1
|
Gong L, Wright AR, Hynynen K, Goertz DE. Inducing cavitation within hollow cylindrical radially polarized transducers for intravascular applications. ULTRASONICS 2024; 138:107223. [PMID: 38553135 DOI: 10.1016/j.ultras.2023.107223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/31/2023] [Accepted: 12/12/2023] [Indexed: 04/02/2024]
Abstract
Thrombotic occlusions of large blood vessels are increasingly treated with catheter based mechanical approaches, one of the most prominent being to employ aspiration to extract clots through a hollow catheter lumen. A central technical challenge for aspiration catheters is to achieve sufficient suction force to overcome the resistance of clot material entering into the distal tip. In this study, we examine the feasibility of inducing cavitation within hollow cylindrical transducers with a view to ultimately using them to degrade the mechanical integrity of thrombus within the tip of an aspiration catheter. Hollow cylindrical radially polarized PZT transducers with 3.3/2.5 mm outer/inner diameters were assessed. Finite element simulations and hydrophone experiments were used to investigate the pressure field distribution as a function of element length and resonant mode (thickness, length). Operating in thickness mode (∼5 MHz) was found to be associated with the highest internal pressures, estimated to exceed 23 MPa. Cavitation was demonstrated to be achievable within the transducer under degassed water (10 %) conditions using hydrophone detection and high-frequency ultrasound imaging (40 MHz). Cavitation clouds occupied a substantial portion of the transducer lumen, in a manner that was dependent on the pulsing scheme employed (10 and 100 μs pulse lengths; 1.1, 11, and 110 ms pulse intervals). Collectively the results support the feasibility of achieving cavitation within a transducer compatible with mounting in the tip of an aspiration format catheter.
Collapse
Affiliation(s)
- Li Gong
- Department of Medical Biophysics, University of Toronto, Canada; Physical Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada.
| | - Alex R Wright
- Physical Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Kullervo Hynynen
- Department of Medical Biophysics, University of Toronto, Canada; Physical Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - David E Goertz
- Department of Medical Biophysics, University of Toronto, Canada; Physical Sciences Platform, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
| |
Collapse
|
2
|
Chen X, Chen X, Wang J, Yu FTH, Villanueva FS, Pacella JJ. Dynamic Behavior of Polymer Microbubbles During Long Ultrasound Tone-Burst Excitation and Its Application for Sonoreperfusion Therapy. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:996-1006. [PMID: 36697268 PMCID: PMC9974862 DOI: 10.1016/j.ultrasmedbio.2022.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
OBJECTIVE Ultrasound (US)-targeted microbubble (MB) cavitation (UTMC)-mediated therapies have been found to restore perfusion and enhance drug/gene delivery. Because of the potentially longer circulation time and relative ease of storage and reconstitution of polymer-shelled MBs compared with lipid MBs, we investigated the dynamic behavior of polymer microbubbles and their therapeutic potential for sonoreperfusion (SRP) therapy. METHODS The fate of polymer MBs during a single long tone-burst exposure (1 MHz, 5 ms) at various acoustic pressures and MB concentrations was recorded via high-speed microscopy and passive cavitation detection (PCD). SRP efficacy of the polymer MBs was investigated in an in vitro flow system and compared with that of lipid MBs. DISCUSSION Microscopy videos indicated that polymer MBs formed gas-filled clusters that continued to oscillate, fragment and form new gas-filled clusters during the single US burst. PCD confirmed continued acoustic activity throughout the 5-ms US excitation. SRP efficacy with polymer MBs increased with pulse duration and acoustic pressure similarly to that with lipid MBs but no significant differences were found between polymer and lipid MBs. CONCLUSION These data suggest that persistent cavitation activity from polymer MBs during long tone-burst US excitation confers excellent reperfusion efficacy.
Collapse
Affiliation(s)
- Xianghui Chen
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Department of Cardiology, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xucai Chen
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jianjun Wang
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Francois T H Yu
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Flordeliza S Villanueva
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - John J Pacella
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Kumar M, Kumar D, Chopra S, Mahmood S, Bhatia A. Microbubbles: Revolutionizing Biomedical Applications with Tailored Therapeutic Precision. Curr Pharm Des 2023; 29:3532-3545. [PMID: 38151837 DOI: 10.2174/0113816128282478231219044000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/28/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Over the past ten years, tremendous progress has been made in microbubble-based research for a variety of biological applications. Microbubbles emerged as a compelling and dynamic tool in modern drug delivery systems. They are employed to deliver drugs or genes to targeted regions of interest, and then ultrasound is used to burst the microbubbles, causing site-specific delivery of the bioactive materials. OBJECTIVE The objective of this article is to review the microbubble compositions and physiochemical characteristics in relation to the development of innovative biomedical applications, with a focus on molecular imaging and targeted drug/gene delivery. METHODS The microbubbles are prepared by using various methods, which include cross-linking polymerization, emulsion solvent evaporation, atomization, and reconstitution. In cross-linking polymerization, a fine foam of the polymer is formed, which serves as a bubble coating agent and colloidal stabilizer, resulting from the vigorous stirring of a polymeric solution. In the case of emulsion solvent evaporation, there are two solutions utilized in the production of microbubbles. In atomization and reconstitution, porous spheres are created by atomising a surfactant solution into a hot gas. They are encapsulated in primary modifier gas. After the addition of the second gas or gas osmotic agent, the package is placed into a vial and sealed after reconstituting with sterile saline solution. RESULTS Microbubble-based drug delivery is an innovative approach in the field of drug delivery that utilizes microbubbles, which are tiny gas-filled bubbles, act as carriers for therapeutic agents. These microbubbles can be loaded with drugs, imaging agents, or genes and then guided to specific target sites. CONCLUSION The potential utility of microbubbles in biomedical applications is continually growing as novel formulations and methods. The versatility of microbubbles allows for customization, tailoring the delivery system to various medical applications, including cancer therapy, cardiovascular treatments, and gene therapy.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, Punjab 151001, India
| | - Devesh Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, Punjab 151001, India
| | - Shruti Chopra
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, Punjab 151001, India
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, Punjab 151001, India
| |
Collapse
|
4
|
Rayes A, Zhang J, Lu G, Qian X, Schroff ST, Ryu R, Jiang X, Zhou Q. Estimating Thrombus Elasticity by Shear Wave Elastography to Evaluate Ultrasound Thrombolysis for Thrombus With Different Stiffness. IEEE Trans Biomed Eng 2023; 70:135-143. [PMID: 35759590 PMCID: PMC10370280 DOI: 10.1109/tbme.2022.3186586] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE There is uncertainty about deep vein thrombosis standard treatment as thrombus stiffness alters each case. Here, we investigated thrombus' stiffness of different compositions and ages using shear wave elastography (SWE). We then studied the effectiveness of ultrasound-thrombolysis on different thrombus compositions. METHODS Shear waves generated through mechanical shaker and traveled along thrombus of different hematocrit (HCT) levels, whereas 18-MHz ultrasound array used to detect wave propagation. Thrombus' stiffness was identified by the shear wave speed (SWS). In thrombolysis, a 3.2 MHz focused transducer was applied to different thrombus compositions using different powers. The thrombolysis rate was defined as the percentage of weight loss. RESULTS The estimated average SWS of 20%, 40%, and 60% HCT thrombus were 0.75 m/s, 0.44 m/s, and 0.32 m/s, respectively. For Thrombolysis, the percentage weight loss at 8 MPa Negative pressure for the same HCT groups were 23.1%, 35.29%, and 39.66% respectively. CONCLUSION SWS is inversely related to HCT level and positively related to thrombus age. High HCT thrombus had higher weight loss compared to low HCT. However, the difference between 20% and 40% HCT was more significant than between 40% and 60% HCT in both studies. Our results suggest that thrombus with higher SWS require more power to achieve the same thrombolysis rate as thrombus with lower SWS. SIGNIFICANCE Characterizing thrombus elastic property undergoing thrombolysis enables evaluation of ultrasound efficacy for fractionating thrombus and reveals the appropriate ultrasound parameters selection to achieve a certain thrombolysis rate in the case of a specific thrombus stiffness.
