1
|
Ward RE, Martinez-Correa S, Tierradentro-García LO, Hwang M, Sehgal CM. Sonothrombolysis: State-of-the-Art and Potential Applications in Children. CHILDREN (BASEL, SWITZERLAND) 2023; 11:57. [PMID: 38255371 PMCID: PMC10814591 DOI: 10.3390/children11010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/15/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024]
Abstract
In recent years, advances in ultrasound therapeutics have been implemented into treatment algorithms for the adult population; however, the use of therapeutic ultrasound in the pediatric population still needs to be further elucidated. In order to better characterize the utilization and practicality of sonothrombolysis in the juvenile population, the authors conducted a literature review of current pediatric research in therapeutic ultrasound. The PubMed database was used to search for all clinical and preclinical studies detailing the use and applications of sonothrombolysis, with a focus on the pediatric population. As illustrated by various review articles, case studies, and original research, sonothrombolysis demonstrates efficacy and safety in clot dissolution in vitro and in animal studies, particularly when combined with microbubbles, with potential applications in conditions such as deep venous thrombosis, peripheral vascular disease, ischemic stroke, myocardial infarction, and pulmonary embolism. Although there is limited literature on the use of therapeutic ultrasound in children, mainly due to the lower prevalence of thrombotic events, sonothrombolysis shows potential as a noninvasive thrombolytic treatment. However, more pediatric sonothrombolysis research needs to be conducted to quantify the safety and ethical considerations specific to this vulnerable population.
Collapse
Affiliation(s)
- Rebecca E. Ward
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (R.E.W.); (S.M.-C.); (L.O.T.-G.); (M.H.)
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Santiago Martinez-Correa
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (R.E.W.); (S.M.-C.); (L.O.T.-G.); (M.H.)
| | - Luis Octavio Tierradentro-García
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (R.E.W.); (S.M.-C.); (L.O.T.-G.); (M.H.)
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Misun Hwang
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (R.E.W.); (S.M.-C.); (L.O.T.-G.); (M.H.)
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chandra M. Sehgal
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
2
|
Seo K, Zhang Y, Toyota T, Hayashi H, Hirata S, Yamaguchi T, Yoshida K. Release of liposomally formulated near-infrared fluorescent probes included in giant cluster vesicles by ultrasound irradiation. ULTRASONICS 2023; 134:107102. [PMID: 37454454 DOI: 10.1016/j.ultras.2023.107102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Detection of tumors and regional lymph nodes during surgery has been proposed in the diagnosis of lymphatic metastasis and the surgical treatment of malignant diseases. Giant cluster vesicles (GCVs), including liposomally formulated indocyanine green (LP-ICG) derivatives, are a possible candidate for agents to realize the two contradictory properties, i.e., retention in tissue for lesion-marking and trace for sentinel lymph nodes (SLNs) identification. We attempted to release the LP-ICG derivatives from GCVs using ultrasound contrast agents (UCAs) under ultrasound irradiation. An absorption spectrophotometer quantitatively evaluated the amounts of released LP-ICG derivatives. As a result, we demonstrated that it depended on conditions for sound pressure, burst length, and number density of UCAs, and had a sound pressure threshold independent of burst length and number density of UCAs. The results will aid to determine appropriate conditions to maximize the released amount of LP-ICG derivatives while keeping safety.
Collapse
Affiliation(s)
- Kota Seo
- Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Yiting Zhang
- Department of Chemistry, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Taro Toyota
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Hideki Hayashi
- Center for Frontier Medical Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Shinnosuke Hirata
- Center for Frontier Medical Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Tadashi Yamaguchi
- Center for Frontier Medical Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Kenji Yoshida
- Center for Frontier Medical Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.
| |
Collapse
|
3
|
Chen X, Chen X, Wang J, Yu FTH, Villanueva FS, Pacella JJ. Dynamic Behavior of Polymer Microbubbles During Long Ultrasound Tone-Burst Excitation and Its Application for Sonoreperfusion Therapy. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:996-1006. [PMID: 36697268 PMCID: PMC9974862 DOI: 10.1016/j.ultrasmedbio.2022.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
OBJECTIVE Ultrasound (US)-targeted microbubble (MB) cavitation (UTMC)-mediated therapies have been found to restore perfusion and enhance drug/gene delivery. Because of the potentially longer circulation time and relative ease of storage and reconstitution of polymer-shelled MBs compared with lipid MBs, we investigated the dynamic behavior of polymer microbubbles and their therapeutic potential for sonoreperfusion (SRP) therapy. METHODS The fate of polymer MBs during a single long tone-burst exposure (1 MHz, 5 ms) at various acoustic pressures and MB concentrations was recorded via high-speed microscopy and passive cavitation detection (PCD). SRP efficacy of the polymer MBs was investigated in an in vitro flow system and compared with that of lipid MBs. DISCUSSION Microscopy videos indicated that polymer MBs formed gas-filled clusters that continued to oscillate, fragment and form new gas-filled clusters during the single US burst. PCD confirmed continued acoustic activity throughout the 5-ms US excitation. SRP efficacy with polymer MBs increased with pulse duration and acoustic pressure similarly to that with lipid MBs but no significant differences were found between polymer and lipid MBs. CONCLUSION These data suggest that persistent cavitation activity from polymer MBs during long tone-burst US excitation confers excellent reperfusion efficacy.
Collapse
Affiliation(s)
- Xianghui Chen
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Department of Cardiology, First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xucai Chen
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jianjun Wang
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Francois T H Yu
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Flordeliza S Villanueva
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - John J Pacella
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Zhao X, Wright A, Goertz DE. An optical and acoustic investigation of microbubble cavitation in small channels under therapeutic ultrasound conditions. ULTRASONICS SONOCHEMISTRY 2023; 93:106291. [PMID: 36640460 PMCID: PMC9852793 DOI: 10.1016/j.ultsonch.2023.106291] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/22/2022] [Accepted: 01/04/2023] [Indexed: 06/04/2023]
Abstract
Therapeutic focused ultrasound in combination with encapsulated microbubbles is being widely investigated for its ability to elicit bioeffects in the microvasculature, such as transient permeabilization for drug delivery or at higher pressures to achieve 'antivascular' effects. While it is well established that the behaviors of microbubbles are altered when they are situated within sufficiently small vessels, there is a paucity of data examining how the bubble population dynamics and emissions change as a function of channel (vessel) diameter over a size range relevant to therapeutic ultrasound, particularly at pressures relevant to antivascular ultrasound. Here we use acoustic emissions detection and high-speed microscopy (10 kframes/s) to examine the behavior of a polydisperse clinically employed agent (Definity®) in wall-less channels as their diameters are scaled from 1200 to 15 µm. Pressures are varied from 0.1 to 3 MPa using either a 5 ms pulse or a sequence of 0.1 ms pulses spaced at 1 ms, both of which have been previously employed in an in vivo context. With increasing pressure, the 1200 µm channel - on the order of small arteries and veins - exhibited inertial cavitation, 1/2 subharmonics and 3/2 ultraharmonics, consistent with numerous previous reports. The 200 and 100 µm channels - in the size range of larger microvessels less affected by therapeutic focused ultrasound - exhibited a distinctly different behavior, having muted development of 1/2 subharmonics and 3/2 ultraharmonics and reduced persistence. These were associated with radiation forces displacing bubbles to the distal wall and inducing clusters that then rapidly dissipated along with emissions. As the diameter transitioned to 50 and then 15 µm - a size regime that is most relevant to therapeutic focused ultrasound - there was a higher threshold for the onset of inertial cavitation as well as subharmonics and ultraharmonics, which importantly had more complex orders that are not normally reported. Clusters also occurred in these channels (e.g. at 3 MPa, the mean lateral and axial sizes were 23 and 72 µm in the 15 µm channel; 50 and 90 µm in the 50 µm channel), however in this case they occupied the entire lumens and displaced the wall boundaries. Damage to the 15 µm channel was observed for both pulse types, but at a lower pressure for the long pulse. Experiments conducted with a 'nanobubble' (<0.45 µm) subpopulation of Definity followed broadly similar features to 'native' Definity, albeit at a higher pressure threshold for inertial cavitation. These results provide new insights into the behavior of microbubbles in small vessels at higher pressures and have implications for therapeutic focused ultrasound cavitation monitoring and control.
