porcine liver tissue. Int J Hyperthermia 2014; 30:271-83. [DOI: 10.3109/02656736.2014.924161] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
33
|
Hou GY, Marquet F, Wang S, Konofagou EE. Multi-parametric monitoring and assessment of high-intensity focused ultrasound (HIFU) boiling by harmonic motion imaging for focused ultrasound (HMIFU): an ex vivo feasibility study. Phys Med Biol 2014; 59:1121-45. [PMID: 24556974 DOI: 10.1088/0031-9155/59/5/1121] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Harmonic motion imaging for focused ultrasound (HMIFU) is a recently developed high-intensity focused ultrasound (HIFU) treatment monitoring method with feasibilities demonstrated in vitro and in vivo. Here, a multi-parametric study is performed to investigate both elastic and acoustics-independent viscoelastic tissue changes using the Harmonic Motion Imaging (HMI) displacement, axial compressive strain and change in relative phase shift during high energy HIFU treatment with tissue boiling. Forty three (n = 43) thermal lesions were formed in ex vivo canine liver specimens (n = 28). Two-dimensional (2D) transverse HMI displacement maps were also obtained before and after lesion formation. The same method was repeated in 10 s, 20 s and 30 s HIFU durations at three different acoustic powers of 8, 10, and 11 W, which were selected and verified as treatment parameters capable of inducing boiling using both thermocouple and passive cavitation detection (PCD) measurements. Although a steady decrease in the displacement, compressive strain, and relative change in the focal phase shift (Δϕ) were obtained in numerous cases, indicating an overall increase in relative stiffness, the study outcomes also showed that during boiling, a reverse lesion-to-background displacement contrast was detected, indicating potential change in tissue absorption, geometrical change and/or, mechanical gelatification or pulverization. Following treatment, corresponding 2D HMI displacement images of the thermal lesions also mapped consistent discrepancy in the lesion-to-background displacement contrast. Despite the expectedly chaotic changes in acoustic properties with boiling, the relative change in phase shift showed a consistent decrease, indicating its robustness to monitor biomechanical properties independent of the acoustic property changes throughout the HIFU treatment. In addition, the 2D HMI displacement images confirmed and indicated the increase in the thermal lesion size with treatment duration, which was validated against pathology. In conclusion, multi-parametric HMIFU was shown capable of monitoring and mapping tissue viscoelastic response changes during and after HIFU boiling, some of which were independent of the acoustic parameter changes.
Collapse
Affiliation(s)
- Gary Y Hou
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | | | | | | |
Collapse
|
34
|
Gonzalez-Guindalini FD, Botelho MPF, Harmath CB, Sandrasegaran K, Miller FH, Salem R, Yaghmai V. Assessment of Liver Tumor Response to Therapy: Role of Quantitative Imaging. Radiographics 2013; 33:1781-800. [DOI: 10.1148/rg.336135511] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
35
|
Montagnon E, Hadj-Henni A, Schmitt C, Cloutier G. Viscoelastic characterization of elliptical mechanical heterogeneities using a semi-analytical shear-wave scattering model for elastometry measures. Phys Med Biol 2013; 58:2325-48. [DOI: 10.1088/0031-9155/58/7/2325] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
36
|
Wang YN, Khokhlova T, Bailey M, Hwang JH, Khokhlova V. Histological and biochemical analysis of mechanical and thermal bioeffects in boiling histotripsy lesions induced by high intensity focused ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2013; 39:424-38. [PMID: 23312958 PMCID: PMC3570648 DOI: 10.1016/j.ultrasmedbio.2012.10.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 10/10/2012] [Accepted: 10/15/2012] [Indexed: 05/07/2023]
Abstract
