1
|
Huang Y, Ouyang W, Lai Z, Qiu G, Bu Z, Zhu X, Wang Q, Yu Y, Liu J. Nanotechnology-enabled sonodynamic therapy against malignant tumors. NANOSCALE ADVANCES 2024; 6:1974-1991. [PMID: 38633037 PMCID: PMC11019498 DOI: 10.1039/d3na00738c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/09/2024] [Indexed: 04/19/2024]
Abstract
Sonodynamic therapy (SDT) is an emerging approach for malignant tumor treatment, offering high precision, deep tissue penetration, and minimal side effects. The rapid advancements in nanotechnology, particularly in cancer treatment, have enhanced the efficacy and targeting specificity of SDT. Combining sonodynamic therapy with nanotechnology offers a promising direction for future cancer treatments. In this review, we first systematically discussed the anti-tumor mechanism of SDT and then summarized the common nanotechnology-related sonosensitizers and their recent applications. Subsequently, nanotechnology-related therapies derived using the SDT mechanism were elaborated. Finally, the role of nanomaterials in SDT combined therapy was also introduced.
Collapse
Affiliation(s)
- Yunxi Huang
- Department of Medical Ultrasound, Guangxi Medical University Cancer Hospital 77 He Di Road 530021 Nanning China
| | - Wenhao Ouyang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medical Oncology, Yat-sen Supercomputer Intelligent Medical Joint Research Institute, Phase I Clinical Trial Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University 510120 Guangzhou China
| | - Zijia Lai
- First Clinical Medical College, Guangdong Medical University 524000 Zhanjiang China
| | - Guanhua Qiu
- Department of Medical Ultrasound, Guangxi Medical University Cancer Hospital 77 He Di Road 530021 Nanning China
| | - Zhaoting Bu
- Department of Medical Ultrasound, Guangxi Medical University Cancer Hospital 77 He Di Road 530021 Nanning China
| | - Xiaoqi Zhu
- Department of Medical Ultrasound, Guangxi Medical University Cancer Hospital 77 He Di Road 530021 Nanning China
| | - Qin Wang
- Department of Medical Ultrasound, Guangxi Medical University Cancer Hospital 77 He Di Road 530021 Nanning China
| | - Yunfang Yu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medical Oncology, Yat-sen Supercomputer Intelligent Medical Joint Research Institute, Phase I Clinical Trial Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University 510120 Guangzhou China
- Faculty of Medicine, Macau University of Science and Technology Taipa Macao PR China
| | - Junjie Liu
- Department of Medical Ultrasound, Guangxi Medical University Cancer Hospital 77 He Di Road 530021 Nanning China
| |
Collapse
|
2
|
Wang X, Wang L, Fekrazad R, Zhang L, Jiang X, He G, Wen X. Polyphenolic natural products as photosensitizers for antimicrobial photodynamic therapy: recent advances and future prospects. Front Immunol 2023; 14:1275859. [PMID: 38022517 PMCID: PMC10644286 DOI: 10.3389/fimmu.2023.1275859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Antimicrobial photodynamic therapy (aPDT) has become a potent contender in the fight against microbial infections, especially in the context of the rising antibiotic resistance crisis. Recently, there has been significant interest in polyphenolic natural products as potential photosensitizers (PSs) in aPDT, given their unique chemical structures and inherent antimicrobial properties. Polyphenolic natural products, abundant and readily obtainable from natural sources, are generally regarded as safe and highly compatible with the human body. This comprehensive review focuses on the latest developments and future implications of using natural polyphenols as PSs in aPDT. Paramount polyphenolic compounds, including curcumin, hypericin, quercetin, hypocrellin, celastrol, riboflavin, resveratrol, gallic acid, and aloe emodin, are elaborated upon with respect to their structural characteristics, absorption properties, and antimicrobial effects. Furthermore, the aPDT mechanism, specifically its targeted action on microbial cells and biofilms, is also discussed. Polyphenolic natural products demonstrate immense potential as PSs in aPDT, representing a promising alternate approach to counteract antibiotic-resistant bacteria and biofilm-related infections.
Collapse
Affiliation(s)
- Xiaoyun Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lian Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Reza Fekrazad
- Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran
- International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Lu Zhang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Xian Jiang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Gu He
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiang Wen
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Sowa-Kasprzak K, Józkowiak M, Olender D, Pawełczyk A, Piotrowska-Kempisty H, Zaprutko L. Curcumin-Triterpene Type Hybrid as Effective Sonosensitizers for Sonodynamic Therapy in Oral Squamous Cell Carcinoma. Pharmaceutics 2023; 15:2008. [PMID: 37514194 PMCID: PMC10385809 DOI: 10.3390/pharmaceutics15072008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/15/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Sonodynamic therapy (SDT) is a non-invasive therapeutic modality in cancer treatment that combines low-intensity ultrasound (US) and sonosensitizers. Tumor cells are destroyed through the synergistic effects of ultrasound and a chemical sonosensitizer. This study focused on the synthesis and in vitro evaluation of the sonodynamic effect of natural curcumin, triterpene oleanolic acid, and their semi-synthetic derivatives on tongue cancer SCC-25 and hypopharyngeal FaDu cell lines. The combination of the tested compounds with sonication showed a synergistic increase in cytotoxicity. In the group of oleanolic acid derivatives, oleanoyl hydrogen succinate (6) showed the strongest cytotoxic effect both in the SCC-25 and FaDu cell lines. Comparing curcumin (4) and its pyrazole derivative (5), curcumin showed a better cytotoxic effect on SCC-25 cells, while curcumin pyrazole was more potent on FaDu cells. The highest sonotherapeutic activity, compared to its individual components, was demonstrated by a structural linker mode hybrid containing both curcumin pyrazole-oleanoyl hydrogen succinate units within one complex molecule (7). This study can be beneficial in the context of new perspectives in the search for effective sonosensitizers among derivatives of natural organic compounds.
Collapse
Affiliation(s)
- Katarzyna Sowa-Kasprzak
- Chair and Department of Organic Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6 Str., 60-780 Poznań, Poland
| | - Małgorzata Józkowiak
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30 Str., 61-131 Poznań, Poland
| | - Dorota Olender
- Chair and Department of Organic Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6 Str., 60-780 Poznań, Poland
| | - Anna Pawełczyk
- Chair and Department of Organic Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6 Str., 60-780 Poznań, Poland
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30 Str., 61-131 Poznań, Poland
| | - Lucjusz Zaprutko
- Chair and Department of Organic Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6 Str., 60-780 Poznań, Poland
| |
Collapse
|
4
|
Yang F, Dong J, Li Z, Wang Z. Metal-Organic Frameworks (MOF)-Assisted Sonodynamic Therapy in Anticancer Applications. ACS NANO 2023; 17:4102-4133. [PMID: 36802411 DOI: 10.1021/acsnano.2c10251] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Sonodynamic therapy (SDT) has emerged as a promising therapeutic modality for anticancer treatments and is becoming a cutting-edge interdisciplinary research field. This review starts with the latest developments of SDT and provides a brief comprehensive discussion on ultrasonic cavitation, sonodynamic effect, and sonosensitizers in order to popularize the basic principles and probable mechanisms of SDT. Then the recent progress of MOF-based sonosensitizers is overviewed, and the preparation methods and properties (e.g., morphology, structure, and size) of products are presented in a fundamental perspective. More importantly, many deep observations and understanding toward MOF-assisted SDT strategies were described in anticancer applications, aiming to highlight the advantages and improvements of MOF-augmented SDT and synergistic therapies. Last but not least, the review also pointed out the probable challenges and technological potential of MOF-assisted SDT for the future advance. In all, the discussions and summaries of MOF-based sonosensitizers and SDT strategies will promote the fast development of anticancer nanodrugs and biotechnologies.
