1
|
Huang Y, Herbst EB, Xie Y, Yin L, Islam ZH, Kent EW, Wang B, Klibanov AL, Hossack JA. In Vivo Validation of Modulated Acoustic Radiation Force-Based Imaging in Murine Model of Abdominal Aortic Aneurysm Using VEGFR-2-Targeted Microbubbles. Invest Radiol 2023; 58:865-873. [PMID: 37433074 PMCID: PMC10784413 DOI: 10.1097/rli.0000000000001000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
OBJECTIVES The objective of this study is to validate the modulated acoustic radiation force (mARF)-based imaging method in the detection of abdominal aortic aneurysm (AAA) in murine models using vascular endothelial growth factor receptor 2 (VEGFR-2)-targeted microbubbles (MBs). MATERIALS AND METHODS The mouse AAA model was prepared using the subcutaneous angiotensin II (Ang II) infusion combined with the β-aminopropionitrile monofumarate solution dissolved in drinking water. The ultrasound imaging session was performed at 7 days, 14 days, 21 days, and 28 days after the osmotic pump implantation. For each imaging session, 10 C57BL/6 mice were implanted with Ang II-filled osmotic pumps, and 5 C57BL/6 mice received saline infusion only as the control group. Biotinylated lipid MBs conjugated to either anti-mouse VEGFR-2 antibody (targeted MBs) or isotype control antibody (control MBs) were prepared before each imaging session and were injected into mice via tail vein catheter. Two separate transducers were colocalized to image the AAA and apply ARF to translate MBs simultaneously. After each imaging session, tissue was harvested and the aortas were used for VEGFR-2 immunostaining analysis. From the collected ultrasound image data, the signal magnitude response of the adherent targeted MBs was analyzed, and a parameter, residual-to-saturation ratio ( Rres - sat ), was defined to measure the enhancement in the adherent targeted MBs signal after the cessation of ARF compared with the initial signal intensity. Statistical analysis was performed with the Welch t test and analysis of variance test. RESULTS The Rres - sat of abdominal aortic segments from Ang II-challenged mice was significantly higher compared with that in the saline-infused control group ( P < 0.001) at all 4 time points after osmotic pump implantation (1 week to 4 weeks). In control mice, the Rres - sat values were 2.13%, 1.85%, 3.26%, and 4.85% at 1, 2, 3, and 4 weeks postimplantation, respectively. In stark contrast, the Rres - sat values for the mice with Ang II-induced AAA lesions were 9.20%, 20.6%, 22.7%, and 31.8%, respectively. It is worth noting that there was a significant difference between the Rres - sat for Ang II-infused mice at all 4 time points ( P < 0.005), a finding not present in the saline-infused mice. Immunostaining results revealed the VEGFR-2 expression was increased in the abdominal aortic segments of Ang II-infused mice compared with the control group. CONCLUSIONS The mARF-based imaging technique was validated in vivo using a murine model of AAA and VEGFR-2-targeted MBs. Results in this study indicated that the mARF-based imaging technique has the ability to detect and assess AAA growth at early stages based on the signal intensity of adherent targeted MBs, which is correlated with the expression level of the desired molecular biomarker. The results may suggest, in very long term, a pathway toward eventual clinical implementation for an ultrasound molecular imaging-based approach to AAA risk assessment in asymptomatic patients.
Collapse
Affiliation(s)
- Yi Huang
- From the Department of Biomedical Engineering, University of Virginia, Charlottesville, VA (Y.H., Y.X., J.A.H.); Philips Research North America, Cambridge, MA (E.B.H.); Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA (L.Y., Z.H.I., E.W.K., B.W.); and Division of Cardiovascular Medicine, Cardiovascular Research Center and Department of Biomedical Engineering, University of Virginia, Charlottesville, VA (A.L.K.)
| | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Herbst EB, Unnikrishnan S, Klibanov AL, Mauldin FW, Hossack JA. Validation of Normalized Singular Spectrum Area as a Classifier for Molecularly Targeted Microbubble Adherence. ULTRASOUND IN MEDICINE & BIOLOGY 2019; 45:2493-2501. [PMID: 31227262 PMCID: PMC7480935 DOI: 10.1016/j.ultrasmedbio.2019.05.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 05/24/2023]
Abstract
Ultrasound molecular imaging is a diagnostic technique wherein molecularly targeted microbubble contrast agents are imaged to reveal disease markers on the blood vessel endothelium. Currently, microbubble adhesion to affected tissue can be quantified using differential targeted enhancement (dTE), which measures the late enhancement of adherent microbubbles through administration of destructive ultrasound pressures. In this study, we investigated a statistical parameter called the normalized singular spectrum area (NSSA) as a means to detect microbubble adhesion without microbubble destruction. We compared the signal differentiation capability of NSSA with matched dTE measurements in a mouse hindlimb tumor model. Results indicated that NSSA-based signal classification performance matches dTE when differentiating adherent microbubble from non-adherent microbubble signals (receiver operating characteristic area under the curve = 0.95), and improves classification performance when differentiating microbubble from tissue signals (p < 0.005). NSSA-based signal classification eliminates the need for destruction of contrast, and may offer better sensitivity, specificity and the opportunity for real-time microbubble detection and classification.