Recent studies have shown that shockwave heating and millisecond boiling in high-intensity focused ultrasound fields can result in mechanical fractionation or emulsification of tissue, termed boiling histotripsy. Visual observations of the change in color and contents indicated that the degree of thermal damage in the emulsified lesions can be controlled by varying the parameters of the exposure. The goal of this work was to examine thermal and mechanical effects in boiling histotripsy lesions using histologic and biochemical analysis. The lesions were induced in ex vivo bovine heart and liver using a 2-MHz single-element transducer operating at duty factors of 0.005-0.01, pulse durations of 5-500 ms and in situ shock amplitude of 73 MPa. Mechanical and thermal damage to tissue was evaluated histologically using conventional staining techniques (hematoxylin and eosin, and nicotinamide adenine dinucleotide-diaphorase). Thermal effects were quantified by measuring denaturation of salt soluble proteins in the treated region. According to histologic analysis, the lesions that visually appeared as a liquid contained no cellular structures larger than a cell nucleus and had a sharp border of one to two cells. Both histologic and protein analysis showed that lesions obtained with short pulses (<10 ms) did not contain any thermal damage. Increasing the pulse duration resulted in an increase in thermal damage. However, both protein analysis and nicotinamide adenine dinucleotide-diaphorase staining showed less denaturation than visually observed as whitening of tissue. The number of high-intensity focused ultrasound pulses delivered per exposure did not change the lesion shape or the degree of thermal denaturation, whereas the size of the lesion showed a saturating behavior suggesting optimal exposure duration. This study confirmed that boiling histotripsy offers an effective, predictable way to non-invasively fractionate tissue into sub-cellular fragments with or without inducing thermal damage.
Collapse
Affiliation(s)
- Yak-Nam Wang
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, 1013 NE 40th Street, Seattle WA 98105
| | - Tatiana Khokhlova
- , Tel: +1 206 543 61 93, Fax: +1 206 543 67 85, Division of Gastroenterology, Department of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195 and Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, 1013 NE 40th Street, Seattle WA 98105
| | - Michael Bailey
- Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, 1013 NE 40th Street, Seattle WA 98105
| | - Joo Ha Hwang
- Division of Gastroenterology, Department of Medicine, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195 and Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, 1013 NE 40th Street, Seattle WA 98105
| | - Vera Khokhlova
- Department of Acoustics, Physics Faculty, Moscow State University, Leninskie Gory, Moscow 119991, Russia and Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, 1013 NE 40th Street, Seattle WA 98105
| |
Collapse
|
37
|
Thittai AK, Galaz B, Ophir J. On the advantages of imaging the axial-shear strain component of the total shear strain in breast tumors. ULTRASOUND IN MEDICINE & BIOLOGY 2012; 38:2031-7. [PMID: 22975036 PMCID: PMC3463720 DOI: 10.1016/j.ultrasmedbio.2012.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 06/12/2012] [Accepted: 06/27/2012] [Indexed: 05/09/2023]
Abstract
Axial-shear strain elastography was described recently as a method to visualize the state of bonding at an inclusion boundary. Although total shear strain elastography was initially proposed for this purpose, it did not evolve beyond the initial reported finite element model (FEM) and simulation studies. One of the major reasons for this was the practical limitation in estimating the tissue motion perpendicular (lateral) to the ultrasound (US) beam as accurately as the motion along the US beam (axial). Nevertheless, there has been a sustained effort in developing methods to improve the lateral motion tracking accuracy and thereby obtain better quality total shear strain elastogram (TSSE). We hypothesize that in some cases, even if good quality TSSE becomes possible, it may still be advantageous to utilize only the axial-shear strain (one of the components of the total shear strain) elastogram (ASSE). Specifically, we show through FEM and corroborating tissue-mimicking gelatin phantom experiments that the unique "fill-in" discriminant feature that was introduced recently for asymmetric breast lesion classification is depicted only in the ASSE and not in the TSSE. Note that the presence or conspicuous absence of this feature in ASSE was shown to characterize asymmetric inclusions' boundaries as either loosely-bonded or firmly-bonded to the surrounding, respectively. This might be an important observation because the literature suggests that benign breast lesions tend to be loosely-bonded, while malignant tumors are usually firmly-bonded. The results from the current study demonstrate that the use of shear strain lesion "fill-in" as a discriminant feature in the differentiation between asymmetric malignant and benign breast lesions is only possible when using the ASSEs and not the TSSEs.
