1
|
Mele D, Beccari R, Pedrizzetti G. Effect of Aging on Intraventricular Kinetic Energy and Energy Dissipation. J Cardiovasc Dev Dis 2023; 10:308. [PMID: 37504564 PMCID: PMC10380306 DOI: 10.3390/jcdd10070308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023] Open
Abstract
In recent years, analysis of kinetic energy (KE) and the rate of kinetic energy dissipation (KED) or energy loss (EL) within the cardiac chambers, obtained by cardiac imaging techniques, has gained increasing attention. Thus, there is a need to clarify the effect of physiological variables, specifically aging, on these energetic measures. To elucidate this aspect, we reviewed the literature on this topic. Overall, cardiac magnetic resonance and echocardiographic studies published so far indicate that aging affects the energetics of left and right intraventricular blood flow, although not all energy measures during the cardiac cycle seem to be affected by age in the same way. Current studies, however, have limitations. Additional large, multicenter investigations are needed to test the effect of physiological variables on intraventricular KE and KED/EL measures.
Collapse
Affiliation(s)
- Donato Mele
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy
| | - Riccardo Beccari
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy
| | - Gianni Pedrizzetti
- Department of Engineering and Architecture, University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
2
|
Xiao Q, Zhao X, Yang R, Li Z, Li D, Xie Y, Mao X, Wang Y, Yin L, Li C, Zuo M, Meng Q, Li W, Liu X, Li Z, Zhang Q, Deng Y. Assessment of left ventricular energy loss in patients with mild coronary artery stenosis by using vector flow mapping combined with exercise stress echocardiography. Echocardiography 2023. [PMID: 37178387 DOI: 10.1111/echo.15591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/20/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
OBJECTIVES To evaluate the left ventricular energy loss (EL), energy loss reserve (EL-r), and energy loss reserve rate in patients with mild coronary artery stenosis by using vector flow mapping (VFM) combined with exercise stress echocardiography. METHODS A total of 34 patients (case group) with mild coronary artery stenosis and 36 sex and age matched patients (control group) without coronary artery stenosis according to coronary angiogram were prospectively enrolled. The total energy loss (ELt), basal segment energy loss (ELb), middle segment energy loss (ELm), apical segment energy loss (ELa), energy loss reserve (EL-r), and energy loss reserve rate were recorded in the isovolumic systolic period (S1), rapid ejection period (S2), slow ejection period (S3), isovolumic diastolic period (D1), rapid filling period (D2), slow filling period (D3), and atrial contraction period (D4). RESULTS Compared with the control group, some of the EL in the resting case group were higher; some of the EL in the case group were lower after exercise, and those during D1 ELb and D3 ELb were higher. Compared with the resting state, the total EL and the EL within the time segment in the control group were higher after exercise, except during D2 ELb. In the case group, except for during D1 ELt, ELb and D2 ELb, the total and segmental EL of each phase was mostly higher after exercise (p < .05). Compared with the control group, most of the EL-r and EL reserve rates in the case group were lower (p < .05). CONCLUSION The EL, EL-r, and energy loss reserve rate have a certain value in the evaluation of cardiac function in patients with mild coronary artery stenosis.