Collapse
Affiliation(s)
- Xiaoxiao Zhao
- Department of Medical Biophysics, University of Toronto, M5G 1L7, Canada; Sunnybrook Research Institute, 2075 Bayview Ave, Toronto M4N 3M5, Canada.
| | - Alex Wright
- Sunnybrook Research Institute, 2075 Bayview Ave, Toronto M4N 3M5, Canada
| | - David E Goertz
- Department of Medical Biophysics, University of Toronto, M5G 1L7, Canada; Sunnybrook Research Institute, 2075 Bayview Ave, Toronto M4N 3M5, Canada.
| |
Collapse
|
5
|
Yu FTH, Amjad MW, Mohammed SA, Yu GZ, Chen X, Pacella JJ. Effect of Ultrasound Pulse Length on Sonoreperfusion Therapy. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:152-164. [PMID: 36253230 PMCID: PMC9712163 DOI: 10.1016/j.ultrasmedbio.2022.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 06/16/2023]
Abstract
In recent years, long- and short-pulse ultrasound (US)-targeted microbubble cavitation (UTMC) has been found to increase perfusion in healthy and ischemic skeletal muscle, in pre-clinical animal models of microvascular obstruction and in the myocardium of patients presenting with acute myocardial infarction. There is evidence that the observed microvascular vasodilation is driven by the nitric oxide pathway and purinergic signaling, but the time course of the response and the dependency on US pulse length are not well elucidated. Because our prior data supported that sonoreperfusion efficacy is enhanced by long-pulse US versus short-pulse US, in this study, we sought to compare long-pulse (5000 cycles) and short-pulse (500 × 10 cycles) US at a pressure of 1.5 MPa with an equivalent total number of acoustical cycles, hence constant acoustic energy, and at the same frequency (1 MHz), in a rodent hind limb model with and without microvascular obstruction (MVO). In quantifying perfusion using burst replenishment contrast-enhanced US imaging, we made three findings: (i) Long and short pulses result in different vasodilation kinetics in an intact hind limb model. The long pulse causes an initial spasmic reduction in flow that spontaneously resolved at 4 min, followed by sustained higher flow rates (approximately twofold) compared with baseline, starting 10 min after therapy (p < 0.05). The short pulse caused a short-lived approximately twofold increase in flow rate that peaked at 4 min (p < 0.05), but without the initial spasm. (ii) The sustained increased response with the long pulse is not simply reactive hyperemia. (iii) Both pulses are effective in reperfusion of MVO in our hindlimb model by restoring blood volume, but only the long pulse caused an increase in flow rate after treatment ii, compared with MVO (p < 0.05). Histological analysis of hind limb muscle post-UTMC with either pulse configuration indicates no evidence of tissue damage or hemorrhage. Our findings indicate that the microbubble oscillation induces vasodilation, and therapeutic efficacy for the treatment of MVO can be tuned by varying pulse length; relative to short-pulse US, longer pulses drive greater microbubble cavitation and more rapid microvascular flow rate restoration after MVO, warranting further optimization of the pulse length for sonoreperfusion therapy.
Collapse
Affiliation(s)
- François T H Yu
- Center for Ultrasound Molecular Imaging and Therapeutics, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada; Département de Radiologie, Radio-Oncologie et Médecine Nucléaire, Université de Montréal, Montréal, Québec, Canada
| | - Muhammad Wahab Amjad
- Center for Ultrasound Molecular Imaging and Therapeutics, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Soheb Anwar Mohammed
- Center for Ultrasound Molecular Imaging and Therapeutics, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Gary Z Yu
- Center for Ultrasound Molecular Imaging and Therapeutics, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Xucai Chen
- Center for Ultrasound Molecular Imaging and Therapeutics, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John J Pacella
- Center for Ultrasound Molecular Imaging and Therapeutics, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
6
|
Yu GZ, Ramasamy T, Fazzari M, Chen X, Freeman B, Pacella JJ. Lipid nitroalkene nanoparticles for the focal treatment of ischemia reperfusion. Nanotheranostics 2022; 6:215-229. [PMID: 34976596 PMCID: PMC8671954 DOI: 10.7150/ntno.62351] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 11/05/2021] [Indexed: 12/26/2022] Open
Abstract
Rationale: The treatment of microvascular obstruction (MVO) using ultrasound-targeted LNP cavitation (UTC) therapy mechanically relieves the physical obstruction in the microcirculation but does not specifically target the associated inflammatory milieu. Electrophilic fatty acid nitroalkene derivatives (nitro-fatty acids), that display pleiotropic anti-inflammatory signaling and transcriptional regulatory actions, offer strong therapeutic potential but lack a means of rapid targeted delivery. The objective of this study was to develop nitro-fatty acid-containing lipid nanoparticles (LNP) that retain the mechanical efficacy of standard LNP and can rapidly target delivery of a tissue-protective payload that reduces inflammation and improves vascular function following ischemia-reperfusion. Methods: The stability and acoustic behavior of nitro-fatty acid LNP (NO2-FA-LNP) were characterized by HPLC-MS/MS and ultra-high-speed microscopy. The LNP were then used in a rat hindlimb model of ischemia-reperfusion injury with ultrasound-targeted cavitation. Results: Intravenous administration of NO2-FA-LNP followed by ultrasound-targeted LNP cavitation (UTC) in both healthy rat hindlimb and following ischemia-reperfusion injury showed enhanced NO2-FA tissue delivery and microvascular perfusion. In addition, vascular inflammatory mediator expression and lipid peroxidation were decreased in tissues following ischemia-reperfusion revealed NO2-FA-LNP protected against inflammatory injury. Conclusions: Vascular targeting of NO2-FA-LNP with UTC offers a rapid method of focal anti-inflammatory therapy at sites of ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Gary Z Yu
- Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Thiruganesh Ramasamy
- Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Marco Fazzari
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xucai Chen
- Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bruce Freeman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - John J Pacella