Collapse
Affiliation(s)
- Fangfang Yang
- College of Chemistry and Chemical Engineering, Instrumental Analysis Center, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University, 266071 Qingdao, China
| | - Jun Dong
- College of Chemistry and Chemical Engineering, Instrumental Analysis Center, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University, 266071 Qingdao, China
| | - Zhanfeng Li
- College of Chemistry and Chemical Engineering, Instrumental Analysis Center, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University, 266071 Qingdao, China
| | - Zonghua Wang
- College of Chemistry and Chemical Engineering, Instrumental Analysis Center, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University, 266071 Qingdao, China
| |
Collapse
|
5
|
Maleki A, Seyedhamzeh M, Yuan M, Agarwal T, Sharifi I, Mohammadi A, Kelicen-Uğur P, Hamidi M, Malaki M, Al Kheraif AA, Cheng Z, Lin J. Titanium-Based Nanoarchitectures for Sonodynamic Therapy-Involved Multimodal Treatments. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206253. [PMID: 36642806 DOI: 10.1002/smll.202206253] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Sonodynamic therapy (SDT) has considerably revolutionized the healthcare sector as a viable noninvasive therapeutic procedure. It employs a combination of low-intensity ultrasound and chemical entities, known as a sonosensitizer, to produce cytotoxic reactive oxygen species (ROS) for cancer and antimicrobial therapies. With nanotechnology, several unique nanoplatforms are introduced as a sonosensitizers, including, titanium-based nanomaterials, thanks to their high biocompatibility, catalytic efficiency, and customizable physicochemical features. Additionally, developing titanium-based sonosensitizers facilitates the integration of SDT with other treatment modalities (for example, chemotherapy, chemodynamic therapy, photodynamic therapy, photothermal therapy, and immunotherapy), hence increasing overall therapeutic results. This review summarizes the most recent developments in cancer therapy and tissue engineering using titanium nanoplatforms mediated SDT. The synthesis strategies and biosafety aspects of Titanium-based nanoplatforms for SDT are also discussed. Finally, various challenges and prospects for its further development and potential clinical translation are highlighted.
Collapse
Affiliation(s)
- Aziz Maleki
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), and Department of Pharmaceutical Nanotechnology School of pharmacy, Zanjan University of Medical Sciences, Zanjan, 4513956184, Iran
| | - Mohammad Seyedhamzeh
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), and Department of Pharmaceutical Nanotechnology School of pharmacy, Zanjan University of Medical Sciences, Zanjan, 4513956184, Iran
| | - Meng Yuan
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Tarun Agarwal
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, 721302, India
| | - Ibrahim Sharifi
- Department of Materials Engineering, Faculty of Engineering, Shahrekord University, Shahrekord, 64165478, Iran
| | - Abbas Mohammadi
- Department of Chemistry, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Pelin Kelicen-Uğur
- Faculty of Pharmacy, Department of Pharmacology, Hacettepe University, Sıhhiye, Ankara, 06430, Turkey
| | - Mehrdad Hamidi
- Department of Pharmaceutical Nanotechnology, School of pharmacy, Zanjan University of Medical Sciences, Zanjan, 4513956184, Iran
- Trita Nanomedicine Research & Technology Development Center (TNRTC), Zanjan Health Technology Park, Zanjan, 45156-13191, Iran
| | - Massoud Malaki
- Department of Mechanical Engineering, Faculty of Engineering, Isfahan University of Technology, Isfahan, Iran
| | - Abdulaziz A Al Kheraif
- Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh, 12372, Saudi Arabia
| | - Ziyong Cheng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| |
Collapse
|
6
|
Xing X, Zhao S, Xu T, Huang L, Zhang Y, Lan M, Lin C, Zheng X, Wang P. Advances and perspectives in organic sonosensitizers for sonodynamic therapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214087] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Zhao P, Deng Y, Xiang G, Liu Y. Nanoparticle-Assisted Sonosensitizers and Their Biomedical Applications. Int J Nanomedicine 2021; 16:4615-4630. [PMID: 34262272 PMCID: PMC8275046 DOI: 10.2147/ijn.s307885] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/19/2021] [Indexed: 12/12/2022] Open
Abstract
As a non-invasive strategy, sonodynamic therapy (SDT) which utilizes sonosensitizers to generate reactive oxygen species (ROS) has received significant interest over recent years due to its ability to break depth barrier. However, intrinsic limitations of traditional sonosensitizers hinder the widespread application of SDT. With the development of nanotechnology, various nanoparticles (NPs) have been designed and used to assist sonosensitizers for SDT. This review first summarizes the possible mechanisms of SDT, then classifies the NPs-assisted sonosensitizers and discusses their biomedical applications in ultrasonography, drug delivery, high intensity focused ultrasound and SDT-based combination treatment. Finally, some challenges and future perspectives of NPs-assisted SDT has also been discussed.
Collapse
Affiliation(s)
- Pengxuan Zhao
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Youbin Deng
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Guangya Xiang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Yani Liu
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| |
Collapse
|
8
|
Fan L, Idris Muhammad A, Bilyaminu Ismail B, Liu D. Sonodynamic antimicrobial chemotherapy: An emerging alternative strategy for microbial inactivation. ULTRASONICS SONOCHEMISTRY 2021; 75:105591. [PMID: 34082219 PMCID: PMC8182071 DOI: 10.1016/j.ultsonch.2021.105591] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 04/30/2021] [Accepted: 05/17/2021] [Indexed: 05/05/2023]
Abstract
Sonodynamic antimicrobial chemotherapy (SACT), which relies on a combination of low-intensity ultrasound and chemotherapeutic agents termed sonosensitizers, has been explored as a promising alternative for microbial inactivation. Such treatment has superior penetration ability, high target specificity, and can overcome resistance conferred by the local microenvironment. Taken of these advantages, SACT has been endowed with an extensive application prospect in the past decade and attracted more and more attention. This review focusses on the current understanding of the mechanism of SACT, the interaction of sonodynamic action on different microbes, the factors affecting the efficacy of SACT, discusses the findings of recent works on SACT, and explores further prospects for SACT. Thus, a better understanding of sonodynamic killing facilitates the scientific community and industry personnel to establish a novel strategy to combat microbial burden.