Collapse
Affiliation(s)
- Qiuyu Xiao
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xin Zhao
- Department of Ultrasound, Chengdu Second People's Hospital, Chengdu, China
| | - Rui Yang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zizhuo Li
- Chengdu Medical College, Chengdu, China
| | - Dongmei Li
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | | | - Xinyue Mao
- North Sichuan Medical University, Nanchong, China
| | - Yi Wang
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Lixue Yin
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Chunmei Li
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Mingliang Zuo
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Qingguo Meng
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Wenhua Li
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xuebing Liu
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhaohuan Li
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Qingfeng Zhang
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yan Deng
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
3
|
Hong J, Zhang Y, Wang Y, Zhang T, Wang X, Xu D. Influence of a single hemodialysis on left ventricular energy loss and wall shear stress in patients with uremic cardiomyopathy assessed with vector flow mapping. Quant Imaging Med Surg 2022; 12:4059-4068. [PMID: 35919051 PMCID: PMC9338362 DOI: 10.21037/qims-21-1083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 05/30/2022] [Indexed: 11/06/2022]
Abstract
Background The influence of hemodialysis (HD) on hydromechanics of the left ventricle has not been reported. This study evaluated the left ventricular summation of energy loss (EL-SUM), average energy loss (EL-AVE), and wall shear stress (WSS) before and after HD using vector flow mapping (VFM) in patients with end-stage renal disease (ESRD). Methods We prospectively recruited 40 patients receiving long-term HD and excluded those with structural cardiac disease. Echocardiography was performed before and within 24 hours after HD. Conventional echocardiographic parameters, summation, and average energy loss (EL-SUM, EL-AVE, EL-base, EL-mid and EL-apex), and WSS in each segment were compared. Results A total of 40 patients with uremia were recruited. After HD, left ventricular EL-AVE-total, and EL-SUM-total decreased significantly in the early diastolic [29.43 (18.76 to 46.28) vs. 17.70 (10.76 to 95.60) N/(m2·s) and 12 (6 to 17) vs. 5 (3 to 11) e−2 J; P<0.001, respectively], mid-diastolic [17.07 (10.38 to 24.35) vs. 10.29 (5.86 to 16.30) N/(m2·s) and 7 (3 to 10) vs. 4 (2 to 6) e−2 J; P<0.001, respectively], and early systolic [17.82 (12.79 to 24.77) vs.14.90 (10.23 to 19.05) N/(m2·s) P=0.011 and 8 (5 to 11) vs. 5 (4 to 8) e−2 J, P=0.002, respectively] phases. It was revealed that HD did not change EL-AVE-total and EL-SUM-total in the late diastolic and late systolic phases. The EL-AVE decreased after HD in the left ventricular (LV) basal [50.70 (24.19 to 77.92) vs. 26.00 (11.50 to 47.68) N/(m2·s); P<0.001] and mid [15.52 (8.88 to 20.90) vs. 9.47 (6.41 to 14.21) N/(m2·s); P=0.001] segments during the early diastolic phase; in the LV basal [18.64 (10.33 to 29.80) vs. 10.25 (6.98 to 19.43) N/(m2·s); P<0.001), mid (15.70 (9.93 to 23.08) vs. 9.99 (6.03 to 16.25) N/(m2·s); P<0.001), and apical [9.78 (4.06 to 15.77) vs. 4.52 (3.14 to 10.36) N/(m2·s); P=0.001) segments during the mid-diastolic phase; in the LV mid [14.34 (8.34 to 23.88) vs. 9.36 (6.48 to 17.05) N/(m2·s); P=0.013] and apex [11.25 (6.37 to 21.88) vs. 6.60 (5.33 to 12.17) N/(m2·s); P=0.016] segments during the late diastolic phase; and in the apical [10.28 (6.05 to 17.01) vs. 7.59 (3.73 to 13.20) N/(m2·s) P=0.025] segment during the early systolic phase. After HD, WSS significantly reduced in the mid-diastolic [0.51 (0.32 to 0.69) vs. 0.38 (0.30 to 0.46) Pa, P=0.001] and early systolic [0.60 (0.45 to 0.81) vs. 0.57 (0.42 to 0.68) Pa, P=0.029] phases. There was no change in WSS during the early diastolic, late diastolic, and late systolic phases. Conclusions After HD, EL and WSS of LV decrease during the systolic and diastolic phases. The VFM can reflect the LV hemodynamics in patients undergoing HD under different fluid loads.