- Center for Ultrasound Molecular Imaging and Therapeutics, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
7
|
Grygorczyk R, Boudreault F, Ponomarchuk O, Tan JJ, Furuya K, Goldgewicht J, Kenfack FD, Yu F. Lytic Release of Cellular ATP: Physiological Relevance and Therapeutic Applications. Life (Basel) 2021; 11:life11070700. [PMID: 34357072 PMCID: PMC8307140 DOI: 10.3390/life11070700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/28/2021] [Accepted: 07/13/2021] [Indexed: 01/01/2023] Open
Abstract
The lytic release of ATP due to cell and tissue injury constitutes an important source of extracellular nucleotides and may have physiological and pathophysiological roles by triggering purinergic signalling pathways. In the lungs, extracellular ATP can have protective effects by stimulating surfactant and mucus secretion. However, excessive extracellular ATP levels, such as observed in ventilator-induced lung injury, act as a danger-associated signal that activates NLRP3 inflammasome contributing to lung damage. Here, we discuss examples of lytic release that we have identified in our studies using real-time luciferin-luciferase luminescence imaging of extracellular ATP. In alveolar A549 cells, hypotonic shock-induced ATP release shows rapid lytic and slow-rising non-lytic components. Lytic release originates from the lysis of single fragile cells that could be seen as distinct spikes of ATP-dependent luminescence, but under physiological conditions, its contribution is minimal <1% of total release. By contrast, ATP release from red blood cells results primarily from hemolysis, a physiological mechanism contributing to the regulation of local blood flow in response to tissue hypoxia, mechanical stimulation and temperature changes. Lytic release of cellular ATP may have therapeutic applications, as exemplified by the use of ultrasound and microbubble-stimulated release for enhancing cancer immunotherapy in vivo.
Collapse
Affiliation(s)
- Ryszard Grygorczyk
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; (F.B.); (O.P.); (J.J.T.); (J.G.); (F.D.K.)
- Département de Médecine, Université de Montréal, Montréal, QC H2X 0A9, Canada
- Correspondence: (R.G.); (F.Y.)
| | - Francis Boudreault
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; (F.B.); (O.P.); (J.J.T.); (J.G.); (F.D.K.)
| | - Olga Ponomarchuk
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; (F.B.); (O.P.); (J.J.T.); (J.G.); (F.D.K.)
| | - Ju Jing Tan
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; (F.B.); (O.P.); (J.J.T.); (J.G.); (F.D.K.)
| | - Kishio Furuya
- Graduate School of Medicine, Nagoya University, Nagoya 464-8601, Japan;
| | - Joseph Goldgewicht
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; (F.B.); (O.P.); (J.J.T.); (J.G.); (F.D.K.)
| | - Falonne Démèze Kenfack
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; (F.B.); (O.P.); (J.J.T.); (J.G.); (F.D.K.)
| | - François Yu
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; (F.B.); (O.P.); (J.J.T.); (J.G.); (F.D.K.)
- Département de Radiologie, Radio-Oncologie et Médecine Nucléaire, Université de Montréal, Montréal, QC H2X 0A9, Canada
- Institut de Génie Biomédical, Université de Montréal, Montréal, QC H2X 0A9, Canada
- Correspondence: (R.G.); (F.Y.)
| |
Collapse
|
8
|
Kumar SU, Wang H, Telichko AV, Natarajan A, Bettinger T, Cherkaoui S, Massoud TF, Dahl JJ, Paulmurugan R. Ultrasound Triggered Co‐Delivery of Therapeutic MicroRNAs and a Triple Suicide Gene Therapy Vector by Using Biocompatible Polymer Nanoparticles for Improved Cancer Therapy in Mouse Models. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Sukumar Uday Kumar
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology Stanford University Stanford CA 94305 USA
| | - Huaijun Wang
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology Stanford University Stanford CA 94305 USA
| | - Arsenii V. Telichko
- Canary Center for Cancer Early Detection, Department of Radiology Stanford University Stanford CA 94305 USA
| | - Arutselvan Natarajan
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology Stanford University Stanford CA 94305 USA
| | - Thierry Bettinger
- Novel Agents Department Bracco Suisse SA Route de la Galaise 31 1228 Plan‐les‐Ouates Geneva Switzerland
| | - Samir Cherkaoui
- Novel Agents Department Bracco Suisse SA Route de la Galaise 31 1228 Plan‐les‐Ouates Geneva Switzerland
| | - Tarik F. Massoud
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology Stanford University Stanford CA 94305 USA
| | - Jeremy J. Dahl
- Canary Center for Cancer Early Detection, Department of Radiology Stanford University Stanford CA 94305 USA
| | - Ramasamy Paulmurugan
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology Stanford University Stanford CA 94305 USA
- Canary Center for Cancer Early Detection, Department of Radiology Stanford University Stanford CA 94305 USA
| |
Collapse
|
9
|
Kumar SU, Telichko AV, Wang H, Hyun D, Johnson EG, Kent MS, Rebhun RB, Dahl JJ, Culp WTN, Paulmurugan R. Acoustically Driven Microbubbles Enable Targeted Delivery of microRNA-Loaded Nanoparticles to Spontaneous Hepatocellular Neoplasia in Canines. ADVANCED THERAPEUTICS 2020; 3:2000120. [PMID: 33415184 PMCID: PMC7784952 DOI: 10.1002/adtp.202000120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Indexed: 01/16/2023]
Abstract
Spatially localized microbubble cavitation by ultrasound offers an effective means of altering permeability of natural barriers (i.e. blood vessel and cell membrane) in favor of nanomaterials accumulation in the target site. In this study, a clinically relevant, minimally invasive ultrasound guided therapeutic approach is investigated for targeted delivery of anticancer microRNA loaded PLGA-b-PEG nanoparticles to spontaneous hepatocellular neoplasia in a canine model. Quantitative assessment of the delivered microRNAs revealed prominent and consistent increase in miRNAs levels (1.5-to 2.3-fold increase (p<0.001)) in ultrasound treated tumor regions compared to untreated control regions. Immunohistology of ultrasound treated tumor tissue presented a clear evidence for higher amount of nanoparticles extravasation from the blood vessels. A distinct pattern of cytokine expression supporting CD8+ T cells mediated "cold-to-hot" tumor transition was evident in all patients. On the outset, proposed platform can enhance delivery of miRNA-loaded nanoparticles to deep seated tumors in large animals to enhance chemotherapy.