Collapse
Affiliation(s)
- Lihua Fan
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, China; Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, Zhejiang, China
| | - Aliyu Idris Muhammad
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, Zhejiang, China
| | - Balarabe Bilyaminu Ismail
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, Zhejiang, China
| | - Donghong Liu
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
9
|
He Y, Hua Liu S, Yin J, Yoon J. Sonodynamic and chemodynamic therapy based on organic/organometallic sensitizers. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213610] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
10
|
Liu Y, Bai H, Guo K, Wang P. Hypocrellin B triggered sonodynamic therapy reverses multidrug resistance of doxorubicin-resistant SGC7901/ADR cells via down-regulation of P-gp expression. J Chemother 2020; 32:385-393. [DOI: 10.1080/1120009x.2020.1778242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yichen Liu
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China
| | - Hong Bai
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China
- Medical College, Xi’an Peihua University, Xi’an, Shaanxi, China
| | - Kaili Guo
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China
| | - Pan Wang
- National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, The Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, The Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China
| |
Collapse
|
11
|
Affiliation(s)
- Xiahui Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Institution College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Institution College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN) National Institute of Biomedical Imaging and Bioengineering (NIBIB) National Institutes of Health (NIH) Bethesda Maryland 20892 USA
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Institution College of Chemistry Fuzhou University Fuzhou 350108 China
| |
Collapse
|
12
|
Lin X, Song J, Chen X, Yang H. Ultrasound-Activated Sensitizers and Applications. Angew Chem Int Ed Engl 2020; 59:14212-14233. [PMID: 31267634 DOI: 10.1002/anie.201906823] [Citation(s) in RCA: 218] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 06/28/2019] [Indexed: 12/11/2022]
Abstract
Modalities for photo-triggered anticancer therapy are usually limited by their low penetrative depth. Sonotheranostics especially sonodynamic therapy (SDT), which is different from photodynamic therapy (PDT) by the use of highly penetrating acoustic waves to activate a class of sound-responsive materials called sonosensitizers, has gained significant interest in recent years. The effect of SDT is closely related to the structural and physicochemical properties of the sonosensitizers, which has led to the development of new sound-activated materials as sonosensitizers for various biomedical applications. This Review provides a summary and discussion of the types of novel sonosensitizers developed in the last few years and outlines their specific designs and the potential challenges. The applications of sonosensitizers with various functions such as for imaging and drug delivery as well as in combination with other treatment modalities would provide new strategies for disease therapy.
Collapse
Affiliation(s)
- Xiahui Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Institution, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Institution, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland, 20892, USA
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology Institution, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
13
|
Liu Z, Wang D, Li J, Jiang Y. Self-assembled peptido-nanomicelles as an engineered formulation for synergy-enhanced combinational SDT, PDT and chemotherapy to nasopharyngeal carcinoma. Chem Commun (Camb) 2019; 55:10226-10229. [PMID: 31380870 DOI: 10.1039/c9cc05463d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A formulation of self-assembled peptido-nanomicelles has been developed for a combinational treatment of SDT, PDT and chemotherapy to nasopharyngeal carcinoma. In vitro cellular tests and in vivo mice therapy proved effective for targeted tumor growth inhibition. These merits provided a novel approach to non-invasive cancer treatments.
Collapse
Affiliation(s)
- Zhe Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072, Tianjin, China.
| | | | | | | |
Collapse
|
14
|
Liu Y, Bai H, Wang H, Wang X, Liu Q, Zhang K, Wang P. Comparison of hypocrellin B-mediated sonodynamic responsiveness between sensitive and multidrug-resistant human gastric cancer cell lines. J Med Ultrason (2001) 2018; 46:15-26. [DOI: 10.1007/s10396-018-0899-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 08/02/2018] [Indexed: 01/10/2023]
|
15
|
Jia Y, Wang X, Liu Q, Leung AW, Wang P, Xu C. Sonodynamic action of hypocrellin B triggers cell apoptoisis of breast cancer cells involving caspase pathway. ULTRASONICS 2017; 73:154-161. [PMID: 27657480 DOI: 10.1016/j.ultras.2016.09.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 08/23/2016] [Accepted: 09/11/2016] [Indexed: 05/27/2023]
Abstract
OBJECTIVES The aim of the present study is to investigate the effects of sonodynamic action of hypocrellin B on human breast cancer cells and further explore its underlying mechanisms. METHODS The cell viability of breast cancer MDA-MB-231 cells was examined by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay. Alterations on cell apoptosis, intracellular reactive oxygen species generation (ROS), mitochondrial membrane potential, and DNA fragmentation was analyzed by flow cytometer. The subcellular localization of hypocrellin B was assessed by a confocal laser scanning microscope. Mitochondria damage and nuclear morphological changes were observed under a fluorescence microscope. To further explore whether caspase pathway was involved in cell apoptotic induction of sonodynamic action of hypocrellin B, the pan-caspase inhibitor Z-Val-Ala-DL-Asp (ome)-Fluoromethylketone (z-VAD-fmk) was added to the cells one hour prior to loading the sonosensitizer, and then cell viability and apoptosis were analyzed after hypocrellin B treatment. RESULTS Sonodynamic treatment of hypocrellin B HB significantly suppressed cell viability of MDA-MB-231 cells. Sonodynamic action of hypocrellin B caused excessive ROS accumulation, mitochondrial dysfunction, cell apoptosis, DNA fragmentation and nuclear morphological damage. Moreover, the cytotoxicity and cell apoptosis induced by sonodynamic action of hypocrellin B were remarkably rescued by the caspase spectrum inhibitor z-VAD-fmk. CONCLUSIONS These results demonstrated that hypocrellin B had significant sonodynamic killing and apoptotic induction effect on breast cancer cells. And cell apoptosis induced by sonodynamic action of hypocrellin B was partly dependent on caspase pathway.
Collapse
Affiliation(s)
- Yali Jia
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China; School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Xiaobing Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Quanhong Liu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Albert Wingnang Leung
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Pan Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China; School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Chuanshan Xu
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|
16
|
Pang X, Xu C, Jiang Y, Xiao Q, Leung AW. Natural products in the discovery of novel sonosensitizers. Pharmacol Ther 2016; 162:144-51. [DOI: 10.1016/j.pharmthera.2015.12.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
17
|
Wang X, Ip M, Leung AW, Wang P, Zhang H, Hua H, Xu C. Sonodynamic action of hypocrellin B on methicillin-resistant Staphylococcus aureus. ULTRASONICS 2016; 65:137-44. [PMID: 26482395 DOI: 10.1016/j.ultras.2015.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 08/27/2015] [Accepted: 10/05/2015] [Indexed: 05/19/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) commonly causes refractory infections and has recently become a serious public health concern. The present study was designed to investigate sonodynamic action of hypocrellin B on MRSA. A MRSA strain (ATCC BAA-43) was used in the present study. The dark toxicity of hypocrellin B on MRSA and its uptake in MRSA first were measured. And then bacteria were incubated with hypocrellin B and exposed to ultrasound. After sonodynamic treatment, colony forming unit assay and bacterial viability assay were conducted. Membrane permeability assay, DNA fragmentation assay, and DNA synthesis assay were also performed to examine the underlying mechanism. The results showed that hypocrellin B at concentrations of up to 500 μM had no toxicity to MRSA in the dark. After incubation for 50 min, hypocrellin B could be maximally absorbed by MRSA, and exhibited significant sonodynamic activity in a dose-dependent manner. The 5-log reduction in colony forming unit (CFU) was observed after hypocrellin B (40 μM) treatment at an intensity of 1.38 W/cm(2) ultrasound for 5 min. Compared to the control, hypocrellin B alone and ultrasound sonication alone group, more dead cells were found and bacterial membrane integrity was notably damaged after sonodynamic treatment of hypocrellin B. However, no remarkable DNA damage was found in MRSA after sonodynamic treatment of hypocrellin B. All the findings demonstrated that hypocrellin B could serve as a potential antibacterial sonosensitizer to significantly cause damage to the membrane integrity of MRSA and inhibit its growth under ultrasound sonication.