Collapse
Affiliation(s)
- Arun K Thittai
- Department of Diagnostic and Interventional Imaging, Ultrasonics and Elastographics Laboratory, The University of Texas Medical School, Houston, TX, USA.
| | | | | |
Collapse
|
38
|
Wang TY, Hall TL, Xu Z, Fowlkes JB, Cain CA. Imaging feedback of histotripsy treatments using ultrasound shear wave elastography. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2012; 59:1167-81. [PMID: 22711412 PMCID: PMC3746490 DOI: 10.1109/tuffc.2012.2307] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Histotripsy is a cavitation-based ultrasound therapy that mechanically fractionates soft solid tissues into fluid-like homogenates. This paper investigates the feasibility of imaging the tissue elasticity change during the histotripsy process as a tool to provide feedback for the treatments. The treatments were performed on agar tissue phantoms and ex vivo kidneys using 3-cycle ultrasound pulses delivered by a 750-kHz therapeutic array at peak negative/positive pressure of 17/108 MPa and a repetition rate of 50 Hz. Lesions with different degrees of damage were created with increasing numbers of therapy pulses from 0 to 2000 pulses per treatment location. The elasticity of the lesions was measured with ultrasound shear wave elastography, in which a quasi-planar shear wave was induced by acoustic radiation force generated by the therapeutic array, and tracked with ultrasound imaging at 3000 frames per second. Based on the shear wave velocity calculated from the sequentially captured frames, the Young's modulus was reconstructed. Results showed that the lesions were more easily identified on the shear wave velocity images than on B-mode images. As the number of therapy pulses increased from 0 to 2000 pulses/location, the Young's modulus decreased exponentially from 22.1 ± 2.7 to 2.1 ± 1.1 kPa in the tissue phantoms (R2 = 0.99, N = 9 each), and from 33.0 ± 7.1 to 4.0 ± 2.5 kPa in the ex vivo kidneys (R2 = 0.99, N = 8 each). Correspondingly, the tissues transformed from completely intact to completely fractionated as examined via histology. A good correlation existed between the lesions' Young's modulus and the degree of tissue fractionation as examined with the percentage of remaining structurally intact cell nuclei (R2 = 0.91, N = 8 each). These results indicate that lesions produced by histotripsy can be detected with high sensitivity using shear wave elastography. Because the decrease in the tissue elasticity corresponded well with the morphological and histological change, this study provides a basis for predicting the local treatment outcomes from tissue elasticity change.
Collapse
Affiliation(s)
- Tzu-Yin Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI
| | - Timothy L. Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI
| | - J. Brian Fowlkes
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI. Department of Radiology, University of Michigan, Ann Arbor, MI
| | - Charles A. Cain
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI. Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI
| |
Collapse
|
39
|
Hou GY, Luo J, Marquet F, Maleke C, Vappou J, Konofagou EE. Performance assessment of HIFU lesion detection by harmonic motion imaging for focused ultrasound (HMIFU): a 3-D finite-element-based framework with experimental validation. ULTRASOUND IN MEDICINE & BIOLOGY 2011; 37:2013-27. [PMID: 22036637 PMCID: PMC4005895 DOI: 10.1016/j.ultrasmedbio.2011.09.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 08/18/2011] [Accepted: 09/06/2011] [Indexed: 05/11/2023]
Abstract
Harmonic motion imaging for focused ultrasound (HMIFU) is a novel high-intensity focused ultrasound (HIFU) therapy monitoring method with feasibilities demonstrated in vitro, ex vivo and in vivo. Its principle is based on amplitude-modulated (AM) - harmonic motion imaging (HMI), an oscillatory radiation force used for imaging the tissue mechanical response during thermal ablation. In this study, a theoretical framework of HMIFU is presented, comprising a customized nonlinear wave propagation model, a finite-element (FE) analysis module and an image-formation model. The objective of this study is to develop such a framework to (1) assess the fundamental performance of HMIFU in detecting HIFU lesions based on the change in tissue apparent elasticity, i.e., the increasing Young's modulus, and the HIFU lesion size with respect to the HIFU exposure time and (2) validate the simulation findings ex vivo. The same HMI and HMIFU parameters as in the experimental studies were used, i.e., 4.5-MHz HIFU frequency and 25 Hz AM frequency. For a lesion-to-background Young's modulus ratio of 3, 6 and 9, the FE and estimated HMI displacement ratios were equal to 1.83, 3.69 and 5.39 and 1.65, 3.19 and 4.59, respectively. In experiments, the HMI displacement followed a similar increasing trend of 1.19, 1.28 and 1.78 at 10-s, 20-s and 30-s HIFU exposure, respectively. In addition, moderate agreement in lesion size growth was found in both simulations (16.2, 73.1 and 334.7 mm(2)) and experiments (26.2, 94.2 and 206.2 mm(2)). Therefore, the feasibility of HMIFU for HIFU lesion detection based on the underlying tissue elasticity changes was verified through the developed theoretical framework, i.e., validation of the fundamental performance of the HMIFU system for lesion detection, localization and quantification, was demonstrated both theoretically and ex vivo.