Collapse
Affiliation(s)
- Sukumar Uday Kumar
- Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California; Department of Radiology, Stanford University, Stanford, California
| | - Arsenii V Telichko
- Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California; Department of Radiology, Stanford University, Stanford, California
| | - Huaijun Wang
- Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California; Department of Radiology, Stanford University, Stanford, California
| | - Dongwoon Hyun
- Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California; Department of Radiology, Stanford University, Stanford, California
| | - Eric G Johnson
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, California
| | - Michael S Kent
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, California
| | - Robert B Rebhun
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, California
| | - Jeremy J Dahl
- Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California; Department of Radiology, Stanford University, Stanford, California
| | - William T N Culp
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, California
| | - Ramasamy Paulmurugan
- Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California; Department of Radiology, Stanford University, Stanford, California
| |
Collapse
|
10
|
Pouliopoulos AN, Smith CAB, Bezer JH, El Ghamrawy A, Sujarittam K, Bouldin CJ, Morse SV, Tang MX, Choi JJ. Doppler Passive Acoustic Mapping. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2020; 67:2692-2703. [PMID: 32746222 DOI: 10.1109/tuffc.2020.3011657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In therapeutic ultrasound using microbubbles, it is essential to drive the microbubbles into the correct type of activity and the correct location to produce the desired biological response. Although passive acoustic mapping (PAM) is capable of locating where microbubble activities are generated, it is well known that microbubbles rapidly move within the ultrasound beam. We propose a technique that can image microbubble movement by estimating their velocities within the focal volume. Microbubbles embedded within a wall-less channel of a tissue-mimicking material were sonicated using 1-MHz focused ultrasound. The acoustic emissions generated by the microbubbles were captured with a linear array (L7-4). PAM with robust Capon beamforming was used to localize the microbubble acoustic emissions. We spectrally analyzed the time trace of each position and isolated the higher harmonics. Microbubble velocity maps were constructed from the position-dependent Doppler shifts at different time points during sonication. Microbubbles moved primarily away from the transducer at velocities on the order of 1 m/s due to primary acoustic radiation forces, producing a time-dependent velocity distribution. We detected microbubble motion both away and toward the receiving array, revealing the influence of acoustic radiation forces and fluid motion due to the ultrasound exposure. High-speed optical images confirmed the acoustically measured microbubble velocities. Doppler PAM enables passive estimation of microbubble motion and may be useful in therapeutic applications, such as drug delivery across the blood-brain barrier, sonoporation, sonothrombolysis, and drug release.
Collapse
|
11
|
Ozdas MS, Shah AS, Johnson PM, Patel N, Marks M, Yasar TB, Stalder U, Bigler L, von der Behrens W, Sirsi SR, Yanik MF. Non-invasive molecularly-specific millimeter-resolution manipulation of brain circuits by ultrasound-mediated aggregation and uncaging of drug carriers. Nat Commun 2020; 11:4929. [PMID: 33004789 PMCID: PMC7529901 DOI: 10.1038/s41467-020-18059-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 07/31/2020] [Indexed: 12/13/2022] Open
Abstract
Non-invasive, molecularly-specific, focal modulation of brain circuits with low off-target effects can lead to breakthroughs in treatments of brain disorders. We systemically inject engineered ultrasound-controllable drug carriers and subsequently apply a novel two-component Aggregation and Uncaging Focused Ultrasound Sequence (AU-FUS) at the desired targets inside the brain. The first sequence aggregates drug carriers with millimeter-precision by orders of magnitude. The second sequence uncages the carrier's cargo locally to achieve high target specificity without compromising the blood-brain barrier (BBB). Upon release from the carriers, drugs locally cross the intact BBB. We show circuit-specific manipulation of sensory signaling in motor cortex in rats by locally concentrating and releasing a GABAA receptor agonist from ultrasound-controlled carriers. Our approach uses orders of magnitude (1300x) less drug than is otherwise required by systemic injection and requires very low ultrasound pressures (20-fold below FDA safety limits for diagnostic imaging). We show that the BBB remains intact using passive cavitation detection (PCD), MRI-contrast agents and, importantly, also by sensitive fluorescent dye extravasation and immunohistochemistry.
Collapse
Affiliation(s)
- Mehmet S Ozdas
- Institute of Neuroinformatics, D-ITET, ETH Zurich and UZH, Zurich, Switzerland.,Neuroscience Center, Zurich, Switzerland
| | - Aagam S Shah
- Institute of Neuroinformatics, D-ITET, ETH Zurich and UZH, Zurich, Switzerland. .,Neuroscience Center, Zurich, Switzerland.
| | - Paul M Johnson
- Institute of Neuroinformatics, D-ITET, ETH Zurich and UZH, Zurich, Switzerland.,Neuroscience Center, Zurich, Switzerland
| | - Nisheet Patel
- Institute of Neuroinformatics, D-ITET, ETH Zurich and UZH, Zurich, Switzerland
| | - Markus Marks
- Institute of Neuroinformatics, D-ITET, ETH Zurich and UZH, Zurich, Switzerland.,Neuroscience Center, Zurich, Switzerland
| | - Tansel Baran Yasar
- Institute of Neuroinformatics, D-ITET, ETH Zurich and UZH, Zurich, Switzerland.,Neuroscience Center, Zurich, Switzerland
| | - Urs Stalder
- Department of Chemistry, UZH, Zurich, Switzerland
| | | | - Wolfger von der Behrens
- Institute of Neuroinformatics, D-ITET, ETH Zurich and UZH, Zurich, Switzerland.,Neuroscience Center, Zurich, Switzerland
| | - Shashank R Sirsi
- Institute of Neuroinformatics, D-ITET, ETH Zurich and UZH, Zurich, Switzerland.,Department of Bioengineering, UT at Dallas, Richardson, USA
| | - Mehmet Fatih Yanik
- Institute of Neuroinformatics, D-ITET, ETH Zurich and UZH, Zurich, Switzerland. .,Neuroscience Center, Zurich, Switzerland.