Collapse
Affiliation(s)
- Xinna Wang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Margaret Ip
- Department of Microbiology, Faculty of Medicine, The Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Albert Wingnang Leung
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong.
| | - Pan Wang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Hongwei Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Heyu Hua
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chuanshan Xu
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
18
|
Xu C, Dong J, Ip M, Wang X, Leung AW. Sonodynamic action of chlorin e6 on Staphylococcus aureus and Escherichia coli. ULTRASONICS 2016; 64:54-7. [PMID: 26235353 DOI: 10.1016/j.ultras.2015.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 06/26/2015] [Accepted: 07/21/2015] [Indexed: 05/19/2023]
Abstract
Bacteria remain a great threat to human health. In the present study, we examined whether sonodynamic action of chlorin e6 had antibacterial activity on gram-positive bacterial strain Staphylococcus aureus (S. aureus) and gram-negative bacterial strain Escherichia coli (E. coli). Colony forming unit (CFU) assay showed that sonodynamic treatment of chlorin e6 induced a 2-log reduction in CFU of E. coli cells, 7-log reduction in CFU of S. aureus. Fluorescent microscopy observed that dead cells remarkably increased whereas live cells decreased after sonodynamic treatment of chlorin e6 on S. aureus cells. We first demonstrated that sonodynamic action of chlorin e6 has antibacterial effect on both gram-positive and negative bacteria, more powerful on gram-positive bacteria.
Collapse
Affiliation(s)
- Chuanshan Xu
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong.
| | - Jinghui Dong
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Margaret Ip
- Department of Microbiology, Faculty of Medicine, The Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Xinna Wang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Albert Wingnang Leung
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
19
|
Wang X, Leung AW, Hua H, Xu C, Ip M. Sonodynamic action of hypocrellin B on biofilm-producing Staphylococcus epidermidis in planktonic condition. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2015; 138:2548-2553. [PMID: 26520337 DOI: 10.1121/1.4932014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Staphylococcus epidermidis is an opportunistic pathogen causing biofilm-associated infections. To investigate sonodynamic action of hypocrellin B on biofilm-producing Staphylococcus epidermidis in planktonic culture, a biofilm-producing strain Staphylococcus epidermidis (ATCC 35984) was incubated with hypocrellin B and then exposed to ultrasound at intensity (ISATA) of 1.56 W/cm(2) with a frequency of 1 MHz in continuous mode for 5 min. After sonodynamic treatment of hypocrellin B, the bacterial growth was measured using the colony counting method. Bacterial membrane integrity was investigated using a flow cytometry with propidium iodide staining. Intracellular reactive oxygen species (ROS) level was measured using a flow cytometry with DCFH-DA staining. The results showed that sonodynamic action of hypocrellin B significantly induced survival reduction of Staphylococcus epidermidis in a hypocrellin B dose-dependent manner, and a 4-log reduction was observed after the combined treatment of hypcorellin B (40 μM) and ultrasound sonication with the intensity of 1.56 W/cm(2) for 5 min. Bacterial membrane integrity was notably damaged and the level of intracellular ROS level was remarkably increased after sonodynamic treatment. The findings demonstrated that sonodynamic action of hypocrellin B had significant antibacterial activity on biofilm-producing Staphylococcus epidermidis in planktonic condition probably through increasing intracellular ROS level to cause damage to bacterial membrane integrity.
Collapse
Affiliation(s)
- Xinna Wang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Albert Wingnang Leung
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Heyu Hua
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Chuanshan Xu
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Margaret Ip
- Department of Microbiology, Faculty of Medicine, The Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
20
|
Liu M, Liu Y, Cheng Z, Liu J, Chai T. Effects of chromic chloride on chick embryo fibroblast viability. Toxicol Rep 2015; 2:555-562. [PMID: 28962390 PMCID: PMC5598472 DOI: 10.1016/j.toxrep.2015.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/08/2015] [Accepted: 03/11/2015] [Indexed: 11/16/2022] Open
Abstract
The objective of this study is to evaluate the effects of chromic chloride (CrCl3) on chick embryo fibroblast (CEF) viability. The cells were incubated with CrCl3 (0.02, 0.1, 0.5, 2.5, 12.5, and 62.5 μM), and the viability was determined using MTT assay, morphological detection and flow cytometry. The results show that lower concentrations of CrCl3 (0.02, 0.1, and 0.5 μM) did not damage CEF viability. At 0.1 μM, CrCl3 can increase CEF viability (P < 0.05). However, at higher concentrations of CrCl3 (2.5, 12.5, and 62.5 μM), the number of apoptotic and necrotic cells (P < 0.01) and intracellular reactive oxygen species (P < 0.01) increased. In addition, decreased mitochondrial membrane potential (P < 0.01) and enhanced intracellular calcium levels (P < 0.01) were observed after the exposure. Moreover, apoptotic morphological changes induced by these processes in CEF were confirmed using Hoechst 33258 staining. Cell death induced by higher concentrations of CrCl3 was caused by an apoptotic and a necrotic mechanism, whereas the main mechanism of oxidative stress and induced mitochondrial dysfunction was apoptotic death. The induced apoptotic death in CEF is concentration- and time-dependent.
Collapse
Affiliation(s)
- Mingchao Liu
- College of Veterinary Medicine, Research Center for Animal Disease Control Engineering Shandong Province, Shandong Agricultural University, Tai'an 271018, China
| | - Yanhan Liu
- College of Veterinary Medicine, Research Center for Animal Disease Control Engineering Shandong Province, Shandong Agricultural University, Tai'an 271018, China
| | - Ziqiang Cheng
- College of Veterinary Medicine, Research Center for Animal Disease Control Engineering Shandong Province, Shandong Agricultural University, Tai'an 271018, China
| | - Jianzhu Liu
- College of Veterinary Medicine, Research Center for Animal Disease Control Engineering Shandong Province, Shandong Agricultural University, Tai'an 271018, China
| | - Tongjie Chai
- College of Veterinary Medicine, Research Center for Animal Disease Control Engineering Shandong Province, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
21
|
Liu X, Li W, Geng S, Meng QG, Bi ZG. Apoptosis induced by sonodynamic therapy in human osteosarcoma cells in vitro. Mol Med Rep 2015; 12:1183-8. [PMID: 25778820 DOI: 10.3892/mmr.2015.3479] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 02/17/2015] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to investigate the potential effect of hematoporphyrin monomethyl ether-sonodynamic therapy (HMME-SDT) on MG-63 osteosarcoma cells. The HMME concentration was kept constant at 20 µg/ml and the MG-63 osteosarcoma cell line was exposed to ultrasound with an intensity of 1.0 W/cm2 for 30 sec. Cell cytotoxicity was quantified using an MTT assay 6 h after HMME-SDT. The intracellular localization of HMME was imaged using inverted confocal laser scanning microscopy. Apoptosis was investigated using flow cytometry with Annexin V-fluorescein isothiocyanate and propidium iodine staining. The cytotoxicity of HMME-mediated sonodynamic action on MG-63 cells was significantly higher than that of other treatments, including ultrasound alone, HMME alone and sham treatment. Flow cytometry demonstrated that HMME‑SDT action markedly enhanced the apoptotic rate of MG-63 cells. The mechanisms of apoptosis were analyzed by measuring the protein expression of poly ADP-ribose polymerase (PARP), cleaved PARP, procaspase-3, cleaved caspase-3 and cleaved caspase-9. The data demonstrated that HMME-SDT action markedly induced the apoptosis of MG-63 cells.