Collapse
Affiliation(s)
- Adnan Rayes
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Junhang Zhang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Gengxi Lu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Xuejun Qian
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Stuart T. Schroff
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | - Robert Ryu
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | - Xiaoning Jiang
- department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Qifa Zhou
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
5
|
Wang Z, Pan Y, Huang H, Zhang Y, Li Y, Zou C, Huang G, Chen Y, Li Y, Li J, Chen H. Enhanced thrombolysis by endovascular low-frequency ultrasound with bifunctional microbubbles in venous thrombosis: in vitro and in vivo study. Front Bioeng Biotechnol 2022; 10:965769. [PMID: 35942007 PMCID: PMC9356075 DOI: 10.3389/fbioe.2022.965769] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
There is a need to improve the efficacy and safety of endovascular techniques in venous thrombotic diseases, and microbubble enhanced sonothrombolysis is a promising approach. However, whether endovascular low-frequency ultrasound (LFUS) can be utilized in microbubble enhanced sonothrombolysis is unclear. Here, we present a catheter-based thrombolytic system that combines unfocused low-frequency low-intensity ultrasound with novel fibrin-targeted drug-loaded bifunctional microbubbles. We develop an in vitro flow model and an in vivo rabbit inferior vena cava (IVC) thrombosis model to evaluate the safety and efficacy of the thrombolytic system. The results indicate that microbubble enhanced sonothrombolysis with endovascular LFUS treatment for 30 min is equally effective compared to pure pharmacologic treatment. Furthermore, the thrombolytic efficacy of this system is safely and substantially improved by the introduction of a fibrin-targeted drug-loaded bifunctional microbubble with a reduction of the fibrinolytic agent dosage by 60%. The microbubble enhanced endovascular LFUS sonothrombolysis system with excellent thrombolytic efficacy may serve as a new therapeutic approach for venous thrombotic diseases.
Collapse
Affiliation(s)
- Zhaojian Wang
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yunfan Pan
- State Key Laboratory of Tribology, Tsinghua University, Beijing, China
| | - Huaigu Huang
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Zhang
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, China
| | - Yan Li
- State Key Laboratory of Tribology, Tsinghua University, Beijing, China
| | - Chenghong Zou
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, China
| | - Guanghua Huang
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuexin Chen
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Yuexin Chen, ; Yongjian Li,
| | - Yongjian Li
- State Key Laboratory of Tribology, Tsinghua University, Beijing, China
- *Correspondence: Yuexin Chen, ; Yongjian Li,
| | - Jiang Li
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, China
| | - Haosheng Chen
- State Key Laboratory of Tribology, Tsinghua University, Beijing, China
| |
Collapse
|
6
|
Masood U, Riaz R, Shah SU, Majeed AI, Abbas SR. Contrast enhanced sonothrombolysis using streptokinase loaded phase change nano-droplets for potential treatment of deep venous thrombosis. RSC Adv 2022; 12:26665-26672. [PMID: 36275167 PMCID: PMC9488110 DOI: 10.1039/d2ra04467f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/09/2022] [Indexed: 11/21/2022] Open
Abstract
Current thrombolytic therapies for deep venous thrombosis are limited due to the wide side effect profile. Contrast mediated sonothrombolysis is a promising approach for thrombus treatment. The current study examines the effectiveness of in vitro streptokinase (SK) loaded phase-change nanodroplet (PCND) mediated sonothrombolysis at 7 MHz for the diagnosis of deep venous thrombosis. Lecithin shell and perfluorohexane core nanodroplets were prepared via the thin-film hydration method and morphologically characterized. Sonothrombolysis was performed at 7 MHz at different mechanical indexes of samples i.e., only sonothrombolysis, PCND mediated sonothrombolysis, sonothrombolysis with SK and SK loaded PCND mediated sonothrombolysis. Thrombolysis efficacy was assessed by measuring clot weight changes during 30 min US exposure, recording the mean gray intensity from the US images of the clot by computer software ImageJ, and spectrophotometric quantification of the hemoglobin in the clot lysate. In 15 minutes of sonothrombolysis performed at high mechanical index (0.9 and 1.2), SK loaded PCNDs showed a 48.61% and 74.29% reduction of mean gray intensity. At 0.9 and 1.2 MI, 86% and 92% weight loss was noted for SK-loaded PCNDs in confidence with spectrophotometric results. A significant difference (P < 0.05) was noted for SK-loaded PCND mediated sonothrombolysis compared to other groups. Loading of SK inside the PCNDs enhanced the efficacy of sonothrombolysis. An increase in MI and time also increased the efficacy of sonothrombolysis. This in vitro study showed the potential use of SK-loaded perfluorohexane core PCNDs as sonothrombolytic agents for deep venous thrombosis. Contrast enhanced sonothrombolysis using streptokinase loaded phase change nano-droplets.![]()
Collapse
Affiliation(s)
- Usama Masood
- Department of Industrial Biotechnology, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology, Islamabad, Pakistan
| | - Ramish Riaz
- Department of Industrial Biotechnology, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology, Islamabad, Pakistan
| | - Saeed Ullah Shah
- Department of Cardiology, Shifa International Hospitals Ltd., Islamabad, Pakistan
| | - Ayesha Isani Majeed
- Department of Radiology, Pakistan Institute of Medical Sciences, Islamabad, Pakistan
| | - Shah Rukh Abbas
- Department of Industrial Biotechnology, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology, Islamabad, Pakistan
| |
Collapse
|
7
|
Lajoinie G, Visscher M, Blazejewski E, Veldhuis G, Versluis M. Three-phase vaporization theory for laser-activated microcapsules. PHOTOACOUSTICS 2020; 19:100185. [PMID: 32775197 PMCID: PMC7399189 DOI: 10.1016/j.pacs.2020.100185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/15/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
Precision control of vaporization, both in space and time, is critical for numerous applications, including medical imaging and therapy, catalysis and energy conversion, and it can be greatly improved through the use of micro- or nano-sized light absorbers. Ultimately, optimization of these applications also requires a fundamental understanding of the vaporization process. Upon laser irradiation, polymeric microcapsules containing a dye can vaporize, leading to the growth of a vapor bubble that emits a strong acoustic signature. Here, we compare laser-activated capsules containing either a volatile or a non-volatile oil core. We theoretically explore the vaporization of the capsules based on a three-phase thermodynamics model, that accounts for the partial vaporization of both the surrounding fluid and the oil core as well as for the interaction between heat transfer and microbubble growth. The model is compared to ultra-high-speed imaging experiments, where we record the cavitation events. Theory and experiments are in convincing agreement.