| |
Collapse
|
12
|
Amate M, Goldgewicht J, Sellamuthu B, Stagg J, Yu FTH. The effect of ultrasound pulse length on microbubble cavitation induced antibody accumulation and distribution in a mouse model of breast cancer. Nanotheranostics 2020; 4:256-269. [PMID: 33033688 PMCID: PMC7532643 DOI: 10.7150/ntno.46892] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/21/2020] [Indexed: 12/14/2022] Open
Abstract
In solid tumors, the limited diffusion of therapeutic molecules in the perivascular space is a known limitation impacting treatment efficacy. Ultrasound Targeted Microbubble Cavitation (UTMC) has been shown to increase vascular permeability and improve the delivery of therapeutic compounds including small molecules, antibodies (mAb), nanoparticles and even cells, notably across the blood-brain-barrier (BBB). In this study, we hypothesized that UTMC could improve the accumulation and biodistribution of mAb targeting the adenosinergic pathway (i.e. CD73) in mice bearing bilateral subcutaneous 4T1 mammary carcinoma. METHODS: A bolus of fluorescently labeled mAb was given intravenously, followed by a slow infusion of microbubbles. UTMC therapy (1 MHz, 850 kPa) was given under ultrasound image guidance for 5 minutes to the right side tumor only, using three different pulse lengths with identical ultrasound energy (5000cyc "long", 125x40cyc "mid" and 500x10cyc "short"), and leaving the left tumor as a paired control. Longitudinal accumulation at 0 h, 4 h and 24 h was measured using whole-body biofluorescence and confocal microscopy. RESULTS: Our data support an increase in antibody accumulation and extravasation (# extravasated vessels and extravasated signal intensity) at 0 h for all pulses and at 4 h for the mid and short pulses when compared to the control non treated side. However, this difference was not found at 24 h post UTMC, indicative of the transient nature of UTMC. Interestingly, confocal data supported that the highest extravasation range was obtained at 0 h with the long pulse and that the short pulse caused no increase in the extravasation range. Overall, the mid pulse was the only pulse to increase all our metrics (biofluorescence, fraction of extravasated vessels, amount of extravasated Ab, and extravasation range) at 0 h and 4 h time points. CONCLUSIONS: Our results support that UTMC can enhance antibody accumulation in solid tumors at the macroscopic and microscopic levels. This preferential accumulation was evident at early time points (0 h and 4 h) but had started to fade by 24 h, a time dependence that is consistent with the ultrasound blood brain barrier opening literature. Further development and optimization of this theranostic platform, such as repeated UTMC, could help improve antibody based therapies against solid cancer.
Collapse
Affiliation(s)
- Marie Amate
- Microbubble Theranostic Laboratory, CHUM Research Center, Montreal, Canada
| | - Joseph Goldgewicht
- Microbubble Theranostic Laboratory, CHUM Research Center, Montreal, Canada.,Department of Radiology, Radiation Oncology and Nuclear Medicine, Faculty of Medicine, Université de Montréal
| | | | - John Stagg
- Faculty of Pharmacy, Université de Montréal
| | - Francois T H Yu
- Microbubble Theranostic Laboratory, CHUM Research Center, Montreal, Canada.,Department of Radiology, Radiation Oncology and Nuclear Medicine, Faculty of Medicine, Université de Montréal
| |
Collapse
|
13
|
Kleven RT, Karani KB, Salido NG, Shekhar H, Haworth KJ, Mast TD, Tadesse DG, Holland CK. The effect of 220 kHz insonation scheme on rt-PA thrombolytic efficacy in vitro. Phys Med Biol 2019; 64:165015. [PMID: 31189149 DOI: 10.1088/1361-6560/ab293b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Ultrasound-enhanced recombinant tissue plasminogen activator (rt-PA) thrombolysis is under development as an adjuvant to ischemic stroke therapy. The goal of this study was to design a pulsed ultrasound (US) exposure scheme that reduced intracranial constructive interference and tissue heating, and maintained thrombolytic efficacy relative to continuous wave (CW) insonation. Three 220 kHz US schemes were evaluated, two pulsed insonation schemes (15 cycles, 68 µs pulse duration, 33% or 62.5% duty cycle) and an intermittent CW insonation scheme (50 s active, 30 s quiescent) over a 30-min treatment period. An in silico study using a finite-difference model of transcranial US propagation was performed to estimate the intracranial acoustic field and temperature rise in the skull for each insonation scheme. In vitro measurements with flow were performed to assess thrombolysis using time-lapse microscopy. Intracranial constructive interference was not reduced with pulsed US using a pulse length of 15 cycles compared to intermittent CW US. The 33.3% duty cycle pulsed US scheme reduced heating in the temporal bone as much as 60% relative to the intermittent CW scheme. All insonation schemes promoted sustained stable cavitation in vitro and augmented thrombolysis compared to rt-PA alone (p < 0.05). Ultraharmonic (UH) and harmonic cumulative energy over a 30 min treatment period was significantly higher (p < 0.05) for the intermittent CW US scheme compared to either pulsed US scheme. Despite the difference in cavitation emissions, no difference was observed in the clot lysis between the three US schemes. These findings demonstrate that a 33.3% duty cycle pulsed US scheme with a 15-cycle burst can reduce bone heating and achieve equivalent thrombolytic efficacy as an intermittent CW scheme.
Collapse
Affiliation(s)
- Robert T Kleven
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, United States of America. Robert Kleven, CVC 3921, 0586, 231 Albert Sabin Way, Cincinnati, OH 45267-0586, United States of America. Author to whom any correspondence should be addressed
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Hall RL, Juan-Sing ZD, Hoyt K, Sirsi SR. Formulation and Characterization of Chemically Cross-linked Microbubble Clusters. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10977-10986. [PMID: 31310715 PMCID: PMC7061884 DOI: 10.1021/acs.langmuir.9b00475] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The purpose of this study is to introduce a new concept of chemically cross-linked microbubble clusters (CCMCs), which are individual microbubble ultrasound contrast agents (UCAs) physically tethered together. We demonstrate a facile means of their production, characterize their size and stability, and describe how they can potentially be used in biomedical applications. By tethering UCAs together into CCMCs, we propose that novel methods of ultrasound mediated imaging and therapy can be developed through unique interbubble interactions in an ultrasound field. One of the major challenges in generating CCMCs is controlling aggregate sizes and maintaining stability against Ostwald ripening and coalescence. In this study, we demonstrate that chemically cross-linked microbubble clusters can produce small (<10 μm) quasi-stable complexes that slowly fuse into bubbles with individual gas cores. Furthermore, we demonstrate that this process can be driven with low-intensity ultrasound pulses, enabling a rapid fusion of clusters which could potentially be used to develop novel ultrasound contrast imaging and drug delivery strategies in future studies. The development of novel microbubble clusters presents a simple yet robust process for generating novel UCAs with a design that could allow for more versatility in contrast-enhanced ultrasound (CEUS), molecular imaging, and drug delivery applications. Additionally, microbubble clustering is a unique way to control size, shell, and gas compositions that can be used to study bubble ripening and coalescence in a highly controlled environment or study the behavior of mixed-microbubble populations.