Collapse
Affiliation(s)
- Jian Hong
- Department of Geriatrics, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yanjuan Zhang
- Department of Cardiology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yingying Wang
- Department of Geriatrics, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tao Zhang
- Department of Geriatrics, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoyan Wang
- Department of Geriatrics, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Di Xu
- Department of Geriatrics, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Şaylık F, Akbulut T. A presystolic wave could easily detect subclinical left ventricular dysfunction in prediabetic patients with no history of hypertension. Echocardiography 2021; 39:74-81. [PMID: 34913193 DOI: 10.1111/echo.15278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/17/2021] [Accepted: 12/02/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Prediabetes is associated with left ventricular (LV) systolic and diastolic dysfunction. A presystolic wave (PSW) is detected on late diastole from the Doppler examination of the LV outflow tract and is related to LV dysfunction. LV dysfunction could be detected with different echocardiographic methods, including conventional Doppler and Tissue Doppler imaging (TDI), 2D speckle tracking echocardiography, and myocardial performance index (MPI). In this study, we aimed to investigate the association of the presence of PSW with LV dysfunction assessed by different echocardiographic methods. METHODS A total of 137 prediabetic normotensive patients were enrolled in this study. Eighty-one (59.1%) patients had a PSW and 36 (40.9%) patients had not PSW on the Doppler examinations. Echocardiographic features were compared between these groups. LV dysfunction was determined based on MPI, LV global longitudinal strain (LVGLS), and conventional Doppler and TDI measurements. RESULTS There were no differences between groups regarding clinical and laboratory parameters, except LDL, which was significantly higher in the PSW-positive group. The PSW-positive group had lower E, Em, Ea, E/A, Em/Am, Ea/Aa, LVGLS and higher A, Am, Aa, E/e', isovolumetric relaxation time, and MPI than PSW-negatives. PSW velocity was moderately correlated with MPI (R = .33, p = .003) and LVGLS (R = .35, p = .001). The presence of PSW was independently associated with LV dysfunction assessed by MPI (OR = 3.87, p < .001), LVGLS (OR = 10.29, p < .001), and conventional Doppler and TDI parameters (OR = 8.87, p < .001). CONCLUSION PSW was significantly associated with subclinical LV dysfunction in prediabetic normotensive patients assessed with three echocardiographic methods.
Collapse
Affiliation(s)
- Faysal Şaylık
- Department of Cardiology, Van Training and Education Hospital, Van, Turkey
| | - Tayyar Akbulut
- Department of Cardiology, Van Training and Education Hospital, Van, Turkey
| |
Collapse
|
5
|
Daae AS, Wigen MS, Fadnes S, Løvstakken L, Støylen A. Intraventricular Vector Flow Imaging with Blood Speckle Tracking in Adults: Feasibility, Normal Physiology and Mechanisms in Healthy Volunteers. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:3501-3513. [PMID: 34620522 DOI: 10.1016/j.ultrasmedbio.2021.08.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 08/24/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
This study examines the feasibility of blood speckle tracking for vector flow imaging in healthy adults and describes the physiologic flow pattern and vortex formation in relation to the wall motion in the left ventricle. The study included 21 healthy volunteers and quantified and visualized flow patterns with high temporal resolution down to a depth of 10-12 cm without the use of contrast agents. Intraventricular flow seems to originate during the isovolumetric relaxation with a propagation of blood from base to apex. With the E-wave, rapid inflow and vortex formation occurred on both sides of the valve basally. During diastasis the flow gathers in a large vortex before the pattern from the E-wave repeats during the A-wave. In isovolumetric contraction, the flow again gathers in a large vortex that seems to facilitate the flow out in the aorta during systole. No signs of a persistent systolic vortex were visualized. The geometry of the left ventricle and the movement of the AV-plane is important in creating vortices that are favorable for the blood flow and facilitate outflow. The quantitative measurements are in concordance with these findings, but the clinical interpretation must be evaluated in future clinical studies.
Collapse
Affiliation(s)
- Annichen Søyland Daae
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway; Department of Cardiology, St. Olav Hospital/Trondheim University Hospital, Trondheim, Norway.
| | - Morten Smedsrud Wigen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Solveig Fadnes
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway; Møre og Romsdal Hospital Trust, Women's Health, Child and Adolescent Clinic, Ålesund Hospital, Ålesund, Norway
| | - Lasse Løvstakken
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Asbjørn Støylen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway; Department of Cardiology, St. Olav Hospital/Trondheim University Hospital, Trondheim, Norway
| |
Collapse
|
6
|
Avesani M, Degrelle B, Di Salvo G, Thambo JB, Iriart X. Vector flow mapping: A review from theory to practice. Echocardiography 2021; 38:1405-1413. [PMID: 34259359 DOI: 10.1111/echo.15154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/19/2021] [Accepted: 07/01/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND The interest in intra-cardiac blood flow analysis is rapidly growing, and it has encouraged the development of different non-invasive imaging techniques. Among these, Vector Flow Mapping (VFM), combing Color-Doppler imaging and speckle tracking data, seems to be a promising approach, feasible in adult and children population. AIM OF THE REVIEW The aim of this review is to give a historical perspective on the development of VFM method and a summary of the current algorithms and parameters potentially evaluable. Then, we will present the current state-of-the-art of VFM with an overview of clinical studies and applications of this technique.