Collapse
Affiliation(s)
- Guillaume Lajoinie
- Physics of Fluids Group, Technical Medical (TechMed) Center and MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Mirjam Visscher
- Physics of Fluids Group, Technical Medical (TechMed) Center and MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- Department of Biomedical Engineering, Thorax Center, Erasmus MC, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Emilie Blazejewski
- Nanomi Monosphere Technology, Zutphenstraat 51, 7575 EJ Oldenzaal, The Netherlands
| | - Gert Veldhuis
- Nanomi Monosphere Technology, Zutphenstraat 51, 7575 EJ Oldenzaal, The Netherlands
| | - Michel Versluis
- Physics of Fluids Group, Technical Medical (TechMed) Center and MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
8
|
Guan L, Wang C, Yan X, Liu L, Li Y, Mu Y. A thrombolytic therapy using diagnostic ultrasound combined with RGDS-targeted microbubbles and urokinase in a rabbit model. Sci Rep 2020; 10:12511. [PMID: 32719362 PMCID: PMC7385658 DOI: 10.1038/s41598-020-69202-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 04/10/2020] [Indexed: 11/22/2022] Open
Abstract
This study aimed to explore thrombolysis therapy based on ultrasound combined with urokinase and Arg–Gly–Asp sequence (RGDS)-targeted microbubbles by evaluating the histological changes in a thrombotic rabbit model. Forty-two New Zealand rabbits featuring platelet-rich thrombi in the femoral artery were randomized to (n = 6/group): ultrasound alone (US); urokinase alone (UK); ultrasound plus non-targeted microbubbles (US + M); ultrasound plus RGDS-targeted microbubbles (US + R); RGDS-targeted microbubbles plus urokinase (R + UK); ultrasound, non-targeted microbubbles and urokinase (US + M + UK); and ultrasound, RGDS-targeted microbubbles and urokinase (US + R + UK) groups. Diagnostic ultrasound was used transcutaneously over the thrombus for 30 min. We evaluated the thrombolytic effect based on ultrasound thrombi detection, blood flow, and histological observations. Among all study groups, complete recanalization was achieved in the US + R + UK group. Hematoxylin and eosin staining showed that the thrombi were completely dissolved. Scanning electron microscopy examination demonstrated that the fiber network structure of the thrombi was damaged. Transmission electron microscopy showed that the thrombus was decomposed into high electron-dense particles. Histology for von Willebrand factor and tissue factor were both negative in the US + R + UK group. This study revealed that a thrombolytic therapy consisting of diagnostic ultrasound together with RGDS-targeted and urokinase coupled microbubbles.
Collapse
Affiliation(s)
- Lina Guan
- Department of Echocardiography, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People's Republic of China
| | - Chunmei Wang
- Department of Echocardiography, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People's Republic of China
| | - Xue Yan
- Department of Echocardiography, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People's Republic of China
| | - Liyun Liu
- Department of Echocardiography, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People's Republic of China
| | - Yanhong Li
- Department of Echocardiography, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People's Republic of China
| | - Yuming Mu
- Department of Echocardiography, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People's Republic of China.
| |
Collapse
|
9
|
Shekhar H, Kleven RT, Peng T, Palaniappan A, Karani KB, Huang S, McPherson DD, Holland CK. In vitro characterization of sonothrombolysis and echocontrast agents to treat ischemic stroke. Sci Rep 2019; 9:9902. [PMID: 31289285 PMCID: PMC6616381 DOI: 10.1038/s41598-019-46112-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/12/2019] [Indexed: 12/30/2022] Open
Abstract
The development of adjuvant techniques to improve thrombolytic efficacy is important for advancing ischemic stroke therapy. We characterized octafluoropropane and recombinant tissue plasminogen activator (rt-PA)-loaded echogenic liposomes (OFP t-ELIP) using differential interference and fluorescence microscopy, attenuation spectroscopy, and electrozone sensing. The loading of rt-PA in OFP t-ELIP was assessed using spectrophotometry. Further, it was tested whether the agent shields rt-PA against degradation by plasminogen activator inhibitor-1 (PAI-1). An in vitro system was used to assess whether ultrasound (US) combined with either Definity or OFP t-ELIP enhances rt-PA thrombolysis. Human whole blood clots were mounted in a flow system and visualized using an inverted microscope. The perfusate consisted of either (1) plasma alone, (2) rt-PA, (3) OFP t-ELIP, (4) rt-PA and US, (5) OFP t-ELIP and US, (6) Definity and US, or (7) rt-PA, Definity, and US (n = 16 clots per group). An intermittent US insonation scheme was employed (220 kHz frequency, and 0.44 MPa peak-to-peak pressures) for 30 min. Microscopic imaging revealed that OFP t-ELIP included a variety of structures such as liposomes (with and without gas) and lipid-shelled microbubbles. OFP t-ELIP preserved up to 76% of rt-PA activity in the presence of PAI-1, whereas only 24% activity was preserved for unencapsulated rt-PA. The use of US with rt-PA and Definity enhanced lytic efficacy (p < 0.05) relative to rt-PA alone. US combined with OFP t-ELIP enhanced lysis over OFP t-ELIP alone (p < 0.01). These results demonstrate that ultrasound combined with Definity or OFP t-ELIP can enhance the lytic activity relative to rt-PA or OFP t-ELIP alone, respectively.
Collapse
Affiliation(s)
- Himanshu Shekhar
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH, USA.
| | - Robert T Kleven
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
| | - Tao Peng
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Texas Health Science Center-Houston, Houston, TX, USA
| | - Arunkumar Palaniappan
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH, USA
| | - Kunal B Karani
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH, USA
| | - Shaoling Huang
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Texas Health Science Center-Houston, Houston, TX, USA
| | - David D McPherson
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Texas Health Science Center-Houston, Houston, TX, USA
| | - Christy K Holland
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati, Cincinnati, OH, USA.,Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
10
|
Acconcia CN, Leung BYC, Winch G, Wang J, Hynynen K, Goertz DE. Acoustic radiation force induced accumulation and dynamics of microbubbles on compliant surfaces. Phys Med Biol 2019; 64:135003. [PMID: 31082815 DOI: 10.1088/1361-6560/ab2163] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ultrasound stimulated microbubbles have been shown to be capable of breaking up blood clots through micro-scale interactions occurring near the clot surface. However, only a small fraction of bubbles circulating in the bloodstream will be in close proximity to such boundaries, where they must be to elicit therapeutic effects. Here, the accumulation and subsequent behavior of microbubbles displaced from an overlying flow channel to a boundary under radiation forces were examined. Experimental data were acquired using a novel high speed microscopy configuration and simulations were conducted to provide insight into the accumulation process. There was broad agreement between experiments and simulations, both indicating that the size distribution and number of bubbles arriving at the boundary depended on channel flow rate, applied pressure, and bubble concentration. For example, higher flow rates and lower pressures favored the accumulation of larger bubbles relative to the native agent distribution. Moreover, bubble dynamics were dependent on the surface type, exhibiting rapid translation along agarose gel surfaces whereas on fibrin surfaces, they accumulated in localized regions inducing repetitive strain cycles. The results indicate that the process of bringing bubbles from within a vessel to a boundary is complex and should be an important consideration in the development of therapeutic applications such as sonothrombolysis.
Collapse
Affiliation(s)
- Christopher N Acconcia
- Department of Medical Biophysics, University of Toronto, Toronto, M5S 1A1, Canada. Sunnybrook Research Institute, 2075 Bayview Avenue, M4N 3M5, Toronto, Canada. These authors contributed equally
| | | | | | | | | | | |
Collapse
|
11
|
de Saint Victor M, Barnsley LC, Carugo D, Owen J, Coussios CC, Stride E. Sonothrombolysis with Magnetically Targeted Microbubbles. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:1151-1163. [PMID: 30773375 DOI: 10.1016/j.ultrasmedbio.2018.12.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 12/18/2018] [Accepted: 12/22/2018] [Indexed: 05/13/2023]
Abstract
Microbubble-enhanced sonothrombolysis is a promising approach to increasing the tolerability and efficacy of current pharmacological treatments for ischemic stroke. Maintaining therapeutic concentrations of microbubbles and drugs at the clot site, however, poses a challenge. The objective of this study was to investigate the effect of magnetic microbubble targeting upon clot lysis rates in vitro. Retracted whole porcine blood clots were placed in a flow phantom of a partially occluded middle cerebral artery. The clots were treated with a combination of tissue plasminogen activator (0.75 µg/mL), magnetic microbubbles (∼107 microbubbles/mL) and ultrasound (0.5 MHz, 630-kPa peak rarefactional pressure, 0.2-Hz pulse repetition frequency, 2% duty cycle). Magnetic targeting was achieved using a single permanent magnet (0.08-0.38 T and 12-140 T/m in the region of the clot). The change in clot diameter was measured optically over the course of the experiment. Magnetic targeting produced a threefold average increase in lysis rates, and linear correlation was observed between lysis rate and total energy of acoustic emissions.