Collapse
Affiliation(s)
- Elizabeth B Herbst
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Sunil Unnikrishnan
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Alexander L Klibanov
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA; Division of Cardiovascular Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - F William Mauldin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - John A Hossack
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
3
|
Abstract
OBJECTIVES The aim of this study was to demonstrate a new clinically translatable ultrasound molecular imaging approach, modulated acoustic radiation force-based imaging, which is capable of rapid and reliable detection of inflammation as validated in mouse abdominal aorta. MATERIALS AND METHODS Animal studies were approved by the Institutional Animal Care and Use Committee at the University of Virginia. C57BL/6 mice stimulated with tumor necrosis factor α, or fed with a high-fat diet, were used as inflammation (MInflammation) and diet-induced obesity (DIO) (MDIO) models, respectively. C57BL/6 mice, not exposed to tumor necrosis factor α or DIO, were used as controls (MNormal). P-selectin-targeted (MBP-selectin), vascular cell adhesion molecule (VCAM)-1-targeted (MBVCAM-1), and isotype control (MBControl) microbubbles were synthesized by conjugating anti-P-selectin, anti-VCAM-1, and isotype control antibodies to microbubbles, respectively. The abdominal aortas were imaged for 180 seconds during a constant infusion of microbubbles. A parameter, residual-to-saturation ratio (RSR), was used to assess P-selectin and VCAM-1. Statistical analysis was performed with the Student t test. RESULTS For the inflammation model, RSR of the MInflammation + MBP-selectin group was significantly higher (40.9%, P < 0.0005) than other groups. For the DIO model, RSR of the MDIO + MBVCAM-1 group was significantly higher (60.0%, P < 0.0005) than other groups. Immunohistochemistry staining of the abdominal aorta confirmed the expression of P-selectin and VCAM-1. CONCLUSIONS A statistically significant assessment of P-selectin and VCAM-1 in mouse abdominal aorta was achieved. This technique yields progress toward rapid targeted molecular imaging in large blood vessels and thus has the potential for early diagnosis, treatment selection, and risk stratification of atherosclerosis.
Collapse
|
4
|
Wang S, Hossack JA, Klibanov AL. Targeting of microbubbles: contrast agents for ultrasound molecular imaging. J Drug Target 2018; 26:420-434. [PMID: 29258335 DOI: 10.1080/1061186x.2017.1419362] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
For contrast ultrasound imaging, the most efficient contrast agents comprise highly compressible gas-filled microbubbles. These micrometer-sized particles are typically filled with low-solubility perfluorocarbon gases, and coated with a thin shell, often a lipid monolayer. These particles circulate in the bloodstream for several minutes; they demonstrate good safety and are already in widespread clinical use as blood pool agents with very low dosage necessary (sub-mg per injection). As ultrasound is an ubiquitous medical imaging modality, with tens of millions of exams conducted annually, its use for molecular/targeted imaging of biomarkers of disease may enable wider implementation of personalised medicine applications, precision medicine, non-invasive quantification of biomarkers, targeted guidance of biopsy and therapy in real time. To achieve this capability, microbubbles are decorated with targeting ligands, possessing specific affinity towards vascular biomarkers of disease, such as tumour neovasculature or areas of inflammation, ischaemia-reperfusion injury or ischaemic memory. Once bound to the target, microbubbles can be selectively visualised to delineate disease location by ultrasound imaging. This review discusses the general design trends and approaches for such molecular ultrasound imaging agents, which are currently at the advanced stages of development, and are evolving towards widespread clinical trials.
