1
|
Huang W, Lindner JR. The Evolving Status of Cavitation Therapy in Acute Myocardial Infarction. J Am Soc Echocardiogr 2024; 37:993-995. [PMID: 38986919 DOI: 10.1016/j.echo.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Affiliation(s)
- Weiting Huang
- Cardiovascular Division and Robert M. Berne Cardiovascular Research Center, University of Virgina, Charlottesville, Virginia
| | - Jonathan R Lindner
- Cardiovascular Division and Robert M. Berne Cardiovascular Research Center, University of Virgina, Charlottesville, Virginia.
| |
Collapse
|
2
|
Wang R, Chen X, Zha D. Long-pulsed ultrasound-mediated microbubble thrombolysis in a rat model of microvascular obstruction. Open Med (Wars) 2024; 19:20240935. [PMID: 38584836 PMCID: PMC10997007 DOI: 10.1515/med-2024-0935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/01/2024] [Accepted: 02/22/2024] [Indexed: 04/09/2024] Open
Abstract
In up to 30% patients who experience acute myocardial infarction, successful recanalization of the epicardial coronary artery cannot provide adequate microvascular reperfusion. In this study, we sought to determine whether long-pulsed ultrasound (US)-mediated microbubble (MB) cavitation was useful for the treatment of microvascular obstruction, and the therapeutic effects were compared within different long-pulse-length and short-pulsed US. Microvascular obstruction model was established by injecting micro-thrombi into common iliac artery of a rat's hind limb. About 1 MHz US with different long pulse lengths (ranging from 100 to 50,000 cycles) was delivered, compared to short pulse (5 cycles). The control group was given MB only without therapeutic US. Contrast perfusion images were performed at baseline, emboli, and 1, 5, 10 min post-embolization, and peak plateau video intensity (A) was obtained to evaluate the therapeutic effects. Long-tone-burst US showed better thrombolytic effects than short-pulsed US (1,000, 5,000 cycles >500 cycles, >5 cycles, and control) (P < 0.01). 1,000 cycles group showed the optimal thrombolytic effect, but microvascular hemorrhage was observed in 50,000 cycles group. In conclusion, long-tone-burst US-enhanced MB therapy mediated successful thrombolysis and may offer a powerful approach for the treatment for microvascular obstruction within a certain pulse length.
Collapse
Affiliation(s)
- Rui Wang
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Ultrasound, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Xianghui Chen
- Department of Cardiology, The First Affiliated Hospital of Jinan University, No. 613 Huangpu West Avenue, Guangzhou, Guangdong, China
| | - Daogang Zha
- Department of General Practice, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
3
|
Zhou S, Li J, Chen X, Huang B, Lu D, Zhang T. Mediation of long-pulsed ultrasound enhanced microbubble recombinant tissue plasminogen activator thrombolysis in a rat model of platelet-rich thrombus. Cardiovasc Diagn Ther 2024; 14:51-58. [PMID: 38434566 PMCID: PMC10904306 DOI: 10.21037/cdt-23-356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/29/2023] [Indexed: 03/05/2024]
Abstract
Background Ultrasound (US)-enhanced microbubble (MB) therapy has been investigated as a therapeutic technique to facilitate the thrombolysis for the treatment of pericardial and microvascular obstruction. This study sought to assess the therapeutic effects of long-pulsed US-assisted MB-mediated recombinant tissue plasminogen activator (rt-PA) thrombolysis in a rat model of platelet-rich thrombus. Methods Ferric chloride (10%) was used to induce total arterial occlusion before formation of platelet-rich thrombi. Therapeutic long-tone-burst US (1 MHz, 0.6 MPa, 1,000-µs pulse length) was used, and 2.9×109/mL of lipid MBs and 1 mg/mL of rt-PA were infused. Subsequently, 42 Sprague-Dawley (SD) male rats were randomly divided into seven groups: (I) control; (II) rt-PA; (III) high duty cycle US + MB; (IV) low duty cycle US + rt-PA; (V) high duty cycle US + rt-PA; (VI) low duty cycle US + rt-PA + MB; and (VII) high duty cycle US + rt-PA + MB. The recanalization grades were evaluated after 20 minutes' treatment. Results Compared to the control, there was significant improvement in recanalization in the US + rt-PA groups (P=0.01 vs. control), US (low duty cycle) + rt-PA + MB (P=0.003 vs. control) and US (high duty cycle) + rt-PA + MB (P<0.001 vs. control) groups, in which recanalization was successfully achieved in all rats. Conclusions Long-pulsed US-enhanced MB-mediated rt-PA thrombolysis offered a powerful approach in the treatment of platelet-rich thrombus.
Collapse
Affiliation(s)
- Shuxuan Zhou
- Department of Cardiology, the First Affiliated Hospital of Jinan University, Guangzhou, China
- Cardiovascular Center, Hospital of Changan Dongguan, Dongguan, China
| | - Jinhua Li
- Department of Ultrasound, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xianghui Chen
- Department of Cardiology, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Bihan Huang
- Department of Cardiology, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Dan Lu
- Department of Neurology and Stroke Center, the First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Tao Zhang
- Department of Cardiology, the First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
4
|
Mohammed SA, Amjad MW, Acosta MF, Chen X, Lavery L, Hanrahan D, Unger EC, Meuillet EJ, Pacella JJ. Fibrin-targeted phase shift microbubbles for the treatment of microvascular obstruction. Nanotheranostics 2024; 8:33-47. [PMID: 38164499 PMCID: PMC10750123 DOI: 10.7150/ntno.85092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 09/20/2023] [Indexed: 01/03/2024] Open
Abstract
Rationale: Microvascular obstruction (MVO) following percutaneous coronary intervention (PCI) is a common problem associated with adverse clinical outcomes. We are developing a novel treatment, termed sonoreperfusion (SRP), to restore microvascular patency. This entails using ultrasound-targeted microbubble cavitation (UTMC) of intravenously administered gas-filled lipid microbubbles (MBs) to dissolve obstructive microthrombi in the microvasculature. In our prior work, we used standard-sized lipid MBs. In the present study, to improve upon the efficiency and efficacy of SRP, we sought to determine the therapeutic efficacy of fibrin-targeted phase shift microbubbles (FTPSMBs) in achieving successful reperfusion of MVO. We hypothesized that owing to their much smaller size and affinity for thrombus, FTPSMBs would provide more effective dissolution of microthrombi when compared to that of the corresponding standard-sized lipid MBs. Methods: MVO in the rat hindlimb was created by direct injection of microthrombi into the left femoral artery. Definity MBs (Lantheus Medical Imaging) were infused through the jugular vein for contrast-enhanced ultrasound imaging (CEUS). A transducer was positioned vertically above the hindlimb for therapeutic US delivery during the concomitant administration of various therapeutic formulations, including (1) un-targeted MBs; (2) un-targeted phase shift microbubbles (PSMBs); (3) fibrin-targeted MB (FTMBs); and (4) fibrin-targeted PSMBs (FTPSMBs). CEUS cine loops with burst replenishment were obtained at baseline (BL), 10 min post-MVO, and after each of two successive 10-minute SRP treatment sessions (TX1, TX2) and analyzed (MATLAB). Results: In-vitro binding affinity assay showed increased fibrin binding peptide (FBP) affinity for the fibrin clots compared with the untargeted peptide (DK12). Similarly, in our in-vitro model of MVO, we observed a higher binding affinity of fluorescently labeled FTPSMBs with the porcine microthrombi compared to FTMBs, PSMBs, and MBs. Finally, in our hindlimb model, we found that UTMC with FTPSMBs yielded the greatest recovery of blood volume (dB) and flow rate (dB/sec) following MVO, compared to all other treatment groups. Conclusions: SRP with FTPSMBs achieves more rapid and complete reperfusion of MVO compared to FTMBs, PSMBs, and MBs. Studies to explore the underlying physical and molecular mechanisms are underway.