Collapse
Affiliation(s)
- Marie de Saint Victor
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Lester C Barnsley
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Dario Carugo
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Joshua Owen
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Constantin C Coussios
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Eleanor Stride
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
12
|
Acconcia CN, Wright A, Goertz DE. Translational dynamics of individual microbubbles with millisecond scale ultrasound pulses. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 144:2859. [PMID: 30522286 DOI: 10.1121/1.5063353] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/24/2018] [Indexed: 06/09/2023]
Abstract
It is established that radiation forces can be used to transport ultrasound contrast agents, particularly for molecular imaging applications. However, the ability to model and control this process in the context of therapeutic ultrasound is limited by a paucity of data on the translational dynamics of encapsulated microbubbles under the influence of longer pulses. In this work, the translation of individual microbubbles, isolated with optical tweezers, was experimentally investigated over a range of diameters (1.8-8.8 μm, n = 187) and pressures (25, 50, 100, 150, and 200 kPa) with millisecond pulses. Data were compared with theoretical predictions of the translational dynamics, assessing the role of shell and history force effects. A pronounced feature of the displacement curves was an effective threshold size, below which there was only minimal translation. At higher pressures (≥150 kPa) a noticeable structure emerged where multiple local maxima occurred as a function of bubble size. The ability to accurately capture these salient features depended on the encapsulation model employed. In low Reynolds number conditions (i.e., low pressures, or high pressures, off-resonance) the inclusion of history force more accurately fit the data. After pulse cessation, bubbles exhibited substantial displacements consistent with the influence of history effects.
Collapse
Affiliation(s)
| | - Alex Wright
- Sunnybrook Research Institute, 2075 Bayview Avenue, M4N 3M5, Toronto, Canada
| | - David E Goertz
- Department of Medical Biophysics, University of Toronto, Toronto, M5S 1A1, Canada
| |
Collapse
|
13
|
de Saint Victor M, Carugo D, Barnsley LC, Owen J, Coussios CC, Stride E. Magnetic targeting to enhance microbubble delivery in an occluded microarterial bifurcation. ACTA ACUST UNITED AC 2017; 62:7451-7470. [DOI: 10.1088/1361-6560/aa858f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Auboire L, Escoffre JM, Fouan D, Jacquet JR, Ossant F, Grégoire JM, Bouakaz A. Evaluation of high resolution ultrasound as a tool for assessing the 3D volume of blood clots during in vitro thrombolysis. Sci Rep 2017; 7:6211. [PMID: 28740129 PMCID: PMC5524902 DOI: 10.1038/s41598-017-06089-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 06/07/2017] [Indexed: 11/09/2022] Open
Abstract
Thrombosis is a major cause of several diseases, i.e. myocardial infarction, cerebral stroke and pulmonary embolism. Thrombolytic therapies are required to induce fast and efficient recanalization of occluded vessels. To evaluate the in vitro efficacy of these thrombolytic strategies, measuring clot dissolution is essential. This study aimed to evaluate and validate high resolution ultrasound as a tool to assess the exact volume of clots in 3D and in real time during in vitro thrombolytic drug testing. This new method was validated by measuring the effects of concentration range of recombinant tissue type plasminogen activator on a blood clot during complete occlusion or 70% stenosis of a vessel. This study shows that high resolution ultrasound imaging allows for a real-time assessment of the 3D volume of a blood clot with negligible inter- and intra-operator variabilities. The conclusions drawn from this study demonstrate the promising potential of high resolution ultrasound imaging for the in vitro assessment of new thrombolytic drugs.
Collapse
Affiliation(s)
- Laurent Auboire
- UMR Inserm U930, Université François-Rabelais de Tours, Tours, France
| | | | - Damien Fouan
- UMR Inserm U930, Université François-Rabelais de Tours, Tours, France
| | - Jean-René Jacquet
- UMR Inserm U930, Université François-Rabelais de Tours, Tours, France
| | - Frédéric Ossant
- UMR Inserm U930, Université François-Rabelais de Tours, Tours, France.,CHRU de Tours; INSERM CIC 1415, 37000, Tours, France
| | | | - Ayache Bouakaz
- UMR Inserm U930, Université François-Rabelais de Tours, Tours, France.
| |
Collapse
|
15
|
Wang Z, Sawaguchi Y, Hirose H, Ohara K, Sakamoto S, Mitsumura H, Ogawa T, Iguchi Y, Yokoyama M. An In Vitro Assay for Sonothrombolysis Based on the Spectrophotometric Measurement of Clot Thickness. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2017; 36:681-698. [PMID: 28150461 DOI: 10.7863/ultra.15.11018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 05/30/2016] [Indexed: 06/06/2023]
Abstract
OBJECTIVES For improved thrombolysis therapy based on ultrasound irradiation, researchers and practitioners would strongly benefit from an easy and efficient in vitro assay system of thrombolysis activity involving irradiated ultrasound. For the present study, we designed a new in vitro sonothrombolysis assay system using a sheet-type clot. METHODS We designed a cell for clot assay, and we confirmed that this clot cell did not significantly intervene in the acoustic field. Using human plasma, we made a sheet-type clot in the cell. Clot thicknesses at 100 points along 4 directions were measured photometrically at a rate of approximately 4 points/s. RESULTS The sonothrombolysis effects at 13 levels of ultrasonic intensity were obtained with only one sheet-type clot. With this method, we used a clinically oriented probe at 0.7 and 0.3 W/cm2 to confirm that sonothrombolysis took place. CONCLUSIONS We successfully established a new, easy, and efficient method for conducting in vitro sonothrombolysis assays. This method involves little intervention of either ultrasound reflection or standing waves in the clot cell. We believe that this new assay method is very useful for fundamental analyses of ultrasound's thrombolysis effects.
Collapse
Affiliation(s)
- Zuojun Wang
- Division of Medical Engineering, Research Center for Medical Sciences, the Jikei University School of Medicine, Tokyo, Japan
| | - Yoshikazu Sawaguchi
- Department of Clinical Pharmaceutics, Nihon Pharmaceutical University, Saitama, Japan
| | - Hideo Hirose
- Medical Devices Division, Kaneka Corporation, Tokyo, Japan
| | - Kazumasa Ohara
- Medical Devices Division, Kaneka Corporation, Tokyo, Japan
| | | | - Hidetaka Mitsumura
- Department of Neurology, the Jikei University School of Medicine, Tokyo, Japan
| | - Takeki Ogawa
- Department of Emergency Medicine, the Jikei University School of Medicine, Tokyo, Japan
| | - Yasuyuki Iguchi
- Department of Neurology, the Jikei University School of Medicine, Tokyo, Japan
| | - Masayuki Yokoyama
- Division of Medical Engineering, Research Center for Medical Sciences, the Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
16
|
Ellens NPK, Partanen A. Preclinical MRI-Guided Focused Ultrasound: A Review of Systems and Current Practices. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2017; 64:291-305. [PMID: 27662675 DOI: 10.1109/tuffc.2016.2609238] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Effective preclinical research is a vital component in the development of MRI-guided focused ultrasound (MRgFUS) and its translation to clinic. In this review, we seek to outline the challenges at hand for effective preclinical research, survey different solutions, and underline best practices. Furthermore, we summarize efforts to build and characterize dedicated preclinical MRgFUS equipment, including lab prototypes and available commercial products. Finally, we discuss constraints and considerations specific to using clinical MRgFUS equipment in preclinical research. Specifically, we examine additional hardware that has been used to adapt clinical MRgFUS equipment to better position, constrain, and image preclinical subjects, as well as software solutions that have been used to extend the potential and capabilities of clinical devices.