Collapse
Affiliation(s)
- Shiying Wang
- a Department of Biomedical Engineering , University of Virginia , Charlottesville , VA , USA
| | - John A Hossack
- a Department of Biomedical Engineering , University of Virginia , Charlottesville , VA , USA
| | - Alexander L Klibanov
- a Department of Biomedical Engineering , University of Virginia , Charlottesville , VA , USA.,b Cardiovascular Division (Department of Medicine), Robert M Berne Cardiovascular Research Center , University of Virginia , Charlottesville , VA , USA
| |
Collapse
|
5
|
Ultra-Low-Dose Ultrasound Molecular Imaging for the Detection of Angiogenesis in a Mouse Murine Tumor Model: How Little Can We See? Invest Radiol 2017; 51:758-766. [PMID: 27654582 DOI: 10.1097/rli.0000000000000310] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES The objective of this study was to evaluate the minimum microbubble dose for ultrasound molecular imaging to achieve statistically significant detection of angiogenesis in a mouse model. MATERIALS AND METHODS The preburst minus postburst method was implemented on a Verasonics ultrasound research scanner using a multiframe compounding pulse inversion imaging sequence. Biotinylated lipid (distearoyl phosphatidylcholine-based) microbubbles that were conjugated with antivascular endothelial growth factor 2 (VEGFR2) antibody (MBVEGFR2) or isotype control antibody (MBControl) were injected into mice carrying adenocarcinoma xenografts. Different injection doses ranging from 5 × 10 to 1 × 10 microbubbles per mouse were evaluated to determine the minimum diagnostically effective dose. RESULTS The proposed imaging sequence was able to achieve statistically significant detection (P < 0.05, n = 5) of VEGFR2 in tumors with a minimum MBVEGFR2 injection dose of only 5 × 10 microbubbles per mouse (distearoyl phosphatidylcholine at 0.053 ng/g mouse body mass). Nonspecific adhesion of MBControl at the same injection dose was negligible. In addition, the targeted contrast ultrasound signal of MBVEGFR2 decreased with lower microbubble doses, whereas nonspecific adhesion of MBControl increased with higher microbubble doses. CONCLUSIONS The dose of 5 × 10 microbubbles per animal is now the lowest injection dose on record for ultrasound molecular imaging to achieve statistically significant detection of molecular targets in vivo. Findings in this study provide us with further guidance for future developments of clinically translatable ultrasound molecular imaging applications using a lower dose of microbubbles.
Collapse
|
6
|
Wang S, Herbst EB, Pye SD, Moran CM, Hossack JA. Pipe Phantoms With Applications in Molecular Imaging and System Characterization. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2017; 64:39-52. [PMID: 27845659 PMCID: PMC5490078 DOI: 10.1109/tuffc.2016.2626465] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Pipe (vessel) phantoms mimicking human tissue and blood flow are widely used for cardiovascular related research in medical ultrasound. Pipe phantom studies require the development of materials and liquids that match the acoustic properties of soft tissue, blood vessel wall, and blood. Over recent years, pipe phantoms have been developed to mimic the molecular properties of the simulated blood vessels. In this paper, the design, construction, and functionalization of pipe phantoms are introduced and validated for applications in molecular imaging and ultrasound imaging system characterization. There are three major types of pipe phantoms introduced: 1) a gelatin-based pipe phantom; 2) a polydimethylsiloxane-based pipe phantom; and 3) the "Edinburgh pipe phantom." These phantoms may be used in the validation and assessment of the dynamics of microbubble-based contrast agents and, in the case of a small diameter tube phantom, for assessing imaging system spatial resolution/contrast performance. The materials and procedures required to address each of the phantoms are described.
Collapse
|
7
|
Optical Verification of Microbubble Response to Acoustic Radiation Force in Large Vessels With In Vivo Results. Invest Radiol 2016; 50:772-84. [PMID: 26135018 DOI: 10.1097/rli.0000000000000185] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The objective of this study was to optically verify the dynamic behaviors of adherent microbubbles in large blood vessel environments in response to a new ultrasound technique using modulated acoustic radiation force. MATERIALS AND METHODS Polydimethylsiloxane (PDMS) flow channels coated with streptavidin were used in targeted groups to mimic large blood vessels. The custom-modulated acoustic radiation force beam sequence was programmed on a Verasonics research scanner. In vitro experiments were performed by injecting a biotinylated lipid-perfluorobutane microbubble dispersion through flow channels. The dynamic response of adherent microbubbles was detected acoustically and simultaneously visualized using a video camera connected to a microscope. In vivo verification was performed in a large abdominal blood vessel of a murine model for inflammation with injection of biotinylated microbubbles conjugated with P-selectin antibody. RESULTS Aggregates of adherent microbubbles were observed optically under the influence of acoustic radiation force. Large microbubble aggregates were observed solely in control groups without targeted adhesion. Additionally, the dispersion of microbubble aggregates were demonstrated to lead to a transient acoustic signal enhancement in control groups (a new phenomenon we refer to as "control peak"). In agreement with in vitro results, the control peak phenomenon was observed in vivo in a murine model. CONCLUSIONS This study provides the first optical observation of microbubble-binding dynamics in large blood vessel environments with application of a modulated acoustic radiation force beam sequence. With targeted adhesion, secondary radiation forces were unable to produce large aggregates of adherent microbubbles. Additionally, the new phenomenon called control peak was observed both in vitro and in vivo in a murine model for the first time. The findings in this study provide us with a better understanding of microbubble behaviors in large blood vessel environments with application of acoustic radiation force and could potentially guide future beam sequence designs or signal processing routines for enhanced ultrasound molecular imaging.