Collapse
Affiliation(s)
- Soheb Anwar Mohammed
- Center for Ultrasound Molecular Imaging and Therapeutics, Heart and Vascular Medicine Institute, University of Pittsburgh. 200 Lothrop St, Pittsburgh, PA, USA
| | - Muhammad Wahab Amjad
- Center for Ultrasound Molecular Imaging and Therapeutics, Heart and Vascular Medicine Institute, University of Pittsburgh. 200 Lothrop St, Pittsburgh, PA, USA
| | - Maria F. Acosta
- Microvascular Therapeutics (MVT), Inc. 1635 E. 18 th Street, Tucson, AZ, USA
| | - Xucai Chen
- Center for Ultrasound Molecular Imaging and Therapeutics, Heart and Vascular Medicine Institute, University of Pittsburgh. 200 Lothrop St, Pittsburgh, PA, USA
| | - Linda Lavery
- Center for Ultrasound Molecular Imaging and Therapeutics, Heart and Vascular Medicine Institute, University of Pittsburgh. 200 Lothrop St, Pittsburgh, PA, USA
| | - Dillon Hanrahan
- Microvascular Therapeutics (MVT), Inc. 1635 E. 18 th Street, Tucson, AZ, USA
| | - Evan C. Unger
- Microvascular Therapeutics (MVT), Inc. 1635 E. 18 th Street, Tucson, AZ, USA
| | | | - John J. Pacella
- Center for Ultrasound Molecular Imaging and Therapeutics, Heart and Vascular Medicine Institute, University of Pittsburgh. 200 Lothrop St, Pittsburgh, PA, USA
| |
Collapse
|
5
|
Ward RE, Martinez-Correa S, Tierradentro-García LO, Hwang M, Sehgal CM. Sonothrombolysis: State-of-the-Art and Potential Applications in Children. CHILDREN (BASEL, SWITZERLAND) 2023; 11:57. [PMID: 38255371 PMCID: PMC10814591 DOI: 10.3390/children11010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/15/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024]
Abstract
In recent years, advances in ultrasound therapeutics have been implemented into treatment algorithms for the adult population; however, the use of therapeutic ultrasound in the pediatric population still needs to be further elucidated. In order to better characterize the utilization and practicality of sonothrombolysis in the juvenile population, the authors conducted a literature review of current pediatric research in therapeutic ultrasound. The PubMed database was used to search for all clinical and preclinical studies detailing the use and applications of sonothrombolysis, with a focus on the pediatric population. As illustrated by various review articles, case studies, and original research, sonothrombolysis demonstrates efficacy and safety in clot dissolution in vitro and in animal studies, particularly when combined with microbubbles, with potential applications in conditions such as deep venous thrombosis, peripheral vascular disease, ischemic stroke, myocardial infarction, and pulmonary embolism. Although there is limited literature on the use of therapeutic ultrasound in children, mainly due to the lower prevalence of thrombotic events, sonothrombolysis shows potential as a noninvasive thrombolytic treatment. However, more pediatric sonothrombolysis research needs to be conducted to quantify the safety and ethical considerations specific to this vulnerable population.
Collapse
Affiliation(s)
- Rebecca E. Ward
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (R.E.W.); (S.M.-C.); (L.O.T.-G.); (M.H.)
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Santiago Martinez-Correa
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (R.E.W.); (S.M.-C.); (L.O.T.-G.); (M.H.)
| | - Luis Octavio Tierradentro-García
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (R.E.W.); (S.M.-C.); (L.O.T.-G.); (M.H.)
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Misun Hwang
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (R.E.W.); (S.M.-C.); (L.O.T.-G.); (M.H.)
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chandra M. Sehgal
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
6
|
Chen X, Chen X, Wang J, Yu FTH, Villanueva FS, Pacella JJ. Dynamic Behavior of Polymer Microbubbles During Long Ultrasound Tone-Burst Excitation and Its Application for Sonoreperfusion Therapy. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:996-1006. [PMID: 36697268 PMCID: PMC9974862 DOI: 10.1016/j.ultrasmedbio.2022.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
OBJECTIVE Ultrasound (US)-targeted microbubble (MB) cavitation (UTMC)-mediated therapies have been found to restore perfusion and enhance drug/gene delivery. Because of the potentially longer circulation time and relative ease of storage and reconstitution of polymer-shelled MBs compared with lipid MBs, we investigated the dynamic behavior of polymer microbubbles and their therapeutic potential for sonoreperfusion (SRP) therapy. METHODS The fate of polymer MBs during a single long tone-burst exposure (1 MHz, 5 ms) at various acoustic pressures and MB concentrations was recorded via high-speed microscopy and passive cavitation detection (PCD). SRP efficacy of the polymer MBs was investigated in an in vitro flow system and compared with that of lipid MBs. DISCUSSION Microscopy videos indicated that polymer MBs formed gas-filled clusters that continued to oscillate, fragment and form new gas-filled clusters during the single US burst. PCD confirmed continued acoustic activity throughout the 5-ms US excitation. SRP efficacy with polymer MBs increased with pulse duration and acoustic pressure similarly to that with lipid MBs but no significant differences were found between polymer and lipid MBs. CONCLUSION These data suggest that persistent cavitation activity from polymer MBs during long tone-burst US excitation confers excellent reperfusion efficacy.
Collapse
Affiliation(s)
- Xianghui Chen
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Department of Cardiology, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xucai Chen
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jianjun Wang
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Francois T H Yu
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Flordeliza S Villanueva
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - John J Pacella
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| |
Collapse
|
7
|
Hughes CB, Nigmet Y, Villanueva FS, Chen X, Demetris AJ, Stolz DB, Pacella JJ, Humar A. Ultrasound-Targeted Microbubble Cavitation During Machine Perfusion Reduces Microvascular Thrombi and Graft Injury in a Rat Liver Model of Donation After Circulatory Death. Transplant Proc 2023; 55:485-495. [PMID: 36878745 DOI: 10.1016/j.transproceed.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/15/2023] [Accepted: 02/02/2023] [Indexed: 03/07/2023]
Abstract
BACKGROUND Ischemic cholangiopathy is a process of bile duct injury that might result from peribiliary vascular plexus (PBP) thrombosis and remains a dreaded complication in liver transplantation from donors after circulatory death (DCD). The aim of this study was to propose a mechanical method of clot destruction to clear microvascular thrombi in DCD livers before transplantation. METHODS Sonothrombolysis (STL) is a process by which inertial cavitation of circulating microbubbles entering an ultrasound field create a high-energy shockwave at a microbubble-thrombus interface, causing mechanical clot destruction. The effectiveness of STL in DCD liver treatment remains unclear. We carried out STL treatment during normothermic, oxygenated, ex vivo machine perfusion (NMP), introducing microbubbles into the perfusate with the liver enveloped in an ultrasound field. RESULTS The STL livers showed reduction in hepatic arterial and PBP thrombus and decreases in hepatic arterial and portal venous flow resistance, reduced parenchymal injury as measured by aspartate transaminase release and oxygen consumption, and improved cholangiocyte function. Light and electron microscopy showed reduction of hepatic arterial and PBP thrombus in STL livers compared with controls and preserved hepatocyte structure, sinusoid endothelial morphology, and biliary epithelial microvilli. CONCLUSION In this model, STL improved flow and functional measures in DCD livers undergoing NMP. These data suggest a novel therapeutic approach to treat PBP injury in DCD livers, which may ultimately increase the pool of grafts available to patients awaiting liver transplantation.
Collapse
Affiliation(s)
- Christopher B Hughes
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.
| | - Yermek Nigmet
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Flordeliza S Villanueva
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical, Pittsburgh, Pennsylvania
| | - Xucai Chen
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical, Pittsburgh, Pennsylvania
| | - Anthony J Demetris
- Division of Transplant Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Donna B Stolz
- Center for Biological Imaging, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - John J Pacella
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical, Pittsburgh, Pennsylvania
| | - Abhinav Humar
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| |
Collapse
|
8
|
Wear KA, Shah A. Nominal Versus Actual Spatial Resolution: Comparison of Directivity and Frequency-Dependent Effective Sensitive Element Size for Membrane, Needle, Capsule, and Fiber-Optic Hydrophones. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:112-119. [PMID: 36178990 DOI: 10.1109/tuffc.2022.3211183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Frequency-dependent effective sensitive element radius [Formula: see text] is a key parameter for elucidating physical mechanisms of hydrophone operation. In addition, it is essential to know [Formula: see text] to correct for hydrophone output voltage reduction due to spatial averaging across the hydrophone sensitive element surface. At low frequencies, [Formula: see text] is greater than geometrical sensitive element radius ag . Consequently, at low frequencies, investigators can overrate their hydrophone spatial resolution. Empirical models for [Formula: see text] for membrane, needle, and fiber-optic hydrophones have been obtained previously. In this article, an empirical model for [Formula: see text] for capsule hydrophones is presented, so that models are now available for the four most common hydrophone types used in biomedical ultrasound. The [Formula: see text] value was estimated from directivity measurements (over the range from 1 to 20 MHz) for five capsule hydrophones (three with [Formula: see text] and two with [Formula: see text]). The results suggest that capsule hydrophones behave according to a "rigid piston" model for k a g ≥ 0.7 ( k = 2π /wavelength). Comparing the four hydrophone types, the low-frequency discrepancy between [Formula: see text] and ag was found to be greatest for membrane hydrophones, followed by capsule hydrophones, and smallest for needle and fiber-optic hydrophones. Empirical models for [Formula: see text] are helpful for choosing an appropriate hydrophone for an experiment and for correcting for spatial averaging (over the sensitive element surface) in pressure and beamwidth measurements. When reporting hydrophone-based pressure measurements, investigators should specify [Formula: see text] at the center frequency (which may be estimated from the models presented here) in addition to ag .