Collapse
Affiliation(s)
- Xing Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Wei Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Shuo Geng
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Qing-Gang Meng
- Department of Orthopedic Surgery, The First Hospital of Harbin City, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Zheng-Gang Bi
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
22
|
Wang X, Luo J, Leung AW, Li Y, Zhang H, Xu C. Hypocrellin B in hepatocellular carcinoma cells: Subcellular localization and sonodynamic damage. Int J Radiat Biol 2015; 91:399-406. [PMID: 25565557 DOI: 10.3109/09553002.2015.1001532] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To study subcellular localization of hypocrellin B in hepatocellular carcinoma cells, and hypocrellin B-mediated sonodynamic action-induced cell damage. MATERIALS AND METHODS After incubation with 2.5 μM of hypocrellin B, human hepatocellular carcinoma HepG2 cells were exposed to ultrasound waves for 8 sec at an intensity of 0.46 W/cm(2). Clonogenic survival of HepG2 cells was measured using a colony forming assay and light microscope. Ultrastructural morphology was observed using transmission electron microscope (TEM) and mitochondrial membrane potential (MMP) was assessed using confocal laser scanning microcope (CLSM) after rhodamine 123 staining. Additionally, subcellular localization of hypocrellin B in HepG2 cells with organelle probe staining was also observed using CLSM. RESULTS The colony forming units of HepG2 cells decreased substantially after sonodynamic treatment. The results of TEM showed microvilli disappearance, apoptotic body formation, swollen mitochondria with loss of cristae and mitochondrial myelin-like features (or membrane whorls). Collapse of MMP was found in the treated cells. Hypocrellin B was distributed in mitochondria and lysosomes as well as in endoplasmic reticulum and Golgi apparatus. CONCLUSIONS The findings demonstrated that sonodynamic action of hypocrellin B induced mitochondrial damage, survival inhibition, and apoptosis of HepG2 cells. Additionally, other subcellular organelles such as endoplasmic reticulum, Golgi apparatus and lysosomes were also the targets of hypocrellin B-mediated sonodynamic action as well as mitochondria.
Collapse
Affiliation(s)
- Xinna Wang
- Department of Ultrasound Medicine, The Affiliated Hospital, Xi'an Medical University , Xi'an , China
| | | | | | | | | | | |
Collapse
|
23
|
Li YJ, Huang P, Jiang CL, Jia DX, Du XX, Zhou JH, Han Y, Sui H, Wei XL, Liu L, Yuan HH, Zhang TT, Zhang WJ, Xie R, Lang XH, Wang LY, Liu T, Bai YX, Tian Y. Sonodynamically induced anti-tumor effect of 5-aminolevulinic acid on pancreatic cancer cells. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:2671-2679. [PMID: 25220273 DOI: 10.1016/j.ultrasmedbio.2014.07.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 06/24/2014] [Accepted: 07/07/2014] [Indexed: 06/03/2023]
Abstract
Sonodynamic therapy (SDT), a promising modality for cancer treatment, involves the synergistic interaction of ultrasound and some chemical compounds termed sonosensitizers. However, its effect on pancreatic cancer cells remains unclear. In our study, we sought to identify the cytotoxic effects of ultrasound-activated 5-aminolevulinic acid on human pancreatic cancer Capan-1 cells. Cell viability was determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide) analysis; mitochondrial membrane potential was assessed using the fluorescent probe jc-1; apoptosis was evaluated by flow cytometry; cell morphology was investigated by scanning electron microscopy; apoptosis-related protein expression was analyzed by Western blot assay. We found that SDT significantly decreased the survival rate of cells, and this effect increased with 5-aminolevulinic acid concentration and ultrasound exposure time. The mechanism underlying the effect of SDT involves, in part, the induction of a conspicuous loss in mitochondrial membrane potential and, in part, the induction of apoptosis through upregulation of Bax expression, downregulation of Bcl-2 and increased activation of procaspase-3. These results indicate that the ultrasonically induced cell killing effect could be enhanced by 5-ALA and that the mitochondrial pathway might be involved in the cell damage process. We conclude that SDT is a promising new methodology for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Yan Jing Li
- Department of Gastrointestinal Oncology, Third Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Peng Huang
- Department of Gastrointestinal Oncology, Third Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Cai Ling Jiang
- Department of Gastrointestinal Oncology, Third Affiliated Hospital, Harbin Medical University, Harbin, China
| | - De Xin Jia
- Department of Gastrointestinal Oncology, Third Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xiao Xue Du
- Department of Gastrointestinal Oncology, Third Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Jian Hua Zhou
- Department of Gastrointestinal Oncology, Third Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yu Han
- Department of Gastrointestinal Oncology, Third Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Hong Sui
- Department of Gastrointestinal Oncology, Third Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xiao Li Wei
- Department of Gastrointestinal Oncology, Third Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Lei Liu
- Department of Gastrointestinal Oncology, Third Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Heng Heng Yuan
- Department of Gastrointestinal Oncology, Third Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Ting Ting Zhang
- Department of Gastrointestinal Oncology, Third Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Wen Jie Zhang
- Department of Gastrointestinal Oncology, Third Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Rui Xie
- Department of Gastrointestinal Oncology, Third Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Xiao Hui Lang
- Department of Gastrointestinal Oncology, Third Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Li Ying Wang
- Department of Gastrointestinal Oncology, Third Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Tao Liu
- Department of Gastrointestinal Oncology, Third Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Yu Xian Bai
- Department of Gastrointestinal Oncology, Third Affiliated Hospital, Harbin Medical University, Harbin, China.
| | - Ye Tian
- Division of Cardiology, the First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, China.
| |
Collapse
|
24
|
Xiang J, Leung AW, Xu C. Effect of ultrasound sonication on clonogenic survival and mitochondria of ovarian cancer cells in the presence of methylene blue. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2014; 33:1755-1761. [PMID: 25253821 DOI: 10.7863/ultra.33.10.1755] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
OBJECTIVES This study aimed to investigate the effect of ultrasound sonication in the presence of methylene blue on clonogenic survival and mitochondria of ovarian cancer cells. METHODS Human ovarian cancer HO-8910 cells, which were incubated with different concentrations of methylene blue for 1 hour, were exposed to an ultrasonic wave for 5 seconds with intensity of 0.46 W/cm(2). Clonogenic survival of HO-8910 cells after ultrasound sonication was measured by a colony-forming unit assay. Mitochondrial structural changes were observed on transmission electron microscopy, and the mitochondrial membrane potential was evaluated by confocal laser-scanning microscopy with rhodamine 123 staining. RESULTS The colony-forming units of HO-8910 cells decreased considerably after ultrasound sonication in the presence of methylene blue. Transmission electron microscopy showed slightly enlarged mitochondria in the ultrasound-treated cells in the absence of methylene blue; however, seriously damaged mitochondria, even with almost complete disappearance of cristae, were found in the cells treated by ultrasound sonication in the presence of methylene blue. The mitochondrial membrane potential collapsed significantly when HO-8910 cells were treated by ultrasound sonication in the presence of methylene blue (P < .05). CONCLUSIONS Ultrasound sonication in the presence of methylene blue markedly damaged mitochondrial structure and function and decreased clonogenic survival of HO-8910 cells.