Collapse
Affiliation(s)
- Ronald L. Hall
- University of Texas at Dallas, Richardson, Texas, 75080, United States
| | | | - Kenneth Hoyt
- University of Texas at Dallas, Richardson, Texas, 75080, United States
- University of Texas Southwestern, Dallas, Texas, 75390, United States
| | - Shashank R. Sirsi
- University of Texas at Dallas, Richardson, Texas, 75080, United States
- University of Texas Southwestern, Dallas, Texas, 75390, United States
| |
Collapse
|
15
|
Acconcia CN, Leung BYC, Winch G, Wang J, Hynynen K, Goertz DE. Acoustic radiation force induced accumulation and dynamics of microbubbles on compliant surfaces. Phys Med Biol 2019; 64:135003. [PMID: 31082815 DOI: 10.1088/1361-6560/ab2163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ultrasound stimulated microbubbles have been shown to be capable of breaking up blood clots through micro-scale interactions occurring near the clot surface. However, only a small fraction of bubbles circulating in the bloodstream will be in close proximity to such boundaries, where they must be to elicit therapeutic effects. Here, the accumulation and subsequent behavior of microbubbles displaced from an overlying flow channel to a boundary under radiation forces were examined. Experimental data were acquired using a novel high speed microscopy configuration and simulations were conducted to provide insight into the accumulation process. There was broad agreement between experiments and simulations, both indicating that the size distribution and number of bubbles arriving at the boundary depended on channel flow rate, applied pressure, and bubble concentration. For example, higher flow rates and lower pressures favored the accumulation of larger bubbles relative to the native agent distribution. Moreover, bubble dynamics were dependent on the surface type, exhibiting rapid translation along agarose gel surfaces whereas on fibrin surfaces, they accumulated in localized regions inducing repetitive strain cycles. The results indicate that the process of bringing bubbles from within a vessel to a boundary is complex and should be an important consideration in the development of therapeutic applications such as sonothrombolysis.
Collapse
Affiliation(s)
- Christopher N Acconcia
- Department of Medical Biophysics, University of Toronto, Toronto, M5S 1A1, Canada. Sunnybrook Research Institute, 2075 Bayview Avenue, M4N 3M5, Toronto, Canada. These authors contributed equally
| | | | | | | | | | | |
Collapse
|
16
|
Biological active matter aggregates: Inspiration for smart colloidal materials. Adv Colloid Interface Sci 2019; 263:38-51. [PMID: 30504078 DOI: 10.1016/j.cis.2018.11.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/02/2018] [Accepted: 11/20/2018] [Indexed: 12/16/2022]
Abstract
Aggregations of social organisms exhibit a remarkable range of properties and functionalities. Multiple examples, such as fire ants or slime mold, show how a population of individuals is able to overcome an existential threat by gathering into a solid-like aggregate with emergent functionality. Surprisingly, these aggregates are driven by simple rules, and their mechanisms show great parallelism among species. At the same time, great effort has been made by the scientific community to develop active colloidal materials, such as microbubbles or Janus particles, which exhibit similar behaviors. However, a direct connection between these two realms is still not evident, and it would greatly benefit future studies. In this review, we first discuss the current understanding of living aggregates, point out the mechanisms in their formation and explore the vast range of emergent properties. Second, we review the current knowledge in aggregated colloidal systems, the methods used to achieve the aggregations and their potential functionalities. Based on this knowledge, we finally identify a set of over-arching principles commonly found in biological aggregations, and further suggest potential future directions for the creation of bio-inspired colloid aggregations.
Collapse
|
17
|
Tran DM, Harrang J, Song S, Chen J, Smith BM, Miao CH. Prolonging pulse duration in ultrasound-mediated gene delivery lowers acoustic pressure threshold for efficient gene transfer to cells and small animals. J Control Release 2018; 279:345-354. [PMID: 29702143 DOI: 10.1016/j.jconrel.2018.04.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 03/08/2018] [Accepted: 04/06/2018] [Indexed: 12/20/2022]
Abstract
While ultrasound-mediated gene delivery (UMGD) has been accomplished using high peak negative pressures (PNPs) of 2 MPa or above, emerging research showed that this may not be a requirement for microbubble (MB) cavitation. Thus, we investigated lower-pressure conditions close to the MB inertial cavitation threshold and focused towards further increasing gene transfer efficiency and reducing associated cell damage. We created a matrix of 21 conditions (n = 3/cond.) to test in HEK293T cells using pulse durations spanning 18 μs-36 ms and PNPs spanning 0.5-2.5 MPa. Longer pulse duration conditions yielded significant increase in transgene expression relative to sham with local maxima between 20 J and 100 J energy curves. A similar set of 17 conditions (n = 4/cond.) was tested in mice using pulse durations spanning 18 μs-22 ms and PNPs spanning 0.5-2.5 MPa. We observed local maxima located between 1 J and 10 J energy curves in treated mice. Of these, several low pressure conditions showed a decrease in ALT and AST levels while maintaining better or comparable expression to our positive control, indicating a clear benefit to allow for effective transfection with minimized tissue damage versus the high-intensity control. Our data indicates that it is possible to eliminate the requirement of high PNPs by prolonging pulse durations for effective UMGD in vitro and in vivo, circumventing the peak power density limitations imposed by piezo-materials used in US transducers. Overall, these results demonstrate the advancement of UMGD technology for achieving efficient gene transfer and potential scalability to larger animal models and human application.
Collapse
Affiliation(s)
- Dominic M Tran
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - James Harrang
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Shuxian Song
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Jeremy Chen
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Bryn M Smith
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Carol H Miao
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101, USA; Department of Pediatrics, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
18
|
Qian L, Thapa B, Hong J, Zhang Y, Zhu M, Chu M, Yao J, Xu D. The present and future role of ultrasound targeted microbubble destruction in preclinical studies of cardiac gene therapy. J Thorac Dis 2018; 10:1099-1111. [PMID: 29607187 DOI: 10.21037/jtd.2018.01.101] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Multiple limitations for cardiac pharmacologic therapies like intolerance, individual variation in effectiveness, side effects, and high cost still remain, despite the recent progress in diagnosis and health support. Gene therapy is poised to be an attractive alternative in various ways for the future, refractory cardiac diseases being one aspect of it. As a novel therapy to deliver the objective gene to organs of living animals, ultrasound targeted microbubble destruction (UTMD) has therapeutic potential in cardiovascular disorders. UTMD, which binds microbubbles with DNA or RNA carriers into the shell and destroys the located microbubbles with low frequency and high mechanical index ultrasound can release target agents to specific organs. UTMD has the ability to transfect markedly through sonoporation, cavitation and other effects by way of intravenous injection that is minimally invasive and highly specific for gene deliverance. Here, we have summarized the present role of UTMD in pre-clinical studies of cardiac gene therapy which covers myocardial infarction, regeneration, ischaemia/reperfusion injury, hypertension, diabetic cardiomyopathy, adriamycin cardiomyopathy and some discussion for further studies.