Collapse
|
17
|
Roos ST, Yu FT, Kamp O, Chen X, Villanueva FS, Pacella JJ. Sonoreperfusion Therapy Kinetics in Whole Blood Using Ultrasound, Microbubbles and Tissue Plasminogen Activator. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:3001-3009. [PMID: 27687734 PMCID: PMC5328593 DOI: 10.1016/j.ultrasmedbio.2016.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/04/2016] [Accepted: 08/09/2016] [Indexed: 05/11/2023]
Abstract
Coronary intervention for myocardial infarction often results in microvascular embolization of thrombus. Sonoreperfusion therapy (SRP) using ultrasound and microbubbles restored perfusion in our in vitro flow model of microvascular obstruction. In this study, we assessed SRP efficacy using whole blood as the perfusate with and without tissue plasminogen activator (tPA). In a phantom vessel bearing a 40-μm-pore mesh to simulate the microvasculature, microthrombi were injected to cause microvascular obstruction and were treated using SRP. Without tPA, the lytic rate increased from 2.6 ± 1.5 mmHg/min with 1000-cycle pulses to 7.3 ± 3.2 mmHg/min with 5000-cycle ultrasound pulses (p < 0.01). The lytic index was similar for tPA-only ([2.0 ± 0.5] × 10-3 mmHg-1 min-1) and 5000 cycles without tPA ([2.3 ± 0.5] × 10-3 mmHg-1 min-1) (p = 0.5) but increased ([3.6 ± 0.8] × 10-3 mmHg-1 min-1) with tPA in conjunction with 5000-cycles ultrasound (p < 0.01). In conclusion, SRP restored microvascular perfusion in whole blood, SRP lytic rate in experiments without tPA increased with ultrasound pulse length and efficacy increased with the addition of tPA.
Collapse
Affiliation(s)
- Sebastiaan T Roos
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Heart and Vascular Institute, Pittsburgh, Pennsylvania, USA; Department of Cardiology and Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands; Interuniversity Cardiology Institute of the Netherlands (ICIN), Utrecht, The Netherlands
| | - François T Yu
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Heart and Vascular Institute, Pittsburgh, Pennsylvania, USA
| | - Otto Kamp
- Department of Cardiology and Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands; Interuniversity Cardiology Institute of the Netherlands (ICIN), Utrecht, The Netherlands
| | - Xucai Chen
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Heart and Vascular Institute, Pittsburgh, Pennsylvania, USA
| | - Flordeliza S Villanueva
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Heart and Vascular Institute, Pittsburgh, Pennsylvania, USA
| | - John J Pacella
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Heart and Vascular Institute, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
18
|
Roessler FC, Schumacher S, Sprenger A, Gärtner U, Al-Khaled M, Eggers J. Clot Formation in the Presence of Acetylsalicylic Acid Leads to Increased Lysis Rates Regardless of the Chosen Thrombolysis Strategy. J Vasc Res 2016; 53:128-137. [PMID: 27710967 DOI: 10.1159/000449386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 08/22/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Patients with acute ischemic strokes frequently take an acetylsalicylic acid (ASA) premedication. We determined the impact of ASA on different thrombolysis strategies in vitro. METHODS For two clot types made from platelet-rich plasma (one with and one without ASA) lysis rates were measured by weight loss after 1 h for five different groups: in control group A clots were solely placed in plasma; in groups B and C clots were treated with rt-PA (60 kU/ml), and in groups D and E clots were treated with desmoteplase (DSPA; 2 µg/ml). Ultrasound (2 MHz, 0.179 W/cm2) was included in groups C and E. The fibrin mesh structures of the clots were investigated by electron microscopy. RESULTS For both clot types lysis rates increased significantly for all treatment strategies compared to their control group (each p < 0.001). The addition of ASA significantly increased the lysis rate in all 5 groups (each p < 0.001) and led to a ceiling effect concerning the treatment. A semiquantitative analysis of transmission electron micrographs revealed a decreased fibrin density for clots with ASA. For both clot types DSPA and ultrasound led to a significant dissolution of the fibrin mesh (both p = 0.029). CONCLUSIONS In vitro ASA pretreatment leads to significantly increased lysis rates due to a weaker fibrin mesh in platelet-rich plasma clots.
Collapse
Affiliation(s)
- Florian C Roessler
- Department of Neurology, Justus Liebig University Giessen, Giessen, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Schleicher N, Tomkins AJ, Kampschulte M, Hyvelin JM, Botteron C, Juenemann M, Yeniguen M, Krombach GA, Kaps M, Spratt NJ, Gerriets T, Nedelmann M. Sonothrombolysis with BR38 Microbubbles Improves Microvascular Patency in a Rat Model of Stroke. PLoS One 2016; 11:e0152898. [PMID: 27077372 PMCID: PMC4831751 DOI: 10.1371/journal.pone.0152898] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 03/21/2016] [Indexed: 11/19/2022] Open
Abstract
Background Early recanalization of large cerebral vessels in ischemic stroke is associated with improved clinical outcome, however persisting hypoperfusion leads to poor clinical recovery despite large vessel recanalization. Limited experimental sonothrombolysis studies have shown that addition of microbubbles during treatment can improve microvascular patency. We aimed to determine the effect of two different microbubble formulations on microvascular patency in a rat stroke model. Methods We tested BR38 and SonoVue® microbubble-enhanced sonothrombolysis in Wistar rats submitted to 90-minute filament occlusion of the middle cerebral artery. Rats were randomized to treatment (n = 6/group): control, rt-PA, or rt-PA+3-MHz ultrasound insonation with BR38 or SonoVue® at full or 1/3 dose. Treatment duration was 60 minutes, beginning after withdrawal of the filament, and sacrifice was immediately after treatment. Vascular volumes were evaluated with microcomputed tomography. Results Total vascular volume of the ipsilateral hemisphere was reduced in control and rt-PA groups (p<0.05), but was not significantly different from the contralateral hemisphere in all microbubble-treated groups (p>0.1). Conclusions Microbubble-enhanced sonothrombolysis improves microvascular patency. This effect is not dose- or microbubble formulation-dependent suggesting a class effect of microbubbles promoting microvascular reopening. This study demonstrates that microbubble-enhanced sonothrombolysis may be a therapeutic strategy for patients with persistent hypoperfusion of the ischemic territory.
Collapse
Affiliation(s)
- Nadine Schleicher
- Heart and Brain Research Group, Justus-Liebig-University, Giessen, Germany
- Department of Neurology, Justus-Liebig-University, Giessen, Germany
- Department of Cardiac Surgery, Kerckhoff Clinic, Bad Nauheim, Germany
| | - Amelia J. Tomkins
- Heart and Brain Research Group, Justus-Liebig-University, Giessen, Germany
- School of Biomedical Sciences & Pharmacy, University of Newcastle, and Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Marian Kampschulte
- Department of Diagnostic and Interventional Radiology, Justus-Liebig-University, Giessen, Germany
| | | | | | - Martin Juenemann
- Heart and Brain Research Group, Justus-Liebig-University, Giessen, Germany
- Department of Neurology, Justus-Liebig-University, Giessen, Germany
| | - Mesut Yeniguen
- Heart and Brain Research Group, Justus-Liebig-University, Giessen, Germany
- Department of Neurology, Justus-Liebig-University, Giessen, Germany
| | - Gabriele A. Krombach
- Department of Diagnostic and Interventional Radiology, Justus-Liebig-University, Giessen, Germany
| | - Manfred Kaps
- Department of Neurology, Justus-Liebig-University, Giessen, Germany
| | - Neil J. Spratt
- School of Biomedical Sciences & Pharmacy, University of Newcastle, and Hunter Medical Research Institute, Newcastle, NSW, Australia
- Hunter New England Local Health District, New Lambton, NSW, Australia
| | - Tibo Gerriets
- Heart and Brain Research Group, Justus-Liebig-University, Giessen, Germany
- Department of Neurology, Justus-Liebig-University, Giessen, Germany
- Department of Neurology, Buergerhospital Friedberg, Friedberg, Germany
| | - Max Nedelmann
- Sana Regio Klinkum, Pinneberg, Germany
- Department of Neurology, University Hospital Center Hamburg-Eppendorf, Hamburg, Germany
- * E-mail:
| |
Collapse
|
20
|
Abstract
Thrombo-occlusive disease is a leading cause of morbidity and mortality. In this chapter, the use of ultrasound to accelerate clot breakdown alone or in combination with thrombolytic drugs will be reported. Primary thrombus formation during cardiovascular disease and standard treatment methods will be discussed. Mechanisms for ultrasound enhancement of thrombolysis, including thermal heating, radiation force, and cavitation, will be reviewed. Finally, in-vitro, in-vivo and clinical evidence of enhanced thrombolytic efficacy with ultrasound will be presented and discussed.