Collapse
Affiliation(s)
- Junyan Xiang
- Department of Ultrasound Medicine, Ninth People's Hospital of Chongqing, Chongqing, China (J.X.); Department of Photodynamic and Sonodynamic Therapy, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China (J.X.); School of Chinese Medicine, Faculty of Medicine, Chinese University of Hong Kong, Shatin, Hong Kong (A.W.L., C.X.); and Shenzhen Research Institute, Chinese University of Hong Kong, Shenzhen, China (C.X.)
| | - Albert Wingnang Leung
- Department of Ultrasound Medicine, Ninth People's Hospital of Chongqing, Chongqing, China (J.X.); Department of Photodynamic and Sonodynamic Therapy, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China (J.X.); School of Chinese Medicine, Faculty of Medicine, Chinese University of Hong Kong, Shatin, Hong Kong (A.W.L., C.X.); and Shenzhen Research Institute, Chinese University of Hong Kong, Shenzhen, China (C.X.)
| | - Chuanshan Xu
- Department of Ultrasound Medicine, Ninth People's Hospital of Chongqing, Chongqing, China (J.X.); Department of Photodynamic and Sonodynamic Therapy, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China (J.X.); School of Chinese Medicine, Faculty of Medicine, Chinese University of Hong Kong, Shatin, Hong Kong (A.W.L., C.X.); and Shenzhen Research Institute, Chinese University of Hong Kong, Shenzhen, China (C.X.).
| |
Collapse
|
25
|
Jiang Y, Leung AW, Wang X, Zhang H, Xu C. Effect of photodynamic therapy with hypocrellin B on apoptosis, adhesion, and migration of cancer cells. Int J Radiat Biol 2014; 90:575-9. [DOI: 10.3109/09553002.2014.906765] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
26
|
Chen H, Zhou X, Gao Y, Zheng B, Tang F, Huang J. Recent progress in development of new sonosensitizers for sonodynamic cancer therapy. Drug Discov Today 2014; 19:502-9. [DOI: 10.1016/j.drudis.2014.01.010] [Citation(s) in RCA: 219] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/13/2014] [Accepted: 01/22/2014] [Indexed: 12/20/2022]
|
27
|
Chen B, Zheng R, Liu D, Li B, Lin J, Zhang W. The tumor affinity of chlorin e6 and its sonodynamic effects on non-small cell lung cancer. ULTRASONICS SONOCHEMISTRY 2013; 20:667-673. [PMID: 23073382 DOI: 10.1016/j.ultsonch.2012.09.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Revised: 09/22/2012] [Accepted: 09/23/2012] [Indexed: 06/01/2023]
Abstract
OBJECTIVE Sonodynamic therapy (SDT) is a promising new approach for cancer therapy. The aim of this study was to investigate the tumor affinity of chlorin e6, a photosensitizer, and its sonodynamic effects on NSCLC. METHODS Human lung adenocarcinoma cells SPCA-1 and mice bearing SPCA-1 tumor xenograft were exposed to ultrasound in the presence or absence of chlorin e6. Chlorin e6 distribution was detected by laser scan confocal microscope. Cell apoptosis and necrosis were studied by flow cytometry analysis. Tumor size and weight were measured after different treatments. RESULTS The concentration of chlorin e6 in tumor tissue was remarkably higher than that in normal muscle near tumor, and the difference was greatest at 18h (the fluorescence intensity was 5.38-fold higher in tumor than in muscle, P<0.05). In vivo, ultrasound (0.4-1.6W/cm(2)) or chlorin e6 (10-40mg/kg) alone had no remarkable anti-tumor effects, but the combination of ultrasound (1.6W/cm(2)) with chlorin e6 (SDT) hampered tumor growth significantly (P<0.05). Intraperitoneal injection of 40mg/kg chlorin e6 exerted no notable side effect on blood, liver and kidney function. Flow cytometry analysis showed that chlorin e6-mediated sonodynamic effect was mainly through the induction of cell necrosis. CONCLUSION Chlorin e6 is a promising sonosensitizer and chlorin e6-mediated SDT may provide a new approach for NSCLC therapy.
Collapse
Affiliation(s)
- Bei Chen
- Department of Oncology, Guangzhou General Hospital of Guangzhou Military Command, Guangzhou, Guangdong 510010, PR China.
| | | | | | | | | | | |
Collapse
|
28
|
Jiang Y, Xia X, Leung AW, Xiang J, Xu C. Apoptosis of breast cancer cells induced by hypocrellin B under light-emitting diode irradiation. Photodiagnosis Photodyn Ther 2012. [PMID: 23200015 DOI: 10.1016/j.pdpdt.2012.03.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
OBJECTIVES Breast cancer is a common disease which threatens the life of women. To explore an alternative modality for combating breast cancer, a light-emitting diode (LED) that activates hypocrellin B was used in the present study to investigate apoptosis induction in breast cancer MDA-MB-231 cells. MATERIALS AND METHODS Photocytotoxicity was investigated 24h after photodynamic treatment of hypocrellin B using MTT reduction assay and light microscopy. Apoptosis was observed 6h after photodynamic treatment using flow cytometry with Annexin V/PI staining as well as fluorescent microscopy with Hoechst33258 staining. The ultrastructure of the treated cells was observed using transmission electron microscopy (TEM). RESULTS Hypocrellin B-induced photocytotoxicity in MDA-MB-231 cells exhibited a dose-dependent manner. The amount of MDA-MB-231 cells attached to the bottom of well decreased significantly after photodynamic treatment of hypocrellin B. Flow cytometry showed that the early and late apoptotic rate of MDA-MB-231 cells increased remarkably up to 17.46% and 32.80%, respectively, after treatment of LED-activated hypocrellin B. In addition, nuclear condensation, fragmentation and chromatin margination, and topical apoptotic body in the treated cells were observed by nuclear staining and TEM. CONCLUSION Photodynamic action of hypocrellin B irradiated by light-emitting diodes could significantly kill breast cancer cells and induce apoptotic cell death, which suggests LED-activated hypocrellin B is a promising strategy for combating breast cancer.
Collapse
Affiliation(s)
- Yuan Jiang
- Department of Photodynamic and Sonodynamic Therapy, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | | | | | | | | |
Collapse
|
29
|
Wang X, Leung AW, Jiang Y, Yu H, Li X, Xu C. Hypocrellin B-mediated sonodynamic action induces apoptosis of hepatocellular carcinoma cells. ULTRASONICS 2012; 52:543-546. [PMID: 22172458 DOI: 10.1016/j.ultras.2011.11.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 11/21/2011] [Accepted: 11/21/2011] [Indexed: 05/31/2023]
Abstract
OBJECTIVE The present study aims to investigate apoptosis of hepatocellular carcinoma cells induced by hypocrellin B-mediated sonodynamic action. METHODS The hypocrellin B concentration was kept constant at 2.5 μM and cells from the hepatocellular carcinoma HepG2 cell line were exposed to ultrasound with an intensity of 0.46 W/cm(2) for 8s. Cell cytotoxicity was quantified using an MTT assay 24 h after sonodynamic therapy (SDT) of hypocrellin B. Apoptosis was investigated using a flow cytometry with Annexin V-FITC and propidium iodine staining. Intracellular reactive oxygen species (ROS) levels were detected using a flow cytometry with 2,7-dichlorodihydrofluorecein diacetate (DCFH-DA) staining. RESULTS The cytotoxicity of hypocrellin B-mediated sonodynamic action on HepG2 cells was significantly higher than those of other treatments including ultrasound alone, hypocrellin B alone and sham treatment. Flow cytometry showed that hypocrellin B-induced sonodynamic action markedly enhanced the apoptotic rate of HepG2 cells. Increased ROS was observed in HepG2 cells after being treated with hypocrellin B-mediated sonodynamic action. CONCLUSIONS Our data demonstrated that hypocrellin B-mediated sonodynamic action remarkably induced apoptosis of HepG2 cells, suggesting that apoptosis is an important mechanism of cell death induced by hypocrellin B-mediated SDT.