Collapse
Affiliation(s)
- Gary Y. Hou
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Jianwen Luo
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Fabrice Marquet
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Caroline Maleke
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Jonathan Vappou
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Elisa E. Konofagou
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Radiology, Columbia University, New York, NY, USA
| |
Collapse
|
40
|
Sarvazyan A, Hall TJ, Urban MW, Fatemi M, Aglyamov SR, Garra BS. AN OVERVIEW OF ELASTOGRAPHY - AN EMERGING BRANCH OF MEDICAL IMAGING. Curr Med Imaging 2011; 7:255-282. [PMID: 22308105 PMCID: PMC3269947 DOI: 10.2174/157340511798038684] [Citation(s) in RCA: 240] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
From times immemorial manual palpation served as a source of information on the state of soft tissues and allowed detection of various diseases accompanied by changes in tissue elasticity. During the last two decades, the ancient art of palpation gained new life due to numerous emerging elasticity imaging (EI) methods. Areas of applications of EI in medical diagnostics and treatment monitoring are steadily expanding. Elasticity imaging methods are emerging as commercial applications, a true testament to the progress and importance of the field.In this paper we present a brief history and theoretical basis of EI, describe various techniques of EI and, analyze their advantages and limitations, and overview main clinical applications. We present a classification of elasticity measurement and imaging techniques based on the methods used for generating a stress in the tissue (external mechanical force, internal ultrasound radiation force, or an internal endogenous force), and measurement of the tissue response. The measurement method can be performed using differing physical principles including magnetic resonance imaging (MRI), ultrasound imaging, X-ray imaging, optical and acoustic signals.Until recently, EI was largely a research method used by a few select institutions having the special equipment needed to perform the studies. Since 2005 however, increasing numbers of mainstream manufacturers have added EI to their ultrasound systems so that today the majority of manufacturers offer some sort of Elastography or tissue stiffness imaging on their clinical systems. Now it is safe to say that some sort of elasticity imaging may be performed on virtually all types of focal and diffuse disease. Most of the new applications are still in the early stages of research, but a few are becoming common applications in clinical practice.
Collapse
|
41
|
|
42
|
|
43
|
Palmeri ML, Nightingale KR. What challenges must be overcome before ultrasound elasticity imaging is ready for the clinic? IMAGING IN MEDICINE 2011; 3:433-444. [PMID: 22171226 PMCID: PMC3235674 DOI: 10.2217/iim.11.41] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Ultrasound elasticity imaging has been a research interest for the past 20 years with the goal of generating novel images of soft tissues based on their material properties (i.e., stiffness and viscosity). The motivation for such an imaging modality lies in the fact that many soft tissues can share similar ultrasonic echogenicities, but may have very different mechanical properties that can be used to clearly visualize normal anatomy and delineate diseased tissues and masses. Recently, elasticity imaging techniques have moved from the laboratory to the clinical setting, where clinicians are beginning to characterize tissue stiffness as a diagnostic metric and commercial implementations of ultrasonic elasticity imaging are beginning to appear on the market. This article provides a foundation for elasticity imaging, an overview of current research and commercial realizations of elasticity imaging technology and a perspective on the current successes, limitations and potential for improvement of these imaging technologies.