Collapse
Affiliation(s)
- Kenneth B Bader
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Guillaume Bouchoux
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Christy K Holland
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
21
|
Roessler FC, Wang Z, Schumacher S, Ohlrich M, Kaps M, Menciassi A, Eggers J. In Vitro Examination of the Thrombolytic Efficacy of Desmoteplase and Therapeutic Ultrasound Compared with rt-PA. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:3233-3240. [PMID: 26349583 DOI: 10.1016/j.ultrasmedbio.2015.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 06/26/2015] [Accepted: 07/08/2015] [Indexed: 06/05/2023]
Abstract
The aim of the study described here was to evaluate the thrombolytic efficacy of combined treatment with the fibrin-selective plasminogen activator desmoteplase (DSPA) and therapeutic ultrasound (sonothrombolysis [STL]) compared with conventional rt-PA (recombinant tissue plasminogen activator) treatment in vitro. Lysis rates were determined by the weight loss of platelet-rich plasma (PRP) clots treated with rt-PA (60 kU/mL) or DSPA (2 μg/mL) combined with pulsed wave ultrasound (2 MHz, 0.179 W/cm(2)). To reveal the individual effects of medication and ultrasound, lysis rates were also determined for DSPA monotherapy and for combined treatment with rt-PA and ultrasound. Clots solely placed in plasma served as the control group. Lysis increased significantly with rt-PA (26.5 ± 7.8%) and DSPA (30.5 ± 6%) compared with the control group (18.2 ± 5.9%) (each p < 0.001). DSPA lysis was more effective than rt-PA lysis (without STL: p = 0.015, with STL: p = 0.01). Combined treatment with DSPA and 2-MHz STL significantly exceeded rt-PA lysis (32.8% vs. 26.5%, p < 0.001).
Collapse
Affiliation(s)
| | - Zhihua Wang
- The BioRobotics Institute, Scuola Superiore Sant'Anna and Center for Micro-BioRobotics@SSSA, Istituto Italiano di Tecnologia, Pontedera, Italy
| | - Sabrina Schumacher
- Department of Neurology, University Hospital of Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Marcus Ohlrich
- Department of Neurology, University Hospital of Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Manfred Kaps
- Department of Neurology, University Hospital Giessen, Giessen, Germany
| | - Arianna Menciassi
- The BioRobotics Institute, Scuola Superiore Sant'Anna and Center for Micro-BioRobotics@SSSA, Istituto Italiano di Tecnologia, Pontedera, Italy
| | - Jürgen Eggers
- Department of Neurology, Sana Kliniken Lübeck GmbH, Lübeck, Germany
| |
Collapse
|
22
|
Acconcia C, Leung BYC, Manjunath A, Goertz DE. The Effect of Short Duration Ultrasound Pulses on the Interaction Between Individual Microbubbles and Fibrin Clots. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:2774-2782. [PMID: 26116160 DOI: 10.1016/j.ultrasmedbio.2015.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 02/10/2015] [Accepted: 05/16/2015] [Indexed: 06/04/2023]
Abstract
In previous work, we examined microscale interactions between microbubbles and fibrin clots under exposure to 1 ms ultrasound pulses. This provided direct evidence that microbubbles were capable of deforming clot boundaries and penetrating into clots, while also affecting fluid uptake and inducing fibrin network damage. Here, we investigate the effect of short duration (15 μs) pulses on microscale bubble-clot interactions as function of bubble diameter (3-9 μm) and pressure. Individual microbubbles (n = 45) were placed at the clot boundary with optical tweezers and exposed to 1 MHz ultrasound. High-speed (10 kfps) imaging and 2-photon microscopy were performed during and after exposure, respectively. While broadly similar phenomena were observed as in the 1 ms pulse case (i.e., bubble penetration, network damage and fluid uptake), substantial quantitative differences were present. The pressure threshold for bubble penetration was increased from 0.39 MPa to 0.6 MPa, and those bubbles that did enter clots had reduced penetration depths and were associated with less fibrin network damage and nanobead uptake. This appeared to be due in large part to increased bubble shrinkage relative to the 1 ms pulse case. Stroboscopic imaging was performed on a subset of bubbles (n = 11) and indicated that complex bubble oscillations can occur during this process.
Collapse
Affiliation(s)
- Christopher Acconcia
- Department of Medical Biophysics, University of Toronto, Toronto, Canada; Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada.
| | - Ben Y C Leung
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Anoop Manjunath
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - David E Goertz
- Department of Medical Biophysics, University of Toronto, Toronto, Canada; Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| |
Collapse
|
23
|
Petit B, Bohren Y, Gaud E, Bussat P, Arditi M, Yan F, Tranquart F, Allémann E. Sonothrombolysis: the contribution of stable and inertial cavitation to clot lysis. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:1402-1410. [PMID: 25601463 DOI: 10.1016/j.ultrasmedbio.2014.12.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 12/04/2014] [Accepted: 12/10/2014] [Indexed: 06/04/2023]
Abstract
Microbubble-mediated sonothrombolysis (STL) is a remarkable approach to vascular occlusion therapy. However, STL remains a complex process with multiple interactions between clot, ultrasound (US), microbubbles (MB) and thrombolytic drug. The aim of this study was to evaluate the ability of combining US and MB to degrade fibrin and, more specifically, to assess the roles of both stable (SC) and inertial (IC) cavitation. Human blood clots containing radiolabeled fibrin were exposed to different combinations of recombinant tissue plasminogen activator (rtPA), US (1 MHz) and phospholipid MB. Three acoustic pressures were tested: 200, 350 and 1,300 kPa (peak-negative pressure). Clot lysis was assessed by diameter loss and release of radioactive fibrin degradation products. The combination rtPA + US + MB clearly revealed that IC (1,300 kPa) was able to enhance fibrin degradation significantly (66.3 ± 1.8%) compared with rtPA alone (51.7 ± 2.0%, p < 0.001). However, SC failed to enhance fibrin degradation at an acoustic pressure of 200 kPa. At 350 kPa, a synergistic effect between rtPA and US + MB was observed with an absolute increase of 6% compared to rtPA alone (p < 0.001). Conversely, without rtPA, the combination of US + MB was unable to degrade the fibrin network (0.3 ± 0.1%, p > 0.05 vs. control), but induced a distinct loss of red blood cells throughout the entire thickness of the clot, implying that MB were able to penetrate and cavitate inside the clot.