Collapse
Affiliation(s)
- Lijun Qian
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Barsha Thapa
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jian Hong
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yanmei Zhang
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Menglin Zhu
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ming Chu
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jing Yao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Di Xu
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
19
|
Closed-loop control of targeted ultrasound drug delivery across the blood-brain/tumor barriers in a rat glioma model. Proc Natl Acad Sci U S A 2017; 114:E10281-E10290. [PMID: 29133392 DOI: 10.1073/pnas.1713328114] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cavitation-facilitated microbubble-mediated focused ultrasound therapy is a promising method of drug delivery across the blood-brain barrier (BBB) for treating many neurological disorders. Unlike ultrasound thermal therapies, during which magnetic resonance thermometry can serve as a reliable treatment control modality, real-time control of modulated BBB disruption with undetectable vascular damage remains a challenge. Here a closed-loop cavitation controlling paradigm that sustains stable cavitation while suppressing inertial cavitation behavior was designed and validated using a dual-transducer system operating at the clinically relevant ultrasound frequency of 274.3 kHz. Tests in the normal brain and in the F98 glioma model in vivo demonstrated that this controller enables reliable and damage-free delivery of a predetermined amount of the chemotherapeutic drug (liposomal doxorubicin) into the brain. The maximum concentration level of delivered doxorubicin exceeded levels previously shown (using uncontrolled sonication) to induce tumor regression and improve survival in rat glioma. These results confirmed the ability of the controller to modulate the drug delivery dosage within a therapeutically effective range, while improving safety control. It can be readily implemented clinically and potentially applied to other cavitation-enhanced ultrasound therapies.
Collapse
|
20
|
Lazarus C, Pouliopoulos AN, Tinguely M, Garbin V, Choi JJ. Clustering dynamics of microbubbles exposed to low-pressure 1-MHz ultrasound. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 142:3135. [PMID: 29195473 DOI: 10.1121/1.5010170] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Ultrasound-driven microbubbles have been used in therapeutic applications to deliver drugs across capillaries and into cells or to dissolve blood clots. Yet the performance and safety of these applications have been difficult to control. Microbubbles exposed to ultrasound not only volumetrically oscillate, but also move due to acoustic radiation, or Bjerknes, forces. The purpose of this work was to understand the extent to which microbubbles moved and clustered due to secondary Bjerknes forces. A microbubble population was exposed to a 1-MHz ultrasound pulse with a peak-rarefactional pressure of 50-100 kPa and a pulse length of 20 ms. Microbubbles exposed to low-pressure therapeutic ultrasound were observed to cluster at clustering rates of 0.01-0.02 microbubbles per duration (in ms) per initial average inter-bubble distance (in μm), resulting in 1 to 3 clustered microbubbles per initial average inter-bubble distance (in μm). Higher pressures caused faster clustering rates and a larger number of clustered microbubbles. Experimental data revealed clustering time scales, cluster localizations, and cluster sizes that were in reasonable agreement with simulations using a time-averaged model at low pressures. This study demonstrates that clustering of microbubbles occurs within a few milliseconds and is likely to influence the distribution of stimuli produced in therapeutic applications.
Collapse
Affiliation(s)
- Carole Lazarus
- Bioengineering Department, Imperial College London, London SW7 2BP, United Kingdom
| | | | - Marc Tinguely
- Chemical Engineering Department, Imperial College London, London SW7 2AZ, United Kingdom
| | - Valeria Garbin
- Chemical Engineering Department, Imperial College London, London SW7 2AZ, United Kingdom
| | - James J Choi
- Bioengineering Department, Imperial College London, London SW7 2BP, United Kingdom
| |
Collapse
|
21
|
Kooiman K, van Rooij T, Qin B, Mastik F, Vos HJ, Versluis M, Klibanov AL, de Jong N, Villanueva FS, Chen X. Focal areas of increased lipid concentration on the coating of microbubbles during short tone-burst ultrasound insonification. PLoS One 2017; 12:e0180747. [PMID: 28686673 PMCID: PMC5501608 DOI: 10.1371/journal.pone.0180747] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/20/2017] [Indexed: 01/13/2023] Open
Abstract
Acoustic behavior of lipid-coated microbubbles has been widely studied, which has led to several numerical microbubble dynamics models that incorporate lipid coating behavior, such as buckling and rupture. In this study we investigated the relationship between microbubble acoustic and lipid coating behavior on a nanosecond scale by using fluorescently labeled lipids. It is hypothesized that a local increased concentration of lipids, appearing as a focal area of increased fluorescence intensity (hot spot) in the fluorescence image, is related to buckling and folding of the lipid layer thereby highly influencing the microbubble acoustic behavior. To test this hypothesis, the lipid microbubble coating was fluorescently labeled. The vibration of the microbubble (n = 177; 2.3–10.3 μm in diameter) upon insonification at an ultrasound frequency of 0.5 or 1 MHz at 25 or 50 kPa acoustic pressure was recorded with the UPMC Cam, an ultra-high-speed fluorescence camera, operated at ~4–5 million frames per second. During short tone-burst excitation, hot spots on the microbubble coating occurred at relative vibration amplitudes > 0.3 irrespective of frequency and acoustic pressure. Around resonance, the majority of the microbubbles formed hot spots. When the microbubble also deflated acoustically, hot spot formation was likely irreversible. Although compression-only behavior (defined as substantially more microbubble compression than expansion) and subharmonic responses were observed in those microbubbles that formed hot spots, both phenomena were also found in microbubbles that did not form hot spots during insonification. In conclusion, this study reveals hot spot formation of the lipid monolayer in the microbubble’s compression phase. However, our experimental results show that there is no direct relationship between hot spot formation of the lipid coating and microbubble acoustic behaviors such as compression-only and the generation of a subharmonic response. Hence, our hypothesis that hot spots are related to acoustic buckling could not be verified.