Collapse
Affiliation(s)
- Xinna Wang
- Department of Ultrasound Medicine, The Affiliated Hospital, Xi'an Medical University, Xi'an, China
| | | | | | | | | | | |
Collapse
|
30
|
Wang X, Leung AW, Luo J, Xu C. TEM observation of ultrasound-induced mitophagy in nasopharyngeal carcinoma cells in the presence of curcumin. Exp Ther Med 2011; 3:146-148. [PMID: 22969860 DOI: 10.3892/etm.2011.365] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 09/27/2011] [Indexed: 11/05/2022] Open
Abstract
The present study was designed to observe the initiation of mitophagy in tumor cells after ultrasound treatment in the presence of curcumin under transmission electron microscopy. Nasopharyngeal carcinoma CNE2 cells were incubated with 10 μM curcumin and then exposed to ultrasound for 8 sec at an intensity of 0.46 W/cm(2). Severely swollen mitochondria, disrupted mitochondria and mitophagy were noted in the CNE2 cells after ultrasound treatment in the presence of curcumin. Our findings demonstrated that ultrasound treatment in the presence of curcumin significantly initiated mitophagy in CNE2 cells, which suggests that mitophagy serves as an important event in the process of cell death of nasopharyngeal carcinoma cells.
Collapse
Affiliation(s)
- Xinna Wang
- Department of Ultrasound, The Affiliated Hospital, Xi'an Medical University, Xi'an
| | | | | | | |
Collapse
|
31
|
Wang P, Leung AW, Xu C. Low-intensity ultrasound-induced cellular destruction and autophagy of nasopharyngeal carcinoma cells. Exp Ther Med 2011; 2:849-852. [PMID: 22977587 DOI: 10.3892/etm.2011.317] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 07/01/2011] [Indexed: 11/06/2022] Open
Abstract
Ultrasound therapy, as a non-invasive modality, has been attracting extensive attention in the management of malignant tumors. The present study aimed to investigate low-intensity ultrasound-induced cellular destruction and autophagy in nasopharyngeal carcinoma cells in vitro. Nasopharyngeal carcinoma CNE2 cells were subjected to ultrasound exposure, as tumor model cells, at an intensity of 1.35 W/cm(2). Cytotoxicity was investigated 24 h after ultrasound treatment. Nuclear damage was observed using nuclear staining with Hoechst 33258. Mitochondrial dysfunction was measured using confocal laser scanning microscopy with rhodamine123 staining. Mitochondrial morphology and autophagy were observed using transmission electron microscopy (TEM). Low-intensity ultrasound significantly killed CNE2 cells proportional to the ultrasonic treatment time. Upon nuclear staining, nuclear condensation and typical apoptotic bodies were noted in the CNE2 cells exposed to ultrasound wave for 12 sec. A collapse in mitochondrial membrane potential was noted in the treated cells. Upon TEM, swollen mitochondria, more vacuoles and autophagy were noted after ultrasound treatment. Our findings demonstrate that low-intensity ultrasound significantly damages CNE2 cells and emphasize that autophagy may be an important event in ultrasound-induced cell death.
Collapse
Affiliation(s)
- Ping Wang
- Department of Ultrasound Medicine, The Affiliated Hospital of North Sichuan Medical College, Sichuan
| | | | | |
Collapse
|
32
|
Xu J, Xia X, Leung AW, Xiang J, Jiang Y, Yu H, Bai D, Li X, Xu C. Sonodynamic action of pyropheophorbide-a methyl ester induces mitochondrial damage in liver cancer cells. ULTRASONICS 2011; 51:480-4. [PMID: 21183195 DOI: 10.1016/j.ultras.2010.11.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 11/26/2010] [Accepted: 11/28/2010] [Indexed: 05/16/2023]
Abstract
Sonodynamic therapy with pyropheophorbide-a methyl ester (MPPa) presents a promising aspect in treating liver cancer. The present study aims to investigate the mitochondrial damage of liver cancer cells induced by MPPa-mediated sonodynamic action. Mouse hepatoma cell line H(22) cells were incubated with MPPa (2 μM) for 20 h and then exposed to ultrasound with an intensity of 0.97 W/cm(2) for 8 s. Cytotoxicity was investigated 24h after sonodynamic action using MTT assay and light microscopy. Mitochondrial membrane potential (ΔΨm) was analyzed using flow cytometry with rhodamine 123 staining and ultrastructural changes were observed using transmission electron microscopy (TEM). The cytotoxicity of MPPa-mediated SDT on H(22) cell line was 73.00±3.42%, greater than ultrasound treatment alone (28.12±5.19%) significantly while MPPa treatment alone had no significant effect on H(22) cells. Moreover, after MPPa-mediated SDT cancer cells showed swollen mitochondria under TEM and a significant collapse of mitochondrial membrane potential. Our findings demonstrated that MPPa-mediated SDT could remarkably induce cell death of H(22) cells, and highlighted that mitochondrial damage might be an important cause of cell death induced by MPPa-mediated SDT.
Collapse
Affiliation(s)
- Jing Xu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Xiang J, Xia X, Jiang Y, Leung AW, Wang X, Xu J, Wang P, Yu H, Bai D, Xu C. Apoptosis of ovarian cancer cells induced by methylene blue-mediated sonodynamic action. ULTRASONICS 2011; 51:390-395. [PMID: 21147492 DOI: 10.1016/j.ultras.2010.11.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 11/15/2010] [Accepted: 11/17/2010] [Indexed: 05/30/2023]
Abstract
OBJECTIVE The present study aims to investigate apoptosis of ovarian cancer cells induced by methylene blue (MB)-mediated sonodynamic therapy (SDT). METHODS The MB concentration was kept constant at 100μM and ovarian cancer HO-8910 cells were exposed to ultrasound therapy for 5s with an intensity of 0.46W/cm(2). The cytotoxicity was investigated 24h after MB-mediated sonodynamic action. Apoptosis was analyzed using a flow cytometer with Annexin V-FITC and propidium iodine (PI) staining as well as fluorescence microscopy with Hoechst 33258 staining. Intracellular reactive oxygen species (ROS) level was measured by flow cytometer with 2,7-dichlorodihydrofluorescein diacetate (DCFH-DA) staining. RESULTS The cytotoxicity of MB-mediated SDT on HO-8910 cells after MB-mediated SDT was significantly higher than those of other treatments including ultrasound alone, MB alone and sham treatment. Flow cytometric analysis showed a significant increase in the early and late apoptotic cell populations by MB-mediated SDT of HO-8910 cells. Nuclear condensation and increased ROS levels were also found in HO-8910 cells treated by MB-mediated SDT. CONCLUSIONS Our findings demonstrated that MB-mediated sonodynamic action significantly induced apoptosis of HO-8910 cells and an increase in intracellular ROS level. This indicates that apoptosis is an important mechanism of cell death induced by MB-mediated SDT. Thus, MB-mediated SDT might be a potential therapeutic strategy for combating ovarian cancer.
Collapse
Affiliation(s)
- Junyan Xiang
- Department of Photodynamic and Sondynamic Therapy, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Wang X, Xia X, Leung AW, Xiang J, Jiang Y, Wang P, Xu J, Yu H, Bai D, Xu C. Ultrasound induces cellular destruction of nasopharyngeal carcinoma cells in the presence of curcumin. ULTRASONICS 2011; 51:165-170. [PMID: 20728195 DOI: 10.1016/j.ultras.2010.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 07/19/2010] [Accepted: 07/25/2010] [Indexed: 05/29/2023]
Abstract
OBJECTIVES Curcumin, a natural pigment from the traditional Chinese herb, has shown promise as an efficient enhancer of ultrasound. The present study aims to investigate ultrasound-induced cellular destruction of nasopharyngeal carcinoma cells in the presence of curcumin in vitro. METHODS Nasopharyngeal carcinoma cell line CNE2 cells were incubated by 10μm curcumin and then were treated by ultrasound for 8s at the intensity of 0.46W/cm(2). Cytotoxicity was evaluated using MTT assay and light microscopy. Mitochondrial damage was analyzed using a confocal laser scanning microcopy with Rhodamine 123 and ultrastructural changes were observed using a transmission electron microscopy (TEM). RESULTS MTT assay showed that cytotoxicity induced by ultrasound treatment alone and curcumin treatment alone was 18.16±2.37% and 24.93±8.30%, respectively. The cytotoxicity induced by the combined treatment of ultrasound and curcumin significantly increased up to 86.67±7.78%. TEM showed that microvillin disappearance, membrane blebbing, chromatin condensation, swollen mitochondria, and mitochondrial myelin-like body were observed in the cells treated by ultrasound and curcumin together. The significant collapse of mitochondrial membrane potential (MMP) was markedly observed in the CNE2 cells after the combined treatment of curcumin and ultrasound. CONCLUSIONS Our findings demonstrated that ultrasound sonication in the presence of curcumin significantly killed the CNE2 cells and induced ultrastructural damage and the dysfunction of mitochondria, suggesting that ultrasound treatment remarkably induced cellular destruction of nasopharyngeal carcinoma cells in the presence of curcumin.