Collapse
Affiliation(s)
- Mark L Palmeri
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Department of Anesthesiology, Duke University, Durham, NC 27708, USA
| | | |
Collapse
|
44
|
Yang C, Zhu H, Wu S, Bai Y, Gao H. Correlations between B-mode ultrasonic image texture features and tissue temperature in microwave ablation. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2010; 29:1787-1799. [PMID: 21098851 DOI: 10.7863/jum.2010.29.12.1787] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
OBJECTIVE The purpose of this study was to find the correlations between B-mode ultrasonic tissue texture features and tissue temperature in microwave ablation. METHODS A total of 20 in vitro porcine liver samples were used for microwave ablation experiments. B-mode ultrasonic images under various temperatures were acquired. The texture features of the differential images based on the gray level histogram, including the mean of the gray scale (MGS), standard deviation of the gray scale, and entropy of the gray scale (ENT), and those based on the gray level co-occurrence matrix, including the contrast (CON), angular second moment (ASM), inverse difference moment (IDM), and correlation, were extracted. Correlations between the features and liver sample temperature were analyzed. In addition, water bath heating experiments were also performed on 15 in vitro porcine liver samples for analysis validation. RESULTS The correlation coefficients across the MGS, ENT, and ASM in 4 directions (0°, 45°, 90°, and 135°), the CON and IDM in 3 directions (45°, 90°, and 135°), and a temperature range of 15°C to 90°C were high and greater than 0.9 during microwave ablation. All texture features of the differential B-mode ultrasonic images changed with rising temperature from 25°C to 60°C during water bath heating. CONCLUSIONS Changes in image features reflect changes in tissue temperature during microwave ablation.
Collapse
Affiliation(s)
- Chunlan Yang
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China.
| | | | | | | | | |
Collapse
|
45
|
Soroushian B, Whelan WM, Kolios MC. Study of laser-induced thermoelastic deformation of native and coagulated ex-vivo bovine liver tissues for estimating their optical and thermomechanical properties. JOURNAL OF BIOMEDICAL OPTICS 2010; 15:065002. [PMID: 21198166 DOI: 10.1117/1.3517455] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Several studies have explored the potential of optoacoustic imaging for monitoring thermal therapies, yet the origin of the contrast in the images is not well understood. A technique is required to measure the changes in the optical and thermomechanical properties of tissues upon coagulation to better understand this contrast. An interferometric method is presented for measuring simultaneously the optical and thermomechanical properties of native and coagulated ex-vivo bovine tissue samples based on analysis of the surface displacement of irradiated samples. Surface displacements are measured after irradiation by short laser pulses at 750 nm. A 51% decrease in the optical attenuation depth is observed for coagulated liver samples compared to native samples. No significant differences in the Grüneisen coefficient are measured in the native and coagulated tissue samples. A mean value of 0.12 for the Grüneisen coefficient is measured for both native and coagulated liver tissues. The displacement profiles exhibit consistent differences between the two tissue types. To assess the changes in the sample mechanical properties, the experimental data also are compared to numerical solutions of the equation for thermoelastic deformation. The results demonstrate that differences in the tissue expansion dynamics arise from higher values of elastic modulus for coagulated liver samples compared to native ones.
Collapse
|
46
|
Effect of injection site on in situ implant formation and drug release in vivo. J Control Release 2010; 147:350-8. [PMID: 20728486 DOI: 10.1016/j.jconrel.2010.08.020] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 08/11/2010] [Indexed: 02/05/2023]
Abstract
In situ forming drug delivery implants offer an attractive alternative to pre-formed implant devices for local drug delivery due to their ability to deliver fragile drugs, simple manufacturing process, and less invasive placement. However, the clinical translation of these systems has been hampered, in part, by poor correlation between in vitro and in vivo drug release profiles. To better understand this effect, the behavior of poly(D,l-lactide-co-glycolide) (PLGA) in situ forming implants was examined in vitro and in vivo after subcutaneous injection as well as injection into necrotic, non-necrotic, and ablated tumor. Implant formation was quantified noninvasively using an ultrasound imaging technique. Drug release of a model drug agent, fluorescein, was correlated with phase inversion in different environments. Results demonstrated that burst drug release in vivo was greater than in vitro for all implant formulations. Drug release from implants in varying in vivo environments was fastest in ablated tumor followed by implants in non-necrotic tumor, in subcutaneous tissue, and finally in necrotic tumor tissue with 50% of the loading drug mass released in 0.7, 0.9, 9.7, and 12.7h respectively. Implants in stiffer ablated and non-necrotic tumor tissue showed much faster drug release than implants in more compliant subcutaneous and necrotic tumor environments. Finally, implant formation examined using ultrasound confirmed that in vivo the process of precipitation (phase inversion) was directly proportional to drug release. These findings suggest that not only is drug release dependent on implant formation but that external environmental effects, such as tissue mechanical properties, may explain the differences seen between in vivo and in vitro drug release from in situ forming implants.