Collapse
Affiliation(s)
- B Petit
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland
| | - Y Bohren
- Bracco Suisse S.A., Plan-les-Ouates, Geneva, Switzerland
| | - E Gaud
- Bracco Suisse S.A., Plan-les-Ouates, Geneva, Switzerland
| | - P Bussat
- Bracco Suisse S.A., Plan-les-Ouates, Geneva, Switzerland
| | - M Arditi
- Bracco Suisse S.A., Plan-les-Ouates, Geneva, Switzerland
| | - F Yan
- Bracco Suisse S.A., Plan-les-Ouates, Geneva, Switzerland
| | - F Tranquart
- Bracco Suisse S.A., Plan-les-Ouates, Geneva, Switzerland
| | - E Allémann
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Geneva, Switzerland.
| |
Collapse
|
24
|
Ammi AY, Lindner JR, Zhao Y, Porter T, Siegel R, Kaul S. Efficacy and spatial distribution of ultrasound-mediated clot lysis in the absence of thrombolytics. Thromb Haemost 2015; 113:1357-69. [PMID: 25809056 DOI: 10.1160/th14-03-0286] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 01/17/2015] [Indexed: 11/05/2022]
Abstract
Ultrasound and microbubble (MB) contrast agents accelerate clot lysis, yet clinical trials have been performed without defining optimal acoustic conditions. Our aim was to assess the effect of acoustic pressure and frequency on the extent and spatial location of clot lysis. Clots from porcine blood were created with a 2-mm central lumen for infusion of lipid-shelled perfluorocarbon MBs (1×10(7) ml(-1)) or saline. Therapeutic ultrasound at 0.04, 0.25, 1.05, or 2.00 MHz was delivered at a wide range of peak rarefactional acoustic pressure amplitudes (PRAPAs). Ultrasound was administered over 20 minutes grouped on-off cycles to allow replenishment of MBs. The region of lysis was quantified using contrast-enhanced ultrasound imaging. In the absence of MBs, sonothrombolysis did not occur at any frequency. Sonothrombolysis was also absent in the presence of MBs despite their destruction at 0.04 and 2.00 MHz. It occurred at 0.25 and 1.05 MHz in the presence of MBs for PRAPAs > 1.2 MPa and increased with PRAPA. At 0.25 MHz the clot lysis was located in the far wall. At 1.05 MHz, however, there was a transition from far to near wall as PRAPA was increased. The area of clot lysis measured by ultrasound imaging correlated with that by micro-CT and quantification of debris in the effluent. In conclusion, sonothrombolysis with MBs was most efficient at 0.25 MHz. The spatial location of sonothrombolysis varies with pressure and frequency indicating that the geometric relation between therapeutic probe and vascular thrombosis is an important variable for successful lysis clinically.
Collapse
Affiliation(s)
- Azzdine Y Ammi
- Azzdine Y. Ammi, PhD, Knight Cardiovascular Institute, UHN-62, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR 97239, USA, Tel.: +1 503 494 8750, Fax: +1 503 494 8550, E-mail:
| | | | | | | | | | | |
Collapse
|
25
|
Petit B, Yan F, Bussat P, Bohren Y, Gaud E, Fontana P, Tranquart F, Allémann E. Fibrin degradation during sonothrombolysis – Effect of ultrasound, microbubbles and tissue plasminogen activator. J Drug Deliv Sci Technol 2015. [DOI: 10.1016/j.jddst.2014.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Tomkins AJ, Schleicher N, Murtha L, Kaps M, Levi CR, Nedelmann M, Spratt NJ. Platelet rich clots are resistant to lysis by thrombolytic therapy in a rat model of embolic stroke. EXPERIMENTAL & TRANSLATIONAL STROKE MEDICINE 2015; 7:2. [PMID: 25657829 PMCID: PMC4318170 DOI: 10.1186/s13231-014-0014-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 12/22/2014] [Indexed: 11/21/2022]
Abstract
Background Early recanalization of occluded vessels in stroke is closely associated with improved clinical outcome. Microbubble-enhanced sonothrombolysis is a promising therapy to improve recanalization rates and reduce the time to recanalization. Testing any thrombolytic therapy requires a model of thromboembolic stroke, but to date these models have been highly variable with regards to clot stability. Here, we developed a model of thromboembolic stroke in rats with site-specific delivery of platelet-rich clots (PRC) to the main stem of the middle cerebral artery (MCA). This model was used in a subsequent study to test microbubble-enhanced sonothrombolysis. Methods In Study 1 we investigated spontaneous recanalization rates of PRC in vivo over 4 hours and measured infarct volumes at 24 hours. In Study 2 we investigated tPA-mediated thrombolysis and microbubble-enhanced sonothrombolysis in this model. Results Study 1 demonstrated stable occlusion out to 4 hours in 5 of 7 rats. Two rats spontaneously recanalized at 40 and 70 minutes post-embolism. Infarct volumes were not significantly different in recanalized rats, 43.93 ± 15.44% of the ischemic hemisphere, compared to 48.93 ± 3.9% in non-recanalized animals (p = 0.7). In Study 2, recanalization was not observed in any of the groups post-treatment. Conclusions Site specific delivery of platelet rich clots to the MCA origin resulted in high rates of MCA occlusion, low rates of spontaneous clot lysis and large infarction. These platelet rich clots were highly resistant to tPA with or without microbubble-enhanced sonothrombolysis. This resistance of platelet rich clots to enhanced thrombolysis may explain recanalization failures clinically and should be an impetus to better clot-type identification and alternative recanalization methods. Electronic supplementary material The online version of this article (doi:10.1186/s13231-014-0014-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Amelia J Tomkins
- School of Biomedical Sciences & Pharmacy, University of Newcastle, and Hunter Medical Research Institute, Newcastle, Australia
| | - Nadine Schleicher
- Heart and Brain Research Group, Justus-Liebig-University, Giessen and Kerckhoff Clinic, Bad Nauheim, Germany ; Department of Neurology, Justus-Liebig-University, Giessen, Germany ; Department of Cardiac Surgery, Kerckhoff Clinic, Bad Nauheim, Germany
| | - Lucy Murtha
- School of Biomedical Sciences & Pharmacy, University of Newcastle, and Hunter Medical Research Institute, Newcastle, Australia
| | - Manfred Kaps
- Department of Neurology, Justus-Liebig-University, Giessen, Germany
| | - Christopher R Levi
- Hunter New England Local Health District, Newcastle, Australia ; School of Medicine and Public Health, University of Newcastle, and Hunter Medical Research Institute, Newcastle, Australia
| | - Max Nedelmann
- Department of Neurology, Justus-Liebig-University, Giessen, Germany ; Sana Regio Klinkum, Pinneberg, Germany ; Department of Neurology, University Hospital Center Hamburg-Eppendorf, Hamburg, Germany
| | - Neil J Spratt
- School of Biomedical Sciences & Pharmacy, University of Newcastle, and Hunter Medical Research Institute, Newcastle, Australia ; Hunter New England Local Health District, Newcastle, Australia
| |
Collapse
|
27
|
Bader KB, Gruber MJ, Holland CK. Shaken and stirred: mechanisms of ultrasound-enhanced thrombolysis. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:187-96. [PMID: 25438846 PMCID: PMC4258471 DOI: 10.1016/j.ultrasmedbio.2014.08.018] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 08/05/2014] [Accepted: 08/22/2014] [Indexed: 05/03/2023]
Abstract
The use of ultrasound and microbubbles as an effective adjuvant to thrombolytics has been reported in vitro, ex vivo and in vivo. However, the specific mechanisms underlying ultrasound-enhanced thrombolysis have yet to be elucidated. We present visual observations illustrating two mechanisms of ultrasound-enhanced thrombolysis: acoustic cavitation and radiation force. An in vitro flow model was developed to observe human whole blood clots exposed to human fresh-frozen plasma, recombinant tissue-type plasminogen activator (0, 0.32, 1.58 or 3.15 μg/mL) and the ultrasound contrast agent Definity (2 μL/mL). Intermittent, continuous-wave ultrasound (120 kHz, 0.44 MPa peak-to-peak pressure) was used to insonify the perfusate. Ultraharmonic emissions indicative of stable cavitation were monitored with a passive cavitation detector. The clot was observed with an inverted microscope, and images were recorded with a charge-coupled device camera. The images were post-processed to determine the time-dependent clot diameter and root-mean-square velocity of the clot position. Clot lysis occurred preferentially surrounding large, resonant-sized bubbles undergoing stable oscillations. Ultraharmonic emissions from stable cavitation were found to correlate with the lytic rate. Clots were observed to translate synchronously with the initiation and cessation of the ultrasound exposure. The root-mean-square velocity of the clot correlated with the lytic rate. These data provide visual documentation of stable cavitation activity and radiation force during sub-megahertz sonothrombolysis. The observations of this study suggest that the process of clot lysis is complex, and both stable cavitation and radiation force are mechanistically responsible for this beneficial bio-effect in this in vitro model.