Collapse
Affiliation(s)
- Xinna Wang
- Department of Photodynamic and Sondynamic Therapy, The Second Affiliated Hospital, The Chongqing Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Tian Z, Quan X, Leung AW, Xiang J, Xu C. Hematoporphyrin monomethyl ether enhances the killing of ultrasound on osteosarcoma cells involving intracellular reactive oxygen species and calcium ion elevation. Integr Cancer Ther 2010; 9:365-9. [PMID: 20702491 DOI: 10.1177/1534735410379013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE The present study aims to investigate the possible mechanisms of hematoporphyrin monomethyl ether (HMME) enhancing the cytotoxicity of ultrasound in osteosarcoma cells. METHODS Osteosarcoma cell line UMR-106 was treated by HMME and ultrasound radiation, with the HMME concentration kept at 20 μg/mL and ultrasound radiation for 10 seconds at the intensity of 0.5 W/cm². Cell proliferation was investigated at 12, 24, 36, and 48 hours using MTT assay after ultrasound and HMME treatment. Ultrastructural morphology was observed using transmission electron microscopy (TEM). Intracellular reactive oxygen species (ROS) was measured using a flow cytometry with DCFH-DA staining and intracellular free calcium ion (Ca(2+)) with Fluo-3-AM staining. RESULTS The UMR-106 cells proliferated rapidly in the sham radiation and HMME treatment alone group, but ultrasound-treated cells and HMME-ultrasound-treated cells proliferated slowly. There was a significant difference between HMME-ultrasound treatment and the controls, including ultrasound radiation, HMME treatment alone, and sham radiation (P < .05). TEM showed endoplasmic reticulum and mitochondrial swelling in the ultrasound-treated cells, and more cells presented apoptosis and necrosis after treatment with ultrasound and HMME together. Intracellular ROS and Ca(2+) in the cells increased more significantly after both ultrasound and HMME treatment than after ultrasound treatment alone. CONCLUSIONS HMME could effectively enhance the inhibition effect of ultrasound on osteosarcoma cells. Intracellular ROS and Ca(2+) in the UMR-106 cells increased more significantly after the treatment of HMME and ultrasound together, indicating that the enhancement of HMME on ultrasound cytotoxicity to osteosarcoma cells possibly involves both intracellular ROS and Ca(2+) elevation.
Collapse
Affiliation(s)
- Zedan Tian
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | | | | | | | | |
Collapse
|
36
|
Xinna Wang, Xinshu Xia, Chuanshan Xu, Jing Xu, Ping Wang, Junyan Xiang, Dingqun Bai, Wingnang Leung A. Ultrasound-Induced Cell Death of Nasopharyngeal Carcinoma Cells in the Presence of Curcumin. Integr Cancer Ther 2010; 10:70-6. [PMID: 20702493 DOI: 10.1177/1534735410377197] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objectives. Curcumin, a natural pigment from a traditional Chinese herb, has been attracting extensive attention. The present study aims to investigate cell death of nasopharyngeal carcinoma (NPC) cells induced by ultrasound sonication in the presence of curcumin in vitro. Methods. The NPC cell line CNE2 was chosen as a tumor model, and curcumin concentration was kept constant at 10 µM while the cells were subjected to ultrasound exposure for 8 s at an intensity of 0.46 W/cm2. Cell death was evaluated using flow cytometry with annexinV-FITC and propidium iodine staining, and nuclear staining with Hoechst 33258. Mitochondrial membrane potential and intracellular reactive oxygen species (ROS) were analyzed using flow cytometry with rhodamine 123 and dichlorodihydrofluorecein diacetate staining. Results. Flow cytometry showed that the combination of ultrasound and curcumin significantly increased the necrotic or late apoptotic rate by up to 31.37% compared with the controls. Nuclear condensation was observed in the nuclear staining, and collapse of ΔΨm and ROS increase were found in the CNE2 cells after the treatment with curcumin and ultrasound. Conclusions. The findings demonstrate that the presence of curcumin significantly enhances the ultrasound-induced cell death and ROS level, and induces the collapse of ΔΨm, suggesting that ultrasound sonication can increase the cell death of NPC cells in the presence of curcumin and that the treatment using curcumin and ultrasound together is a potential therapeutic modality in the management of malignant tumors.
Collapse
Affiliation(s)
- Xinna Wang
- Chongqing Medical University, Chongqing, China
| | - Xinshu Xia
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Chuanshan Xu
- Chongqing Medical University, Chongqing, China, , School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jing Xu
- Chongqing Medical University, Chongqing, China
| | - Ping Wang
- Chongqing Medical University, Chongqing, China
| | | | - Dingqun Bai
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | | |
Collapse
|
37
|
Xu J, Xia X, Wang X, Xu C, Wang P, Xiang J, Jiang Y, Leung AW. Sonodynamic action of pyropheophorbide-a methyl ester in liver cancer cells. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2010; 29:1031-1037. [PMID: 20587426 DOI: 10.7863/jum.2010.29.7.1031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
OBJECTIVE This study aimed to investigate the sonodynamic action of pyropheophorbide-a methyl ester (MPPa) in liver cancer cells to explore a novel therapeutic modality. METHODS H22 cells were chosen as model cells to investigate the sonodynamic action of MPPa on liver cancer. The MPPa concentration was kept constant at 2 micromol/L, and the cells were subjected to ultrasound exposure at an intensity of 0.97 W/cm(2). Cytotoxicity was investigated 24 hours after ultrasound exposure. Apoptosis was evaluated using flow cytometry with annexin V-fluorescein isothiocyanate and propidium iodine staining and nuclear staining with Hoechst 33258. Reactive oxygen species (ROS) were analyzed using flow cytometry with 2,7-dichlorodihydrofluorescein diacetate staining. RESULTS No significant dark cytotoxicity of MPPa was shown in the H22 cells at the concentration of 2 micromol/L. The cell death rate induced by ultrasound treatment was significantly higher in the presence of MPPa than in the absence of it (P < .05). Flow cytometry showed that the sonodynamic action of MPPa significantly increased the early and late apoptotic rates of the H22 cells. Nuclear condensation and an ROS increase were found after sonodynamic treatment. CONCLUSIONS Our findings showed that MPPa-mediated sonodynamic action significantly enhanced death of H22 cells and the ROS level, suggesting that MPPa is a novel sonosensitizer and the sonodynamic action of MPPa might be a potential therapeutic modality in the management of liver cancer.
Collapse
Affiliation(s)
- Jing Xu
- Department of Photodynamic and Sonodynamic Therapy, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | | | | | | | | | | | | | | |
Collapse
|