Collapse
|
9
|
Yu FTH, Amjad MW, Mohammed SA, Yu GZ, Chen X, Pacella JJ. Effect of Ultrasound Pulse Length on Sonoreperfusion Therapy. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:152-164. [PMID: 36253230 PMCID: PMC9712163 DOI: 10.1016/j.ultrasmedbio.2022.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 06/16/2023]
Abstract
In recent years, long- and short-pulse ultrasound (US)-targeted microbubble cavitation (UTMC) has been found to increase perfusion in healthy and ischemic skeletal muscle, in pre-clinical animal models of microvascular obstruction and in the myocardium of patients presenting with acute myocardial infarction. There is evidence that the observed microvascular vasodilation is driven by the nitric oxide pathway and purinergic signaling, but the time course of the response and the dependency on US pulse length are not well elucidated. Because our prior data supported that sonoreperfusion efficacy is enhanced by long-pulse US versus short-pulse US, in this study, we sought to compare long-pulse (5000 cycles) and short-pulse (500 × 10 cycles) US at a pressure of 1.5 MPa with an equivalent total number of acoustical cycles, hence constant acoustic energy, and at the same frequency (1 MHz), in a rodent hind limb model with and without microvascular obstruction (MVO). In quantifying perfusion using burst replenishment contrast-enhanced US imaging, we made three findings: (i) Long and short pulses result in different vasodilation kinetics in an intact hind limb model. The long pulse causes an initial spasmic reduction in flow that spontaneously resolved at 4 min, followed by sustained higher flow rates (approximately twofold) compared with baseline, starting 10 min after therapy (p < 0.05). The short pulse caused a short-lived approximately twofold increase in flow rate that peaked at 4 min (p < 0.05), but without the initial spasm. (ii) The sustained increased response with the long pulse is not simply reactive hyperemia. (iii) Both pulses are effective in reperfusion of MVO in our hindlimb model by restoring blood volume, but only the long pulse caused an increase in flow rate after treatment ii, compared with MVO (p < 0.05). Histological analysis of hind limb muscle post-UTMC with either pulse configuration indicates no evidence of tissue damage or hemorrhage. Our findings indicate that the microbubble oscillation induces vasodilation, and therapeutic efficacy for the treatment of MVO can be tuned by varying pulse length; relative to short-pulse US, longer pulses drive greater microbubble cavitation and more rapid microvascular flow rate restoration after MVO, warranting further optimization of the pulse length for sonoreperfusion therapy.
Collapse
Affiliation(s)
- François T H Yu
- Center for Ultrasound Molecular Imaging and Therapeutics, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada; Département de Radiologie, Radio-Oncologie et Médecine Nucléaire, Université de Montréal, Montréal, Québec, Canada
| | - Muhammad Wahab Amjad
- Center for Ultrasound Molecular Imaging and Therapeutics, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Soheb Anwar Mohammed
- Center for Ultrasound Molecular Imaging and Therapeutics, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Gary Z Yu
- Center for Ultrasound Molecular Imaging and Therapeutics, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Xucai Chen
- Center for Ultrasound Molecular Imaging and Therapeutics, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John J Pacella
- Center for Ultrasound Molecular Imaging and Therapeutics, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
10
|
Yu GZ, Ramasamy T, Fazzari M, Chen X, Freeman B, Pacella JJ. Lipid nitroalkene nanoparticles for the focal treatment of ischemia reperfusion. Nanotheranostics 2022; 6:215-229. [PMID: 34976596 PMCID: PMC8671954 DOI: 10.7150/ntno.62351] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 11/05/2021] [Indexed: 12/26/2022] Open
Abstract
Rationale: The treatment of microvascular obstruction (MVO) using ultrasound-targeted LNP cavitation (UTC) therapy mechanically relieves the physical obstruction in the microcirculation but does not specifically target the associated inflammatory milieu. Electrophilic fatty acid nitroalkene derivatives (nitro-fatty acids), that display pleiotropic anti-inflammatory signaling and transcriptional regulatory actions, offer strong therapeutic potential but lack a means of rapid targeted delivery. The objective of this study was to develop nitro-fatty acid-containing lipid nanoparticles (LNP) that retain the mechanical efficacy of standard LNP and can rapidly target delivery of a tissue-protective payload that reduces inflammation and improves vascular function following ischemia-reperfusion. Methods: The stability and acoustic behavior of nitro-fatty acid LNP (NO2-FA-LNP) were characterized by HPLC-MS/MS and ultra-high-speed microscopy. The LNP were then used in a rat hindlimb model of ischemia-reperfusion injury with ultrasound-targeted cavitation. Results: Intravenous administration of NO2-FA-LNP followed by ultrasound-targeted LNP cavitation (UTC) in both healthy rat hindlimb and following ischemia-reperfusion injury showed enhanced NO2-FA tissue delivery and microvascular perfusion. In addition, vascular inflammatory mediator expression and lipid peroxidation were decreased in tissues following ischemia-reperfusion revealed NO2-FA-LNP protected against inflammatory injury. Conclusions: Vascular targeting of NO2-FA-LNP with UTC offers a rapid method of focal anti-inflammatory therapy at sites of ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Gary Z Yu
- Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Thiruganesh Ramasamy
- Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Marco Fazzari
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xucai Chen
- Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bruce Freeman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - John J Pacella
- Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
11
|
Jiang N, Hu B, Cao S, Gao S, Cao Q, Chen J, Zhou Q, Guo R. Stable Low-Dose Oxygen Release Using H 2O 2/Perfluoropentane Phase-Change Nanoparticles with Low-Intensity Focused Ultrasound for Coronary Thrombolysis. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:2765-2774. [PMID: 32646686 DOI: 10.1016/j.ultrasmedbio.2020.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
After the onset of myocardial infarction, extensive coronary thrombus and oxygen supply insufficiency lead to severe myocardial damage and heart failure. Recently, ultrasound-irradiated phase-change nanoparticles have been recognized for their cardiovascular thrombolysis potential. Therefore, we sought to establish a novel treatment method using hydrogen peroxide (H2O2)/perfluoropentane (PFP) phase-change nanoparticles with low-intensity focused ultrasound (LIFU) for the simulation of acute coronary thrombolysis and myocardial preservation. There were three groups in our study: Group A consisted of phosphate-buffered saline (PBS) as the blank control, group B consisted of SonoVue microbubbles and group C consisted of H2O2/PFP phase-change nanoparticles. The H2O2/PFP phase-change nanoparticles were prepared using a double-emulsification process. The in vitro experiments were conducted in an artificial circulatory system connected to an LIFU system and dissolved oxygen detector. Thrombolysis efficiency and oxygen release efficiency were compared among the groups. H2O2/PFP nanoparticles with 3% H2O2 (average size: 456.7 ± 31.2 nm, charge: -37.5 ± 5.22 mV) was the optimal selection in group C because of the stable loading capacity and stable low-dose oxygen release efficiency in the in vitro experiments. Thrombolytic weight loss and loss rates in group C (322.0 ± 40.8 mg, 54.8 ± 5.7%) were significantly higher than those in group A (36.2 ± 18.1 mg, 5.5 ± 2.5%) and group B (91.0 ± 11.9 mg, 14.3 ± 2.4%) (p < 0.01). The innovative method using H2O2/PFP phase-change nanoparticles with LIFU exhibited high thrombolytic efficiency and stable low-flow oxygen supply in the artificial circulatory system, providing a solid experimental foundation for the establishment of a novel treatment method for acute myocardial infarction.
Collapse
Affiliation(s)
- Nan Jiang
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bo Hu
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Sheng Cao
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shunji Gao
- Department of Ultrasound Imaging, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Qingqiong Cao
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jinling Chen
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qing Zhou
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ruiqiang Guo
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
12
|
Niu Z, Lv X, Zhang J, Bao T. High versus Low Mechanical Index Imaging Diagnostic Ultrasound in Patients with Myocardial Infarction: A Therapeutic Application Study. MEDICAL SCIENCE MONITOR : INTERNATIONAL MEDICAL JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2020; 26:e923583. [PMID: 32790651 PMCID: PMC7446285 DOI: 10.12659/msm.923583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Background High mechanical index impulse of ultrasound is used for diagnosis of microvascular coronary obstruction and the necrotic area, but an experimental model study suggested that it can restore microvascular and epicardial coronary flow. The purposes of the study were to test the safety and therapeutic efficacy of high acoustic energy diagnostic ultrasound in patients with ST-segment elevation myocardial infarction. Material/Methods Patients with ST-segment elevation myocardial infarction subjected to a low (n=199) or high (n=251) mechanical index ultrasound before and after percutaneous coronary interventions and echocardiographic parameters were evaluated. Coronary angiographies were performed for the assessment of culprit vessels. Thrombolysis in myocardial infarction flow grade 1 or 2 were considered as culprit vessels. Results Patients diagnosed through low acoustic energy ultrasound reported 235 infarct vessels and patients diagnosed through high acoustic energy ultrasound reported 300 infarct vessels. With respect to low acoustic energy, high acoustic energy reduced the number of culprit vessels at post-percutaneous coronary interventions at 48 hours before hospital discharge (P=0.015) and post-percutaneous coronary interventions at 1-month from the baseline interventions (P=0.043). Also, the maximum% ST-segment resolution and an ejection fraction of the left ventricle was increased and microvascular coronary obstruction in infarct vessels was decreased for both evaluation points. High acoustic energy could not affect heart rate (P=0.133) and oxygen saturation (P=0.079). Conclusions High acoustic energy ultrasound is a safe method for diagnosis of ST-segment elevation myocardial infarction and may have therapeutic applications.