Collapse
Affiliation(s)
- Kenneth B Bader
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA.
| | - Matthew J Gruber
- Biomedical Engineering Program, University of Cincinnati, Cincinnati, Ohio, USA
| | - Christy K Holland
- Division of Cardiovascular Health and Disease, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, USA; Biomedical Engineering Program, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
28
|
Segers T, de Jong N, Lohse D, Versluis M. Microbubbles for Medical Applications. MICROFLUIDICS FOR MEDICAL APPLICATIONS 2014. [DOI: 10.1039/9781849737593-00081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Ultrasound contrast agent (UCA) suspensions contain encapsulated microbubbles with radii ranging from 1 to 10 micrometers. The bubbles oscillate to the driving ultrasound pulse generating harmonics of the driving ultrasound frequency. This feature allows for the discrimination of non-linear bubble echoes from linear tissue echoes facilitating the visualization and quantification of blood perfusion in organs. Targeting the microbubbles to specific receptors in the body has led to molecular imaging application with ultrasound and targeted drug delivery with drug-loaded microbubbles. Traditional UCA production methods offer high yield but poor control over the microbubble size and uniformity. Medical ultrasound transducers typically operate at a single frequency, therefore only a small selection of bubbles resonates to the driving ultrasound pulse. Here we discuss recent lab-on-a-chip based production and sorting methods that have been shown to produce highly monodisperse bubbles, thereby improving the sensitivity of contrast-enhanced ultrasound imaging and molecular imaging with microbubbles. Moreover, monodisperse UCA show great potential for targeted drug delivery by the well-controlled bubble response.
Collapse
Affiliation(s)
- Tim Segers
- Physics of Fluids Group, MIRA Institute for Biomedical Technology and Technical Medicine, MESA+ Institute for Nanotechnology, University of Twente PO Box 217 7500 AE Enschede The Netherlands
| | - Nico de Jong
- Physics of Fluids Group, MIRA Institute for Biomedical Technology and Technical Medicine, MESA+ Institute for Nanotechnology, University of Twente PO Box 217 7500 AE Enschede The Netherlands
| | - Detlef Lohse
- Physics of Fluids Group, MIRA Institute for Biomedical Technology and Technical Medicine, MESA+ Institute for Nanotechnology, University of Twente PO Box 217 7500 AE Enschede The Netherlands
| | - Michel Versluis
- Physics of Fluids Group, MIRA Institute for Biomedical Technology and Technical Medicine, MESA+ Institute for Nanotechnology, University of Twente PO Box 217 7500 AE Enschede The Netherlands
| |
Collapse
|
29
|
Acconcia C, Leung BYC, Manjunath A, Goertz DE. Interactions between individual ultrasound-stimulated microbubbles and fibrin clots. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:2134-2150. [PMID: 24882525 DOI: 10.1016/j.ultrasmedbio.2014.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 02/23/2014] [Accepted: 03/06/2014] [Indexed: 06/03/2023]
Abstract
The use of ultrasound-stimulated microbubbles (USMBs) to promote thrombolysis is well established, but there remains considerable uncertainty about the mechanisms of this process. Here we examine the microscale interactions between individual USMBs and fibrin clots as a function of bubble size, exposure conditions and clot type. Microbubbles (n = 185) were placed adjacent to clot boundaries ("coarse" or "fine") using optical tweezers and exposed to 1-MHz ultrasound as a function of pressure (0.1-0.39 MPa). High-speed (10 kfps) imaging was employed, and clots were subsequently assessed with 2-photon microscopy. For fine clots, 46% of bubbles "embedded" within 10 μm of the clot boundary at pressures of 0.1 and 0.2 MPa, whereas at 0.39 MPa, 53% of bubbles penetrated and transited into the clots with an incidence inversely related to their diameter. A substantial fraction of penetrating bubbles induced fibrin network damage and promoted the uptake of nanobeads. In coarse clots, penetration occurred more readily and at lower pressures than in fine clots. The results therefore provide direct evidence of therapeutically relevant effects of USMBs and indicate their dependence on size, exposure conditions and clot properties.
Collapse
Affiliation(s)
- Christopher Acconcia
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Sunnybrook Research Institute, Toronto, Ontario, Canada.
| | - Ben Y C Leung
- Sunnybrook Research Institute, Toronto, Ontario, Canada
| | | | - David E Goertz
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Sunnybrook Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
30
|
Pajek D, Burgess A, Huang Y, Hynynen K. High-intensity focused ultrasound sonothrombolysis: the use of perfluorocarbon droplets to achieve clot lysis at reduced acoustic power. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:2151-61. [PMID: 25023095 PMCID: PMC4130783 DOI: 10.1016/j.ultrasmedbio.2014.03.026] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 03/21/2014] [Accepted: 03/24/2014] [Indexed: 05/03/2023]
Abstract
The purpose of this study was to evaluate use of intravascular perfluorocarbon droplets to reduce the sonication power required to achieve clot lysis with high-intensity focused ultrasound. High-intensity focused ultrasound with droplets was initially applied to blood clots in an in vitro flow apparatus, and inertial cavitation thresholds were determined. An embolic model for ischemic stroke was used to illustrate the feasibility of this technique in vivo. Recanalization with intravascular droplets was achieved in vivo at 24 ± 5% of the sonication power without droplets. Recanalization occurred in 71% of rabbits that received 1-ms pulsed sonications during continuous intravascular droplet infusion (p = 0.041 vs controls). Preliminary experiments indicated that damage was confined to the ultrasonic focus, suggesting that tolerable treatments would be possible with a more tightly focused hemispheric array that allows the whole focus to be placed inside of the main arteries in the human brain.
Collapse
Affiliation(s)
- Daniel Pajek
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada.
| | - Alison Burgess
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Yuexi Huang
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada
| | - Kullervo Hynynen
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|
31
|
de Saint Victor M, Crake C, Coussios CC, Stride E. Properties, characteristics and applications of microbubbles for sonothrombolysis. Expert Opin Drug Deliv 2014; 11:187-209. [DOI: 10.1517/17425247.2014.868434] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
32
|
|
33
|
Bader KB, Holland CK. Gauging the likelihood of stable cavitation from ultrasound contrast agents. Phys Med Biol 2012; 58:127-44. [PMID: 23221109 DOI: 10.1088/0031-9155/58/1/127] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The mechanical index (MI) was formulated to gauge the likelihood of adverse bioeffects from inertial cavitation. However, the MI formulation did not consider bubble activity from stable cavitation. This type of bubble activity can be readily nucleated from ultrasound contrast agents (UCAs) and has the potential to promote beneficial bioeffects. Here, the presence of stable cavitation is determined numerically by tracking the onset of subharmonic oscillations within a population of bubbles for frequencies up to 7 MHz and peak rarefactional pressures up to 3 MPa. In addition, the acoustic pressure rupture threshold of an UCA population was determined using the Marmottant model. The threshold for subharmonic emissions of optimally sized bubbles was found to be lower than the inertial cavitation threshold for all frequencies studied. The rupture thresholds of optimally sized UCAs were found to be lower than the threshold for subharmonic emissions for either single cycle or steady state acoustic excitations. Because the thresholds of both subharmonic emissions and UCA rupture are linearly dependent on frequency, an index of the form I(CAV) = P(r)/f (where P(r) is the peak rarefactional pressure in MPa and f is the frequency in MHz) was derived to gauge the likelihood of subharmonic emissions due to stable cavitation activity nucleated from UCAs.
Collapse
Affiliation(s)
- Kenneth B Bader
- Department of Internal Medicine, Division of Cardiovascular Diseases, University of Cincinnati, Cincinnati, OH, USA.
| | | |
Collapse
|