Collapse
Affiliation(s)
- Klazina Kooiman
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
- Netherlands Heart Institute, Utrecht, the Netherlands
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC, Rotterdam, the Netherlands
- * E-mail:
| | - Tom van Rooij
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC, Rotterdam, the Netherlands
| | - Bin Qin
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Frits Mastik
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC, Rotterdam, the Netherlands
| | - Hendrik J. Vos
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC, Rotterdam, the Netherlands
- Laboratory of Acoustical Wavefield Imaging, Faculty of Applied Sciences, Delft University of Technology, Delft, the Netherlands
| | - Michel Versluis
- Physics of Fluids Group, MIRA Institute for Biomedical Technology and Technical Medicine and MESA+ Institute for Nanotechnology, University of Twente, Enschede, the Netherlands
| | - Alexander L. Klibanov
- Cardiovascular Division, Department of Medicine, University of Virginia, Charlottesville, Virginia, United States of America
| | - Nico de Jong
- Department of Biomedical Engineering, Thoraxcenter, Erasmus MC, Rotterdam, the Netherlands
- Laboratory of Acoustical Wavefield Imaging, Faculty of Applied Sciences, Delft University of Technology, Delft, the Netherlands
| | - Flordeliza S. Villanueva
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Xucai Chen
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
22
|
Roos ST, Yu FT, Kamp O, Chen X, Villanueva FS, Pacella JJ. Sonoreperfusion Therapy Kinetics in Whole Blood Using Ultrasound, Microbubbles and Tissue Plasminogen Activator. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:3001-3009. [PMID: 27687734 PMCID: PMC5328593 DOI: 10.1016/j.ultrasmedbio.2016.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/04/2016] [Accepted: 08/09/2016] [Indexed: 05/11/2023]
Abstract
Coronary intervention for myocardial infarction often results in microvascular embolization of thrombus. Sonoreperfusion therapy (SRP) using ultrasound and microbubbles restored perfusion in our in vitro flow model of microvascular obstruction. In this study, we assessed SRP efficacy using whole blood as the perfusate with and without tissue plasminogen activator (tPA). In a phantom vessel bearing a 40-μm-pore mesh to simulate the microvasculature, microthrombi were injected to cause microvascular obstruction and were treated using SRP. Without tPA, the lytic rate increased from 2.6 ± 1.5 mmHg/min with 1000-cycle pulses to 7.3 ± 3.2 mmHg/min with 5000-cycle ultrasound pulses (p < 0.01). The lytic index was similar for tPA-only ([2.0 ± 0.5] × 10-3 mmHg-1 min-1) and 5000 cycles without tPA ([2.3 ± 0.5] × 10-3 mmHg-1 min-1) (p = 0.5) but increased ([3.6 ± 0.8] × 10-3 mmHg-1 min-1) with tPA in conjunction with 5000-cycles ultrasound (p < 0.01). In conclusion, SRP restored microvascular perfusion in whole blood, SRP lytic rate in experiments without tPA increased with ultrasound pulse length and efficacy increased with the addition of tPA.
Collapse
Affiliation(s)
- Sebastiaan T Roos
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Heart and Vascular Institute, Pittsburgh, Pennsylvania, USA; Department of Cardiology and Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands; Interuniversity Cardiology Institute of the Netherlands (ICIN), Utrecht, The Netherlands
| | - François T Yu
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Heart and Vascular Institute, Pittsburgh, Pennsylvania, USA
| | - Otto Kamp
- Department of Cardiology and Institute for Cardiovascular Research (ICaR-VU), VU University Medical Center, Amsterdam, The Netherlands; Interuniversity Cardiology Institute of the Netherlands (ICIN), Utrecht, The Netherlands
| | - Xucai Chen
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Heart and Vascular Institute, Pittsburgh, Pennsylvania, USA
| | - Flordeliza S Villanueva
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Heart and Vascular Institute, Pittsburgh, Pennsylvania, USA
| | - John J Pacella
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh Medical Center, Heart and Vascular Institute, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
23
|
Pouliopoulos AN, Li C, Tinguely M, Garbin V, Tang MX, Choi JJ. Rapid short-pulse sequences enhance the spatiotemporal uniformity of acoustically driven microbubble activity during flow conditions. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2016; 140:2469. [PMID: 27794288 DOI: 10.1121/1.4964271] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Despite the promise of microbubble-mediated focused ultrasound therapies, in vivo findings have revealed over-treated and under-treated regions distributed throughout the focal volume. This poor distribution cannot be improved by conventional pulse shapes and sequences, due to their limited ability to control acoustic cavitation dynamics within the ultrasonic focus. This paper describes the design of a rapid short-pulse (RaSP) sequence which is comprised of short pulses separated by μs off-time intervals. Improved acoustic cavitation distribution was based on the hypothesis that microbubbles can freely move during the pulse off-times. Flowing SonoVue® microbubbles (flow velocity: 10 mm/s) were sonicated with a 0.5 MHz focused ultrasound transducer using RaSP sequences (peak-rarefactional pressures: 146-900 kPa, pulse repetition frequency: 1.25 kHz, and pulse lengths: 5-50 cycles). The distribution of cavitation activity was evaluated using passive acoustic mapping. RaSP sequences generated uniform distributions within the focus in contrast to long pulses (50 000 cycles) that produced non-uniform distributions. Fast microbubble destruction occurred for long pulses, whereas microbubble activity was sustained for longer durations for shorter pulses. High-speed microscopy revealed increased mobility in the direction of flow during RaSP sonication. In conclusion, RaSP sequences produced spatiotemporally uniform cavitation distributions and could result in efficient therapies by spreading cavitation throughout the treatment area.
Collapse
Affiliation(s)
| | - Caiqin Li
- Bioengineering Department, Imperial College London, London, SW7 2BP, United Kingdom
| | - Marc Tinguely
- Chemical Engineering Department, Imperial College London, London SW7 2AZ, United Kingdom
| | - Valeria Garbin
- Chemical Engineering Department, Imperial College London, London SW7 2AZ, United Kingdom
| | - Meng-Xing Tang
- Bioengineering Department, Imperial College London, London SW7 2BP, United Kingdom
| | - James J Choi
- Bioengineering Department, Imperial College London, London SW7 2BP, United Kingdom
| |
Collapse
|
24
|
Aw MS, Paniwnyk L, Losic D. The progressive role of acoustic cavitation for non-invasive therapies, contrast imaging and blood-tumor permeability enhancement. Expert Opin Drug Deliv 2016; 13:1383-96. [PMID: 27195384 DOI: 10.1080/17425247.2016.1192123] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Drug delivery pertaining to acoustic cavitation generated from ultrasonic (US) irradiation is advantageous for devising smarter and more advanced therapeutics. The aim is to showcase microbubbles as drug carriers and robust theranostic for non-invasive therapies across diverse biomedical disciplines, highlighting recent technologies in this field for overcoming the blood-brain barrier (BBB) to treat cancers and neurological disorders. AREAS COVERED This article reviews work on the optimized tuning of ultrasonic parameters, sonoporation, transdermal and responsive drug delivery, acoustic cavitation in vasculature and oncology, contrast imaging for real-time magnification of cell-microbubble dynamics and biomolecular targeting. Scholarly literature was sought through database search on key terminology, latest topics, reputable experts and established journals over the last five years. EXPERT OPINION Cavitation offers immense promise in overcoming current diffusion and convection limitations for treating skull/brain/vascular/tissue injuries and ablating tumors to minimize chronic/acute effects. Since stable cavitation facilitates the restoration of US-opened BBB and the modulation of drug concentration, US equipment with programmable imaging modality and sensitivity are envisaged to create safer miniaturized devices for personalized care. Due to differing biomedical protocols with regard to specific medical conditions, quantitative and qualitative controls are mandatory before translation to real-life clinical applications can be accomplished.
Collapse
Affiliation(s)
- Moom Sinn Aw
- a School of Chemical Engineering , The University of Adelaide , Adelaide , Australia.,b Faculty of Health and Life Sciences , Coventry University , West Midlands , UK
| | - Larysa Paniwnyk
- c Faculty of Health and Life Sciences , Coventry University , West Midlands , UK
| | - Dusan Losic
- a School of Chemical Engineering , The University of Adelaide , Adelaide , Australia
| |
Collapse
|