Collapse
Affiliation(s)
- Zongbao Niu
- Color Ultrasonic Room, Affiliated Hospital of Hebei University, Baoding, Hebei, China (mainland)
| | - Xiaolan Lv
- Color Ultrasonic Room, Affiliated Hospital of Hebei University, Baoding, Hebei, China (mainland)
| | - Jianhua Zhang
- Department of Cardiology, Handan Shengji Tumor Hospital, Handan, Hebei, China (mainland)
| | - Tianping Bao
- Color Ultrasonic Room, Baoding No. 1 Central Hospital, Baoding, Hebei, China (mainland)
| |
Collapse
|
13
|
Lindner JR. Therapeutic Contrast Echocardiography: Bubbles Become Medicine. J Am Coll Cardiol 2020; 73:2843-2845. [PMID: 31171089 DOI: 10.1016/j.jacc.2019.03.490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 03/24/2019] [Indexed: 11/26/2022]
Affiliation(s)
- Jonathan R Lindner
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon; Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon.
| |
Collapse
|
14
|
Istvanic F, Yu GZ, Yu FTH, Powers J, Chen X, Pacella JJ. Sonoreperfusion therapy for microvascular obstruction: A step toward clinical translation. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:712-720. [PMID: 31924423 PMCID: PMC7010545 DOI: 10.1016/j.ultrasmedbio.2019.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 11/15/2019] [Accepted: 11/20/2019] [Indexed: 05/12/2023]
Abstract
Sonoreperfusion therapy is being developed as an intervention for the treatment of microvascular obstruction. We investigated the reperfusion efficacy of two clinical ultrasound systems (a modified Philips EPIQ and a Philips Sonos 7500) in a rat hindlimb microvascular obstruction model. Four ultrasound conditions were tested using 20 min treatments: Sonos single frame, Sonos multi-frame, EPIQ low pressure and EPIQ high pressure. Contrast-enhanced perfusion imaging of the microvasculature was conducted at baseline and after treatment to calculate microvascular blood volume (MBV). EPIQ high pressure treatment resulted in significant recovery of MBV from microvascular obstruction, returning to baseline levels after treatment. EPIQ low pressure and Sonos multi-frame treatment resulted in significantly improved MBV after treatment but below baseline levels. Sonos single-frame and control groups showed no improvement post-treatment. This study demonstrates that the most effective sonoreperfusion therapy occurs at high acoustic pressure coupled with high acoustic intensity. Moreover, a clinically available ultrasound system is readily capable of delivering these effective therapeutic pulses.
Collapse
Affiliation(s)
- Filip Istvanic
- Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Gary Z Yu
- Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Francois T H Yu
- Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Microbubble Theranostic Laboratory, Department of Radiology, University of Montreal Hospital Research Center, Montreal, Quebec, Canada
| | - Jeff Powers
- Philips Ultrasound, Bothell, Washington, USA
| | - Xucai Chen
- Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John J Pacella
- Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
15
|
Yu GZ, Istvanic F, Chen X, Nouraie M, Shiva S, Straub AC, Pacella JJ. Ultrasound-Targeted Microbubble Cavitation with Sodium Nitrite Synergistically Enhances Nitric Oxide Production and Microvascular Perfusion. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:667-678. [PMID: 31810801 PMCID: PMC7010556 DOI: 10.1016/j.ultrasmedbio.2019.10.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
Microvascular obstruction is a common repercussion of percutaneous coronary intervention for distal microembolization, ischemia-reperfusion injury and inflammation, which increases post-myocardial infarction heart failure and mortality. Ultrasound-targeted microbubble cavitation (UTMC) may resolve microvascular obstruction while activating endothelial nitric oxide synthase (eNOS) and increasing endothelium-derived nitric oxide (NO) bioavailability. Nitrite, a cardioprotective agent, offers an additional source of NO and potential synergy with UTMC. UTMC and nitrite co-therapy increased microvascular perfusion and NO concentration in a rat hindlimb model. Using N-nitro-L-arginine methyl ester for eNOS blockade, we found a three-way interaction effect between nitrite, UTMC and eNOS on microvascular perfusion and NO production. Modulating ultrasound peak negative acoustic pressure (0.33-1.5 MPa) significantly affected outcomes, while microbubble dosage (2 × 108 bubbles/mL, 1.5 mL/h to 1 × 109 bubbles/mL, 3 mL/h) did not. Nitrite co-therapy also protected against oxidative stress. Comparison of nitrite to sodium nitroprusside with UTMC revealed synergistic effects were specific to nitrite. Synergy between UTMC and nitrite holds therapeutic potential for cardiovascular disease.
Collapse
Affiliation(s)
- Gary Z Yu
- Center for Ultrasound and Molecular Imaging and Therapeutics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Filip Istvanic
- Center for Ultrasound and Molecular Imaging and Therapeutics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Xucai Chen
- Center for Ultrasound and Molecular Imaging and Therapeutics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mehdi Nouraie
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sruti Shiva
- Vascular Medicine Institute and Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Adam C Straub
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - John J Pacella
- Center for Ultrasound and Molecular Imaging and Therapeutics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
16
|
Yadava M, Le DE, Dykan IV, Grafe MR, Nugent M, Ammi AY, Giraud D, Zhao Y, Minnier J, Kaul S. Therapeutic Ultrasound Improves Myocardial Blood Flow and Reduces Infarct Size in a Canine Model of Coronary Microthromboembolism. J Am Soc Echocardiogr 2019; 33:234-246. [PMID: 31812549 DOI: 10.1016/j.echo.2019.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Therapeutic ultrasound (TUS) has been used to lyse infarct-related coronary artery thrombus. There has been no study examining the effect of TUS specifically on myocardial microthromboemboli seen in acute myocardial infarction and acute coronary syndromes. The aim of this study was to test the hypothesis that TUS improves myocardial blood flow (MBF) and reduces infarct size (IS) in this situation by dissolving myocardial microthrombi. METHODS An open-chest canine model of myocardial microthromboembolism was created by disrupting a thrombus in the left anterior descending coronary artery, and 1.05- and 0.25-MHz TUS (n = 7 each) delivered epicardially for 30 min was compared with control (n = 6). MBF and IS (as a percentage of left anterior descending coronary artery perfusion bed size) were measured 60 min after treatment. In addition, immunohistochemistry was performed to assess microthrombi, and histopathology was performed to define inflammation. RESULTS Transmural, epicardial, and endocardial myocardial blood volume and MBF (measured using myocardial contrast echocardiography) and percentage wall thickening were significantly higher 60 min after receiving TUS compared with control. The ratio of IS to left anterior descending coronary artery perfusion bed size was significantly smaller (P = .03) in the 1.05-MHz TUS group (0.14 ± 0.04) compared with the control (0.31 ± 0.06, P = .04) and 0.25-MHz (0.36 ± 0.08) groups. MBF versus percentage wall thickening exhibited a linear relation (r = 0.65) in the control and 1.05-MHz TUS groups but not in the 0.25-MHz TUS group (r = 0.29). The presence of myocardial microemboli in vessels >10 μm in diameter was significantly reduced in the 1.05-MHz TUS group compared with the other two groups. The distribution and intensity of inflammation was higher in the 0.25-MHz TUS group compared with the other groups. CONCLUSIONS TUS at 1.05 MHz is effective in restoring myocardial blood volume and MBF, thus reducing IS by clearing the microcirculation of microthrombi. IS reduction is not seen at 0.25 MHz, despite improvement in MBF, which may be related to the increased inflammation noted at this frequency. Because both acute myocardial infarction and acute coronary syndromes are associated with microthromboembolism, these results suggest that TUS could have a potential adjunctive role in the treatment of both conditions.