Collapse
|
8
|
Shelton SE, Lindsey BD, Tsuruta JK, Foster FS, Dayton PA. Molecular Acoustic Angiography: A New Technique for High-resolution Superharmonic Ultrasound Molecular Imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:769-81. [PMID: 26678155 PMCID: PMC5653972 DOI: 10.1016/j.ultrasmedbio.2015.10.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 10/14/2015] [Accepted: 10/18/2015] [Indexed: 05/09/2023]
Abstract
Ultrasound molecular imaging utilizes targeted microbubbles to bind to vascular targets such as integrins, selectins and other extracellular binding domains. After binding, these microbubbles are typically imaged using low pressures and multi-pulse imaging sequences. In this article, we present an alternative approach for molecular imaging using ultrasound that relies on superharmonic signals produced by microbubble contrast agents. Bound bubbles were insonified near resonance using a low frequency (4 MHz) element and superharmonic echoes were received at high frequencies (25-30 MHz). Although this approach was observed to produce declining image intensity during repeated imaging in both in vitro and in vivo experiments because of bubble destruction, the feasibility of superharmonic molecular imaging was demonstrated for transmit pressures, which are sufficiently high to induce shell disruption in bound microbubbles. This approach was validated using microbubbles targeted to the αvβ3 integrin in a rat fibrosarcoma model (n = 5) and combined with superharmonic images of free microbubbles to produce high-contrast, high-resolution 3-D volumes of both microvascular anatomy and molecular targeting. Image intensity over repeated scans and the effect of microbubble diameter were also assessed in vivo, indicating that larger microbubbles yield increased persistence in image intensity. Using ultrasound-based acoustic angiography images rather than conventional B-mode ultrasound to provide the underlying anatomic information facilitates anatomic localization of molecular markers. Quantitative analysis of relationships between microvasculature and targeting information indicated that most targeting occurred within 50 μm of a resolvable vessel (>100 μm diameter). The combined information provided by these scans may present new opportunities for analyzing relationships between microvascular anatomy and vascular targets, subject only to limitations of the current mechanically scanned system and microbubble persistence to repeated imaging at moderate mechanical indices.
Collapse
Affiliation(s)
- Sarah E Shelton
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA
| | - Brooks D Lindsey
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA
| | - James K Tsuruta
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - F Stuart Foster
- Department of Medical Biophysics, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Paul A Dayton
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina, USA; Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.
| |
Collapse
|
9
|
Abou-Elkacem L, Bachawal SV, Willmann JK. Ultrasound molecular imaging: Moving toward clinical translation. Eur J Radiol 2015; 84:1685-93. [PMID: 25851932 DOI: 10.1016/j.ejrad.2015.03.016] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 03/13/2015] [Indexed: 12/11/2022]
Abstract
Ultrasound is a widely available, cost-effective, real-time, non-invasive and safe imaging modality widely used in the clinic for anatomical and functional imaging. With the introduction of novel molecularly-targeted ultrasound contrast agents, another dimension of ultrasound has become a reality: diagnosing and monitoring pathological processes at the molecular level. Most commonly used ultrasound molecular imaging contrast agents are micron sized, gas-containing microbubbles functionalized to recognize and attach to molecules expressed on inflamed or angiogenic vascular endothelial cells. There are several potential clinical applications currently being explored including earlier detection, molecular profiling, and monitoring of cancer, as well as visualization of ischemic memory in transient myocardial ischemia, monitoring of disease activity in inflammatory bowel disease, and assessment of arteriosclerosis. Recently, a first clinical grade ultrasound contrast agent (BR55), targeted at a molecule expressed in neoangiogenesis (vascular endothelial growth factor receptor type 2; VEGFR2) has been introduced and safety and feasibility of VEGFR2-targeted ultrasound imaging is being explored in first inhuman clinical trials in various cancer types. This review describes the design of ultrasound molecular imaging contrast agents, imaging techniques, and potential future clinical applications of ultrasound molecular imaging.
Collapse
Affiliation(s)
- Lotfi Abou-Elkacem
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, School of Medicine, Stanford, CA, USA
| | - Sunitha V Bachawal
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, School of Medicine, Stanford, CA, USA
| | - Jürgen K Willmann
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, School of Medicine, Stanford, CA, USA.
| |
Collapse
|