Collapse
|
47
|
Chenot J, Melodelima D, N'djin WA, Souchon R, Rivoire M, Chapelon JY. Intra-operative ultrasound hand-held strain imaging for the visualization of ablations produced in the liver with a toroidal HIFU transducer: first in vivo results. Phys Med Biol 2010; 55:3131-44. [PMID: 20479514 DOI: 10.1088/0031-9155/55/11/010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The use of hand-held ultrasound strain imaging for the intra-operative real-time visualization of HIFU (high-intensity focused ultrasound) ablations produced in the liver by a toroidal transducer was investigated. A linear 12 MHz ultrasound imaging probe was used to obtain radiofrequency signals. Using a fast cross-correlation algorithm, strain images were calculated and displayed at 60 frames s(-1), allowing the use of hand-held strain imaging intra-operatively. Fourteen HIFU lesions were produced in four pigs. Intra-operative strain imaging of HIFU ablations in the liver was feasible owing to the high frame rate. The correlation between dimensions measured on gross pathology and dimensions measured on B-mode images and on strain images were R = 0.72 and R = 0.94 respectively. The contrast between ablated and non-ablated tissue was significantly higher (p < 0.05) in the strain images (22 dB) than in the B-mode images (9 dB). Strain images allowed equivalent or improved definition of ablated regions when compared with B-mode images. Real-time intra-operative hand-held strain imaging seems to be a promising complement to conventional B-mode imaging for the guidance of HIFU ablations produced in the liver during an open procedure. These results support that hand-held strain imaging outperforms conventional B-mode ultrasound and could potentially be used for the assessment of thermal therapies.
Collapse
Affiliation(s)
- J Chenot
- Inserm, U556, Lyon, F-69003, France.
| | | | | | | | | | | |
Collapse
|
48
|
Jiang J, Brace C, Andreano A, DeWall RJ, Rubert N, Fisher TG, Varghese T, Lee F, Hall TJ. Ultrasound-based relative elastic modulus imaging for visualizing thermal ablation zones in a porcine model. Phys Med Biol 2010; 55:2281-306. [PMID: 20354279 DOI: 10.1088/0031-9155/55/8/011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The feasibility of using ultrasound-based elastic modulus imaging to visualize thermal ablation zones in an in vivo porcine model is reported. Elastic modulus images of soft tissues are estimated as an inverse optimization problem. Ultrasonically measured displacement data are utilized as inputs to determine an elastic modulus distribution that provides the best match to this displacement field. A total of 14 in vivo thermal ablation zones were investigated in this study. To determine the accuracy of delineation of each thermal ablation zone using elastic modulus imaging, the dimensions (lengths of long and short axes) and the area of each thermal ablation zone obtained from an elastic modulus image were compared to the corresponding gross pathology photograph of the same ablation zone. Comparison of elastic modulus imaging measurements and gross pathology measurements showed high correlation with respect to the area of thermal ablation zones (Pearson coefficient = 0.950 and p < 0.0001). The radiological-pathological correlation was slightly lower (correlation = 0.853, p < 0.0001) for strain imaging among these 14 in vivo ablation zones. We also found that, on average, elastic modulus imaging can more accurately depict thermal ablation zones, when compared to strain imaging (14.7% versus 22.3% absolute percent error in area measurements, respectively). Furthermore, elastic modulus imaging also provides higher (more than a factor of 2) contrast-to-noise ratios for evaluating these thermal ablation zones than those on corresponding strain images, thereby reducing inter-observer variability. Our preliminary results suggest that elastic modulus imaging might potentially enhance the ability to visualize thermal ablation zones, thereby improving assessment of ablative therapies.