Collapse
Affiliation(s)
- Mrinal Yadava
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon; Portland Veterans Administration Medical Center, Portland, Oregon
| | - D Elizabeth Le
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon; Portland Veterans Administration Medical Center, Portland, Oregon
| | - Igor V Dykan
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon
| | - Marjorie R Grafe
- Department of Pathology, Oregon Health and Science University, Portland, Oregon
| | - Matthew Nugent
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon; Portland Veterans Administration Medical Center, Portland, Oregon
| | - Azzdine Y Ammi
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon
| | - David Giraud
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon
| | - Yan Zhao
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon
| | - Jessica Minnier
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon; Department of Biostatistics, Oregon Health and Science University, Portland, Oregon
| | - Sanjiv Kaul
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon.
| |
Collapse
|
17
|
Complex Highways on the Translational Roadmap for Therapeutic Ultrasound-Targeted Microbubble Cavitation: Where Are We Now? JACC Cardiovasc Imaging 2019; 13:652-654. [PMID: 31607657 DOI: 10.1016/j.jcmg.2019.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 08/15/2019] [Indexed: 12/17/2022]
|
18
|
Diagnostic Ultrasound and Microbubbles Treatment Improves Outcomes of Coronary No-Reflow in Canine Models by Sonothrombolysis. Crit Care Med 2019; 46:e912-e920. [PMID: 29965834 PMCID: PMC6110622 DOI: 10.1097/ccm.0000000000003255] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Supplemental Digital Content is available in the text. Objectives: Effective treatment for microvascular thrombosis-induced coronary no-reflow remains an unmet clinical need. This study sought to evaluate whether diagnostic ultrasound and microbubbles treatment could improve outcomes of coronary no-reflow by dissolving platelet- and erythrocyte-rich microthrombi. Design: Randomized controlled laboratory investigation. Setting: Research laboratory. Subjects: Mongrel dogs. Interventions: Coronary no-reflow models induced by platelet- or erythrocyte-rich microthrombi were established and randomly assigned to control, ultrasound, recombinant tissue-type plasminogen activator, ultrasound + microbubbles, or ultrasound + microbubbles + recombinant tissue-type plasminogen activator group. All treatments lasted for 30 minutes. Measurements and Main Results: Percentage of microemboli-obstructed coronary arterioles was lower in ultrasound + microbubbles group than that in control group for platelet- (> 50% obstruction: 10.20% ± 3.56% vs 31.80% ± 3.96%; < 50% obstruction: 14.80% ± 4.15% vs 28.20% ± 3.56%) and erythrocyte-rich microthrombi (> 50% obstruction: 8.20% ± 3.11% vs 30.60% ± 4.83%; < 50% obstruction: 12.80% ± 4.15% vs 25.80% ± 3.70%) (p < 0.001). Percentage change of myocardial blood flow in left anterior descending artery-dominated region, left ventricular ejection fraction, fractional shortening, and ST-segment resolution were higher, whereas infarcted area, troponin I, and creatine kinase MB isoenzyme were lower in ultrasound + microbubbles group than that in control group for both types of microthrombi (p < 0.001). Percentage change of myocardial blood flow, ejection fraction, fractional shortening, and ST-segment resolution were higher, whereas infarcted area, troponin I, and creatine kinase MB isoenzyme were lower in ultrasound + microbubbles and ultrasound + microbubbles + recombinant tissue-type plasminogen activator groups than that in recombinant tissue-type plasminogen activator group for platelet-rich microthrombi (p < 0.05). Conclusions: Ultrasound + microbubbles treatment could dissolve platelet- and erythrocyte-rich microthrombi, thereby improving outcomes of coronary no-reflow, making it a promising supplement to current reperfusion therapy for acute ST-segment elevation myocardial infarction.
Collapse
|
19
|
Mason OR, Davidson BP, Sheeran P, Muller M, Hodovan JM, Sutton J, Powers J, Lindner JR. Augmentation of Tissue Perfusion in Patients With Peripheral Artery Disease Using Microbubble Cavitation. JACC Cardiovasc Imaging 2019; 13:641-651. [PMID: 31422129 DOI: 10.1016/j.jcmg.2019.06.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/20/2019] [Accepted: 06/06/2019] [Indexed: 11/16/2022]
Abstract
OBJECTIVES The authors investigated ideal acoustic conditions on a clinical scanner custom-programmed for ultrasound (US) cavitation-mediated flow augmentation in preclinical models. We then applied these conditions in a first-in-human study to test the hypothesis that contrast US can increase limb perfusion in normal subjects and patients with peripheral artery disease (PAD). BACKGROUND US-induced cavitation of microbubble contrast agents augments tissue perfusion by convective shear and secondary purinergic signaling that mediates release of endogenous vasodilators. METHODS In mice, unilateral exposure of the proximal hindlimb to therapeutic US (1.3 MHz, mechanical index 1.3) was performed for 10 min after intravenous injection of lipid microbubbles. US varied according to line density (17, 37, 65 lines) and pulse duration. Microvascular perfusion was evaluated by US perfusion imaging, and in vivo adenosine triphosphate (ATP) release was assessed using in vivo optical imaging. Optimal parameters were then used in healthy volunteers and patients with PAD where calf US alone or in combination with intravenous microbubble contrast infusion was performed for 10 min. RESULTS In mice, flow was augmented in the US-exposed limb for all acoustic conditions. Only at the lowest line density was there a stepwise increase in perfusion for longer (40-cycle) versus shorter (5-cycle) pulse duration. For higher line densities, blood flow consistently increased by 3-fold to 4-fold in the US-exposed limb irrespective of pulse duration. High line density and long pulse duration resulted in the greatest release of ATP in the cavitation zone. Application of these optimized conditions in humans together with intravenous contrast increased calf muscle blood flow by >2-fold in both healthy subjects and patients with PAD, whereas US alone had no effect. CONCLUSIONS US of microbubbles when using optimized acoustic environments can increase perfusion in limb skeletal muscle, raising the possibility of a therapy for patients with PAD. (Augmentation of Limb Perfusion With Contrast Ultrasound; NCT03195556).
Collapse
Affiliation(s)
| | | | - Paul Sheeran
- Philips Ultrasound, Bothell, Washington; and Philips Research, Cambridge, Massachusetts
| | | | | | - Jonathan Sutton
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon
| | - Jeffry Powers
- Philips Ultrasound, Bothell, Washington; and Philips Research, Cambridge, Massachusetts
| | - Jonathan R Lindner
- Knight Cardiovascular Institute, Portland, Oregon; Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon.
| |
Collapse
|
20
|
Papadopoulos N, Kyriacou PA, Damianou C. Review of Protocols Used in Ultrasound Thrombolysis. J Stroke Cerebrovasc Dis 2017; 26:2447-2469. [DOI: 10.1016/j.jstrokecerebrovasdis.2017.07.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 07/01/2017] [Accepted: 07/30/2017] [Indexed: 01/01/2023] Open
|
21
|
Yu FT, Chen X, Straub AC, Pacella JJ. The Role of Nitric Oxide during Sonoreperfusion of Microvascular Obstruction. Theranostics 2017; 7:3527-3538. [PMID: 28912893 PMCID: PMC5596441 DOI: 10.7150/thno.19422] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 07/10/2017] [Indexed: 11/17/2022] Open
Abstract
Rationale: Microembolization during PCI for acute myocardial infarction can cause microvascular obstruction (MVO). MVO severely limits the success of reperfusion therapies, is associated with additional myonecrosis, and is linked to worse prognosis, including death. We have shown, both in in vitro and in vivo models, that ultrasound (US) and microbubble (MB) therapy (termed “sonoreperfusion” or “SRP”) is a theranostic approach that relieves MVO and restores perfusion, but the underlying mechanisms remain to be established. Objective: In this study, we investigated the role of nitric oxide (NO) during SRP. Methods and results: We first demonstrated in plated cells that US-stimulated MB oscillations induced a 6-fold increase in endothelial nitric oxide synthase (eNOS) phosphorylation in vitro. We then monitored the kinetics of intramuscular NO and perfusion flow rate responses following 2-min of SRP therapy in the rat hindlimb muscle, with and without blockade of eNOS with LNAME. Following SRP, we found that starting at 6 minutes, intramuscular NO increased significantly over 30 min and was higher than baseline after 13 min. Concomitant contrast enhanced burst reperfusion imaging confirmed that there was a marked increase in perfusion flow rate at 6 and 10 min post SRP compared to baseline (>2.5 fold). The increases in intramuscular NO and perfusion rate were blunted with LNAME. Finally, we tested the hypothesis that NO plays a role in SRP by assessing reperfusion efficacy in a previously described rat hindlimb model of MVO during blockade of eNOS. After US treatment 1, microvascular blood volume was restored to baseline in the MB+US group, but remained low in the LNAME group. Perfusion rates increased in the MB+US group after US treatment 2 but not in the MB+US+LNAME group. Conclusions: These data strongly support that MB oscillations can activate the eNOS pathway leading to increased blood perfusion and that NO plays a significant role in SRP efficacy.
Collapse
|
22
|
Ultrasound Mediated Microbubbles Destruction Augmented Sonolysis: An In Vitro and In Vivo Study. BIOMED RESEARCH INTERNATIONAL 2017; 2017:7021929. [PMID: 28900624 PMCID: PMC5576396 DOI: 10.1155/2017/7021929] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/08/2017] [Accepted: 07/05/2017] [Indexed: 01/07/2023]
Abstract
Objective This study was aimed at exploring ultrasound mediated microbubbles destruction (UMMD) assisted sonolysis in both the in vitro and in vivo clots. Methods Therapeutic ultrasound (TUS) and lipid microbubbles (MBs) were used in whole blood clots and divided into the control, TUS group, and TUS + MB group. Thrombolytic rates and microscopy were performed. Color Doppler flow imaging (CDFI) and angiography were performed to evaluate the recanalization rates and flow scores in femoral arterial thrombus (FAT) in rabbits. FAT were dyed with H&E. Results The average thrombolytic ratios of TUS + MB group were significantly higher than those of TUS group and the control group (both P < 0.05). Clots had different pathological changes. Recanalization rates and flow scores in TUS + MB group were significantly higher than the control and TUS group. Flow scores and recanalization ratios were grade 0 in 0% of the control group, grade I in 25% of TUS group, and grade II or higher in 87.5% of TUS + MB group after 30 min sonolysis. Conclusions Both the in vitro and in vivo sonolysis can be significantly augmented by the introduction of MBs without thrombolytic agents, which might be induced by the enhanced cavitation via UMMD.
Collapse
|
23
|
Heymans SV, Martindale CF, Suler A, Pouliopoulos AN, Dickinson RJ, Choi JJ. Simultaneous Ultrasound Therapy and Monitoring of Microbubble-Seeded Acoustic Cavitation Using a Single-Element Transducer. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2017. [PMID: 28650807 DOI: 10.1109/tuffc.2017.2718513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Ultrasound-driven microbubble (MB) activity is used in therapeutic applications such as blood clot dissolution and targeted drug delivery. The safety and performance of these technologies are linked to the type and distribution of MB activities produced within the targeted area, but controlling and monitoring these activities in vivo and in real time has proven to be difficult. As therapeutic pulses are often milliseconds long, MB monitoring currently requires a separate transducer used in a passive reception mode. Here, we present a simple, inexpensive, integrated setup, in which a focused single-element transducer can perform ultrasound therapy and monitoring simultaneously. MBs were made to flow through a vessel-mimicking tube, placed within the transducer's focus, and were sonicated with therapeutic pulses (peak rarefactional pressure: 75-827 kPa, pulse lengths: [Formula: see text] and 20 ms). The MB-seeded acoustic emissions were captured using the same transducer. The received signals were separated from the therapeutic signal with a hybrid coupler and a high-pass filter. We discriminated the MB-generated cavitation signal from the primary acoustic field and characterized MB behavior in real time. The simplicity and versatility of our circuit could make existing single-element therapeutic transducers also act as cavitation detectors, allowing the production of compact therapeutic systems with real time monitoring capabilities.
Collapse
|
24
|
Goyal A, Yu FTH, Tenwalde MG, Chen X, Althouse A, Villanueva FS, Pacella JJ. Inertial Cavitation Ultrasound with Microbubbles Improves Reperfusion Efficacy When Combined with Tissue Plasminogen Activator in an In Vitro Model of Microvascular Obstruction. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:1391-1400. [PMID: 28395964 PMCID: PMC5440195 DOI: 10.1016/j.ultrasmedbio.2017.02.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 02/10/2017] [Accepted: 02/18/2017] [Indexed: 05/14/2023]
Abstract
We have previously reported that long-tone-burst, high-mechanical-index ultrasound (US) and microbubble (MB) therapy can restore perfusion in both in vitro and in vivo models of microvascular obstruction (MVO). Addition of MBs to US has been found to potentiate the efficacy of thrombolytics on large venous thrombi; however, the optimal US parameters for achieving microvascular reperfusion of MVO caused by microthrombi, when combined with tissue plasminogen activator (tPA), are unknown. We sought to elucidate the specific effects of US, with and without tPA, for effective reperfusion of MVO in an in vitro model using both venous and arterial microthrombi. Venous- and arterial-type microthrombi were infused onto a mesh with 40-μm pores to simulate MVO. Pulsed US (1 MHz) was delivered with inertial cavitation (IC) (1.0 MPa, 1000 cycles, 0.33 Hz) and stable cavitation (SC) US (0.23 MPa, 20% duty cycle, 0.33 Hz) regimes while MB suspension (2 × 106 MBs/mL) was infused. The efficacy of sonoreperfusion with these parameters was tested with and without tPA. Sonoreperfusion efficacy was significantly greater for IC + tPA compared with tPA alone, IC, SC and SC + tPA, suggesting lytic synergism between tPA and US for both venous- and arterial-type microthrombi. In contrast to our previous in vitro studies using 1.5 MPa at 5000 US cycles without tPA, the IC regime employed herein used 90% less US energy. These findings suggest an IC regime can be used with tPA synergistically to achieve a high degree of fibrinolysis for both thrombus types.
Collapse
Affiliation(s)
- Akash Goyal
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Francois T H Yu
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Mathea G Tenwalde
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Xucai Chen
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Andrew Althouse
- Clinical Biostatistics Core, Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Flordeliza S Villanueva
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - John J Pacella
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
25
|
Intravascular forward-looking ultrasound transducers for microbubble-mediated sonothrombolysis. Sci Rep 2017; 7:3454. [PMID: 28615645 PMCID: PMC5471247 DOI: 10.1038/s41598-017-03492-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 04/28/2017] [Indexed: 02/07/2023] Open
Abstract
Effective removal or dissolution of large blood clots remains a challenge in clinical treatment of acute thrombo-occlusive diseases. Here we report the development of an intravascular microbubble-mediated sonothrombolysis device for improving thrombolytic rate and thus minimizing the required dose of thrombolytic drugs. We hypothesize that a sub-megahertz, forward-looking ultrasound transducer with an integrated microbubble injection tube is more advantageous for efficient thrombolysis by enhancing cavitation-induced microstreaming than the conventional high-frequency, side-looking, catheter-mounted transducers. We developed custom miniaturized transducers and demonstrated that these transducers are able to generate sufficient pressure to induce cavitation of lipid-shelled microbubble contrast agents. Our technology demonstrates a thrombolysis rate of 0.7 ± 0.15 percent mass loss/min in vitro without any use of thrombolytic drugs.
Collapse
|
26
|
Roos ST, Yu FT, Kamp O, Chen X, Villanueva FS, Pacella JJ. Sonoreperfusion Therapy Kinetics in Whole Blood Using Ultrasound, Microbubbles and Tissue Plasminogen Activator. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:3001-3009. [PMID: 27687734 PMCID: PMC5328593 DOI: 10.1016/j.ultrasmedbio.2016.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/04/2016] [Accepted: 08/09/2016] [Indexed: 05/11/2023]
Abstract
Coronary intervention for myocardial infarction often results in microvascular embolization of thrombus. Sonoreperfusion therapy (SRP) using ultrasound and microbubbles restored perfusion in our in vitro flow model of microvascular obstruction. In this study, we assessed SRP efficacy using whole blood as the perfusate with and without tissue plasminogen activator (tPA). In a phantom vessel bearing a 40-μm-pore mesh to simulate the microvasculature, microthrombi were injected to cause microvascular obstruction and were treated using SRP. Without tPA, the lytic rate increased from 2.6 ± 1.5 mmHg/min with 1000-cycle pulses to 7.3 ± 3.2 mmHg/min with 5000-cycle ultrasound pulses (p < 0.01). The lytic index was similar for tPA-only ([2.0 ± 0.5] × 10-3 mmHg-1 min-1) and 5000 cycles without tPA ([2.3 ± 0.5] × 10-3 mmHg-1 min-1) (p = 0.5) but increased ([3.6 ± 0.8] × 10-3 mmHg-1 min-1) with tPA in conjunction with 5000-cycles ultrasound (p < 0.01). In conclusion, SRP restored microvascular perfusion in whole blood, SRP lytic rate in experiments without tPA increased with ultrasound pulse length and efficacy increased with the addition of tPA.
Collapse
Affiliation(s)
- Sebastiaan T Roos
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Heart and Vascular Institute, Pittsburgh, Pennsylvania, USA; Department of Cardiology and Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands; Interuniversity Cardiology Institute of the Netherlands (ICIN), Utrecht, The Netherlands
| | - François T Yu
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Heart and Vascular Institute, Pittsburgh, Pennsylvania, USA
| | - Otto Kamp
- Department of Cardiology and Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands; Interuniversity Cardiology Institute of the Netherlands (ICIN), Utrecht, The Netherlands
| | - Xucai Chen
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Heart and Vascular Institute, Pittsburgh, Pennsylvania, USA
| | - Flordeliza S Villanueva
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Heart and Vascular Institute, Pittsburgh, Pennsylvania, USA
| | - John J Pacella
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Heart and Vascular Institute, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
27
|
Black JJ, Yu FTH, Schnatz RG, Chen X, Villanueva FS, Pacella JJ. Effect of Thrombus Composition and Viscosity on Sonoreperfusion Efficacy in a Model of Micro-Vascular Obstruction. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:2220-31. [PMID: 27207018 PMCID: PMC4983511 DOI: 10.1016/j.ultrasmedbio.2016.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 03/28/2016] [Accepted: 04/06/2016] [Indexed: 05/11/2023]
Abstract
Distal embolization of micro-thrombi during stenting for myocardial infarction causes micro-vascular obstruction (MVO). We have previously shown that sonoreperfusion (SRP), a microbubble (MB)-mediated ultrasound (US) therapy, resolves MVO from venous micro-thrombi in vitro in saline. However, blood is more viscous than saline, and arterial thrombi that embolize during stenting are mechanically distinct from venous clot. Therefore, we tested the hypothesis that MVO created with arterial micro-thrombi are more resistant to SRP therapy compared with venous micro-thrombi, and higher viscosity further increases the US requirement for effective SRP in an in vitro model of MVO. Lipid MBs suspended in plasma with adjusted viscosity (1.1 cP or 4.0 cP) were passed through tubing bearing a mesh with 40-μm pores to simulate a micro-vascular cross-section; upstream pressure reflected thrombus burden. To simulate MVO, the mesh was occluded with either arterial or venous micro-thrombi to increase upstream pressure to 40 mmHg ± 5 mmHg. Therapeutic long-tone-burst US was delivered to the occluded area for 20 min. MB activity was recorded with a passive cavitation detector. MVO caused by arterial micro-thrombi at either blood or plasma viscosity resulted in less effective SRP therapy compared to venous thrombi. Higher viscosity further reduced the effectiveness of SRP therapy. The passive cavitation detector showed a decrease in inertial cavitation when viscosity was increased, while stable cavitation was affected in a more complex manner. Overall, these data suggest that arterial thrombi may require higher acoustic pressure US than venous thrombi to achieve similar SRP efficacy; increased viscosity decreases SRP efficacy; and both inertial and stable cavitation are implicated in observed SRP efficacy.