Collapse
Affiliation(s)
- Jingfeng Jiang
- Department of Medical Physics, University of Wisconsin-Madison, WIMR-1005, 1111 Highland Ave., Madison, WI 53705, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Eyerly SA, Hsu SJ, Agashe SH, Trahey GE, Li Y, Wolf PD. An in vitro assessment of acoustic radiation force impulse imaging for visualizing cardiac radiofrequency ablation lesions. J Cardiovasc Electrophysiol 2009; 21:557-63. [PMID: 20021518 DOI: 10.1111/j.1540-8167.2009.01664.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Lesion placement and transmurality are critical factors in the success of cardiac transcatheter radiofrequency ablation (RFA) treatments for supraventricular arrhythmias. This study investigated the capabilities of catheter transducer based acoustic radiation force impulse (ARFI) ultrasound imaging for quantifying ablation lesion dimensions. METHODS AND RESULTS RFA lesions were created in vitro in porcine ventricular myocardium and imaged with an intracardiac ultrasound catheter transducer capable of acquiring spatially registered B-mode and ARFI images. The myocardium was sliced along the imaging plane and photographed. The maximum ARFI-induced displacement images of the lesion were normalized and spatially registered with the photograph by matching the surfaces of the tissue in the B-mode and photographic images. The lesion dimensions determined by a manual segmentation of the photographed lesion based on the visible discoloration of the tissue were compared to automatic segmentations of the ARFI image using 2 different calculated thresholds. ARFI imaging accurately localized and sized the lesions within the myocardium. Differences in the maximum lateral and axial dimensions were statistically below 2 mm and 1 mm, respectively, for the 2 thresholding methods, with mean percent overlap of 68.7 +/- 5.21% and 66.3 +/- 8.4% for the 2 thresholds used. CONCLUSION ARFI imaging is capable of visualizing myocardial RFA lesion dimensions to within 2 mm in vitro. Visualizing lesions during transcatheter cardiac ablation procedures could improve the success of the treatment by imaging lesion line discontinuity and potentially reducing the required number of ablation lesions and procedure time.
Collapse
Affiliation(s)
- Stephanie A Eyerly
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Jiang J, Varghese T, Brace CL, Madsen EL, Hall TJ, Bharat S, Hobson MA, Zagzebski JA, Lee FT. Young's modulus reconstruction for radio-frequency ablation electrode-induced displacement fields: a feasibility study. IEEE TRANSACTIONS ON MEDICAL IMAGING 2009; 28:1325-34. [PMID: 19258195 PMCID: PMC2843513 DOI: 10.1109/tmi.2009.2015355] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Radio-frequency (RF) ablation is a minimally invasive treatment for tumors in various abdominal organs. It is effective if good tumor localization and intraprocedural monitoring can be done. In this paper, we investigate the feasibility of using an ultrasound-based Young's modulus reconstruction algorithm to image an ablated region whose stiffness is elevated due to tissue coagulation. To obtain controllable tissue deformations for abdominal organs during and/or intermediately after the RF ablation, the proposed modulus imaging method is specifically designed for using tissue deformation fields induced by the RF electrode. We have developed a new scheme under which the reconstruction problem is simplified to a 2-D problem. Based on this scheme, an iterative Young's modulus reconstruction technique with edge-preserving regularization was developed to estimate the Young's modulus distribution. The method was tested in experiments using a tissue-mimicking phantom and on ex vivo bovine liver tissues. Our preliminary results suggest that high contrast modulus images can be successfully reconstructed. In both experiments, the geometries of the reconstructed modulus images of thermal ablation zones match well with the phantom design and the gross pathology image, respectively.
Collapse
Affiliation(s)
- Jingfeng Jiang
- Medical Physics Department, University of Wisconsin,Madison, WI 53705, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|