Collapse
Affiliation(s)
- John J Black
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Francois T H Yu
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Rick G Schnatz
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Xucai Chen
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Flordeliza S Villanueva
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - John J Pacella
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| |
Collapse
|
28
|
Roos ST, Juffermans LJM, van Royen N, van Rossum AC, Xie F, Appelman Y, Porter TR, Kamp O. Unexpected High Incidence of Coronary Vasoconstriction in the Reduction of Microvascular Injury Using Sonolysis (ROMIUS) Trial. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:1919-1928. [PMID: 27160847 DOI: 10.1016/j.ultrasmedbio.2016.03.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/28/2016] [Accepted: 03/30/2016] [Indexed: 06/05/2023]
Abstract
High-mechanical-index ultrasound and intravenous microbubbles might prove beneficial in treating microvascular obstruction caused by microthrombi after primary percutaneous coronary intervention for ST-segment elevation myocardial infarction (STEMI). Experiments in animals have revealed that longer-pulse-duration ultrasound is associated with an improvement in microvascular recovery. This trial tested long-pulse-duration, high-mechanical-index ultrasound in STEMI patients. Non-randomly assigned, non-blinded patients were included in this phase 2 trial. The primary endpoint was any side effect possibly related to the ultrasound treatment. The study was aborted after six patients were included; three patients experienced coronary vasoconstriction of the culprit artery, unresponsive to nitroglycerin. Therefore, coronary artery diameter was measured in five pigs. Coronary artery diameters distal to the injury site decreased after application of ultrasound, after balloon injury plus thrombus injection (from 1.89 ± 0.24 mm before to 1.78 ± 0.17 after ultrasound, p = 0.05). Long-pulse-duration ultrasound might cause coronary vasoconstriction distal to the culprit vessel location.
Collapse
Affiliation(s)
- Sebastiaan T Roos
- Department of Cardiology and Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands; Interuniversity Cardiology Institute of the Netherlands (ICIN), Utrecht, The Netherlands.
| | - Lynda J M Juffermans
- Department of Cardiology and Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands
| | - Niels van Royen
- Department of Cardiology and Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands
| | - Albert C van Rossum
- Department of Cardiology and Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands; Interuniversity Cardiology Institute of the Netherlands (ICIN), Utrecht, The Netherlands
| | - Feng Xie
- University of Nebraska Medical Centre, Omaha, Nebraska, USA
| | - Yolande Appelman
- Department of Cardiology and Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands; Interuniversity Cardiology Institute of the Netherlands (ICIN), Utrecht, The Netherlands
| | | | - Otto Kamp
- Department of Cardiology and Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands; Interuniversity Cardiology Institute of the Netherlands (ICIN), Utrecht, The Netherlands
| |
Collapse
|
29
|
Porter TR, Radio S, Lof J, Everbach C, Powers JE, Vignon F, Shi WT, Xie F. Diagnostic Ultrasound High Mechanical Index Impulses Restore Microvascular Flow in Peripheral Arterial Thromboembolism. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:1531-40. [PMID: 27083977 PMCID: PMC4899265 DOI: 10.1016/j.ultrasmedbio.2016.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 01/18/2016] [Accepted: 02/03/2016] [Indexed: 05/25/2023]
Abstract
We sought to explore mechanistically how intermittent high-mechanical-index (MI) diagnostic ultrasound impulses restore microvascular flow. Thrombotic microvascular obstruction was created in the rat hindlimb muscle of 36 rats. A diagnostic transducer confirmed occlusion with low-MI imaging during an intravenous microbubble infusion. This same transducer was used to intermittently apply ultrasound with an MI that produced stable or inertial cavitation (IC) for 10 min through a tissue-mimicking phantom. A nitric oxide inhibitor, L-Nω-nitroarginine methyl ester (L-NAME), was pre-administered to six rats. Plateau microvascular contrast intensity quantified skeletal microvascular blood volume, and postmortem staining was used to detect perivascular hemorrhage. Intermittent IC impulses produced the greatest recovery of microvascular blood volume (p < 0.0001, analysis of variance). Nitric oxide inhibition did not affect the skeletal microvascular blood volume improvement, but did result in more perivascular hemorrhage. IC inducing pulses from a diagnostic transducer can reverse microvascular obstruction after acute arterial thromboembolism. Nitric oxide may prevent unwanted bio-effects of these IC pulses.
Collapse
Affiliation(s)
- Thomas R Porter
- University of Nebraska Medical Center, Omaha, Nebraska, USA.
| | - Stanley Radio
- University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - John Lof
- University of Nebraska Medical Center, Omaha, Nebraska, USA
| | | | | | - Francois Vignon
- Philips Research North America, Briarcliff Manor, New York, USA
| | - William T Shi
- Philips Research North America, Briarcliff Manor, New York, USA
| | - Feng Xie
- University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
30
|
Aw MS, Paniwnyk L, Losic D. The progressive role of acoustic cavitation for non-invasive therapies, contrast imaging and blood-tumor permeability enhancement. Expert Opin Drug Deliv 2016; 13:1383-96. [PMID: 27195384 DOI: 10.1080/17425247.2016.1192123] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Drug delivery pertaining to acoustic cavitation generated from ultrasonic (US) irradiation is advantageous for devising smarter and more advanced therapeutics. The aim is to showcase microbubbles as drug carriers and robust theranostic for non-invasive therapies across diverse biomedical disciplines, highlighting recent technologies in this field for overcoming the blood-brain barrier (BBB) to treat cancers and neurological disorders. AREAS COVERED This article reviews work on the optimized tuning of ultrasonic parameters, sonoporation, transdermal and responsive drug delivery, acoustic cavitation in vasculature and oncology, contrast imaging for real-time magnification of cell-microbubble dynamics and biomolecular targeting. Scholarly literature was sought through database search on key terminology, latest topics, reputable experts and established journals over the last five years. EXPERT OPINION Cavitation offers immense promise in overcoming current diffusion and convection limitations for treating skull/brain/vascular/tissue injuries and ablating tumors to minimize chronic/acute effects. Since stable cavitation facilitates the restoration of US-opened BBB and the modulation of drug concentration, US equipment with programmable imaging modality and sensitivity are envisaged to create safer miniaturized devices for personalized care. Due to differing biomedical protocols with regard to specific medical conditions, quantitative and qualitative controls are mandatory before translation to real-life clinical applications can be accomplished.
Collapse
Affiliation(s)
- Moom Sinn Aw
- a School of Chemical Engineering , The University of Adelaide , Adelaide , Australia.,b Faculty of Health and Life Sciences , Coventry University , West Midlands , UK
| | - Larysa Paniwnyk
- c Faculty of Health and Life Sciences , Coventry University , West Midlands , UK
| | - Dusan Losic
- a School of Chemical Engineering , The University of Adelaide , Adelaide , Australia
| |
Collapse
|
31
|
Mathias W, Tsutsui JM, Tavares BG, Xie F, Aguiar MO, Garcia DR, Oliveira MT, Soeiro A, Nicolau JC, Lemos PA, Rochitte CE, Ramires JA, Kalil R, Porter TR. Diagnostic Ultrasound Impulses Improve Microvascular Flow in Patients With STEMI Receiving Intravenous Microbubbles. J Am Coll Cardiol 2016; 67:2506-15. [DOI: 10.1016/j.jacc.2016.03.542] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 03/17/2016] [Indexed: 10/21/2022]
|
32
|
Lu Y, Wang J, Huang R, Chen G, Zhong L, Shen S, Zhang C, Li X, Cao S, Liao W, Liao Y, Bin J. Microbubble-Mediated Sonothrombolysis Improves Outcome After Thrombotic Microembolism-Induced Acute Ischemic Stroke. Stroke 2016; 47:1344-53. [PMID: 27048701 DOI: 10.1161/strokeaha.115.012056] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 03/04/2016] [Indexed: 11/16/2022]
Affiliation(s)
- Yongkang Lu
- From the State Key Laboratory of Organ Failure Research, Department of Cardiology (Y. Lu, J.W., R.H., G.C., L.Z., S.S., C.Z., X.L., S.C., Y. Liao, J.B.) and Department of Oncology (W.L.), Nanfang Hospital, Southern Medical University, Guangzhou, China; and Department of Cardiology, the 458th Hospital of the Chinese People’s Liberation Army, Guangzhou, China (R.H.)
| | - Junfen Wang
- From the State Key Laboratory of Organ Failure Research, Department of Cardiology (Y. Lu, J.W., R.H., G.C., L.Z., S.S., C.Z., X.L., S.C., Y. Liao, J.B.) and Department of Oncology (W.L.), Nanfang Hospital, Southern Medical University, Guangzhou, China; and Department of Cardiology, the 458th Hospital of the Chinese People’s Liberation Army, Guangzhou, China (R.H.)
| | - Ruizhu Huang
- From the State Key Laboratory of Organ Failure Research, Department of Cardiology (Y. Lu, J.W., R.H., G.C., L.Z., S.S., C.Z., X.L., S.C., Y. Liao, J.B.) and Department of Oncology (W.L.), Nanfang Hospital, Southern Medical University, Guangzhou, China; and Department of Cardiology, the 458th Hospital of the Chinese People’s Liberation Army, Guangzhou, China (R.H.)
| | - Gangbin Chen
- From the State Key Laboratory of Organ Failure Research, Department of Cardiology (Y. Lu, J.W., R.H., G.C., L.Z., S.S., C.Z., X.L., S.C., Y. Liao, J.B.) and Department of Oncology (W.L.), Nanfang Hospital, Southern Medical University, Guangzhou, China; and Department of Cardiology, the 458th Hospital of the Chinese People’s Liberation Army, Guangzhou, China (R.H.)
| | - Lintao Zhong
- From the State Key Laboratory of Organ Failure Research, Department of Cardiology (Y. Lu, J.W., R.H., G.C., L.Z., S.S., C.Z., X.L., S.C., Y. Liao, J.B.) and Department of Oncology (W.L.), Nanfang Hospital, Southern Medical University, Guangzhou, China; and Department of Cardiology, the 458th Hospital of the Chinese People’s Liberation Army, Guangzhou, China (R.H.)
| | - Shuxin Shen
- From the State Key Laboratory of Organ Failure Research, Department of Cardiology (Y. Lu, J.W., R.H., G.C., L.Z., S.S., C.Z., X.L., S.C., Y. Liao, J.B.) and Department of Oncology (W.L.), Nanfang Hospital, Southern Medical University, Guangzhou, China; and Department of Cardiology, the 458th Hospital of the Chinese People’s Liberation Army, Guangzhou, China (R.H.)
| | - Chuanxi Zhang
- From the State Key Laboratory of Organ Failure Research, Department of Cardiology (Y. Lu, J.W., R.H., G.C., L.Z., S.S., C.Z., X.L., S.C., Y. Liao, J.B.) and Department of Oncology (W.L.), Nanfang Hospital, Southern Medical University, Guangzhou, China; and Department of Cardiology, the 458th Hospital of the Chinese People’s Liberation Army, Guangzhou, China (R.H.)
| | - Xinzhong Li
- From the State Key Laboratory of Organ Failure Research, Department of Cardiology (Y. Lu, J.W., R.H., G.C., L.Z., S.S., C.Z., X.L., S.C., Y. Liao, J.B.) and Department of Oncology (W.L.), Nanfang Hospital, Southern Medical University, Guangzhou, China; and Department of Cardiology, the 458th Hospital of the Chinese People’s Liberation Army, Guangzhou, China (R.H.)
| | - Shiping Cao
- From the State Key Laboratory of Organ Failure Research, Department of Cardiology (Y. Lu, J.W., R.H., G.C., L.Z., S.S., C.Z., X.L., S.C., Y. Liao, J.B.) and Department of Oncology (W.L.), Nanfang Hospital, Southern Medical University, Guangzhou, China; and Department of Cardiology, the 458th Hospital of the Chinese People’s Liberation Army, Guangzhou, China (R.H.)
| | - Wangjun Liao
- From the State Key Laboratory of Organ Failure Research, Department of Cardiology (Y. Lu, J.W., R.H., G.C., L.Z., S.S., C.Z., X.L., S.C., Y. Liao, J.B.) and Department of Oncology (W.L.), Nanfang Hospital, Southern Medical University, Guangzhou, China; and Department of Cardiology, the 458th Hospital of the Chinese People’s Liberation Army, Guangzhou, China (R.H.)
| | - Yulin Liao
- From the State Key Laboratory of Organ Failure Research, Department of Cardiology (Y. Lu, J.W., R.H., G.C., L.Z., S.S., C.Z., X.L., S.C., Y. Liao, J.B.) and Department of Oncology (W.L.), Nanfang Hospital, Southern Medical University, Guangzhou, China; and Department of Cardiology, the 458th Hospital of the Chinese People’s Liberation Army, Guangzhou, China (R.H.)
| | - Jianping Bin
- From the State Key Laboratory of Organ Failure Research, Department of Cardiology (Y. Lu, J.W., R.H., G.C., L.Z., S.S., C.Z., X.L., S.C., Y. Liao, J.B.) and Department of Oncology (W.L.), Nanfang Hospital, Southern Medical University, Guangzhou, China; and Department of Cardiology, the 458th Hospital of the Chinese People’s Liberation Army, Guangzhou, China (R.H.)
| |
Collapse
|
33
|
Helfield B, Black JJ, Qin B, Pacella J, Chen X, Villanueva FS. Fluid Viscosity Affects the Fragmentation and Inertial Cavitation Threshold of Lipid-Encapsulated Microbubbles. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:782-94. [PMID: 26674676 PMCID: PMC4744112 DOI: 10.1016/j.ultrasmedbio.2015.10.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 10/16/2015] [Accepted: 10/27/2015] [Indexed: 05/04/2023]
Abstract
Ultrasound and microbubble optimization studies for therapeutic applications are often conducted in water/saline, with a fluid viscosity of 1 cP. In an in vivo context, microbubbles are situated in blood, a more viscous fluid (∼4 cP). In this study, ultrahigh-speed microscopy and passive cavitation approaches were employed to investigate the effect of fluid viscosity on microbubble behavior at 1 MHz subject to high pressures (0.25-2 MPa). The propensity for individual microbubble (n = 220) fragmentation was found to significantly decrease in 4-cP fluid compared with 1-cP fluid, despite achieving similar maximum radial excursions. Microbubble populations diluted in 4-cP fluid exhibited decreased wideband emissions (up to 10.2 times), and increasingly distinct harmonic emission peaks (e.g., ultraharmonic) with increasing pressure, compared with those in 1-cP fluid. These results suggest that in vitro studies should consider an evaluation using physiologic viscosity perfusate before transitioning to in vivo evaluations.
Collapse
Affiliation(s)
- Brandon Helfield
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - John J Black
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Bin Qin
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - John Pacella
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Xucai Chen
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Flordeliza S Villanueva
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
34
|
Chen X, Wang J, Pacella JJ, Villanueva FS. Dynamic Behavior of Microbubbles during Long Ultrasound Tone-Burst Excitation: Mechanistic Insights into Ultrasound-Microbubble Mediated Therapeutics Using High-Speed Imaging and Cavitation Detection. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:528-538. [PMID: 26603628 PMCID: PMC4698009 DOI: 10.1016/j.ultrasmedbio.2015.09.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 09/11/2015] [Accepted: 09/17/2015] [Indexed: 05/24/2023]
Abstract
Ultrasound (US)-microbubble (MB)-mediated therapies have been found to restore perfusion and enhance drug/gene delivery. On the presumption that MBs do not persist during long US exposure under high acoustic pressures, most schemes use short US pulses when a high US pressure is employed. However, we recently observed an enhanced thrombolytic effect using long US pulses at high acoustic pressures. Therefore, we explored the fate of MBs during long tone-burst exposures (5 ms) at various acoustic pressures and MB concentrations via direct high-speed optical observation and passive cavitation detection. MBs first underwent stable or inertial cavitation depending on the acoustic pressure and then formed gas-filled clusters that continued to oscillate, break up and form new clusters. Cavitation detection confirmed continued, albeit diminishing, acoustic activity throughout the 5-ms US excitation. These data suggest that persisting cavitation activity during long tone bursts may confer additional therapeutic effects.
Collapse
Affiliation(s)
- Xucai Chen
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Jianjun Wang
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - John J Pacella
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Flordeliza S Villanueva
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| |
Collapse
|