Collapse
Affiliation(s)
- Martina Avesani
- Department of Pediatric and Adult Congenital Cardiology, Bordeaux University Hospital (CHU), Pessac, France.,Department of Women's and Children's Health, University of Padua, Padua, Italy
| | - Bastien Degrelle
- Department of Pediatric and Adult Congenital Cardiology, Bordeaux University Hospital (CHU), Pessac, France
| | - Giovanni Di Salvo
- Department of Women's and Children's Health, University of Padua, Padua, Italy
| | - Jean-Benoit Thambo
- Department of Pediatric and Adult Congenital Cardiology, Bordeaux University Hospital (CHU), Pessac, France.,Electrophysiology and Heart Modeling Institute, IHU Liryc, Fondation Bordeaux Université, Bordeaux, France.,Centre de recherche Cardio-Thoracique de Bordeaux, INSERM, Bordeaux, France
| | - Xavier Iriart
- Department of Pediatric and Adult Congenital Cardiology, Bordeaux University Hospital (CHU), Pessac, France.,Electrophysiology and Heart Modeling Institute, IHU Liryc, Fondation Bordeaux Université, Bordeaux, France.,Centre de recherche Cardio-Thoracique de Bordeaux, INSERM, Bordeaux, France
| |
Collapse
|
7
|
Evaluation of left ventricular function by vector flow mapping in females with systemic lupus erythematosus. Clin Rheumatol 2021; 40:4049-4060. [PMID: 33903978 DOI: 10.1007/s10067-021-05747-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/04/2021] [Accepted: 04/19/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVES Compare the intraventricular hemodynamics of 60 females with systemic lupus erythematosus (SLE) and 61 healthy female controls, and determine cardiac function changes using vector flow mapping (VFM). METHODS To determine the effect of pulmonary artery pressure changes on left ventricular function, SLE patients were divided into a normal pulmonary artery pressure group (S1, n=24) and an elevated pulmonary artery pressure group (S2, n=36). The energy loss (EL) at each segment of the left ventricular chamber (total, basal, middle, and apical segments) during each period of the cardiac cycle (isovolumic contraction, rapid ejection, rapid filling, reduced filling, atrial contraction) was determined. RESULTS The S1 group had significantly more vortices than the control group during the rapid ejection, rapid filling, and atrial contraction periods (p<0.01), and the maximum vortex areas in the S1 and S2 groups were smaller than in the control group during rapid filling and atrial contraction periods (p<0.05). Compared with the control group, the S2 group had greater EL during the systole and diastole periods (p<0.01). EL in the S1 group was significantly greater than in the control group during systole (p<0.01). During the rapid filling period, the EL was positively correlated with septal E' (r=0.784, p<0.01), and during the atrial contraction period, EL was positively correlated with septal E/e' (r=0.812, p<0.01) and A (r=0.715, p<0.01). CONCLUSION VFM of patients with SLE can comprehensively, rapidly, and efficiently evaluate changes of myocardial mechanics and intracardiac hemodynamics and provide quantitative analysis of complex intracardiac blood flow. Key points • Vector flow mapping (VFM) is a new non-invasive ultrasound technique that evaluates changes of myocardial mechanics and intracardiac hemodynamics, and provides quantitative analysis of complex intracardiac blood flow. • This study showed that vortex and energy loss may provide more sensitive detection of cardiac dysfunction than conventional echocardiographic indexes in patients with systemic lupus erythematosus.
Collapse
|
8
|
Adabifirouzjaei F, Igata S, Strachan M, DeMaria AN. Diastolic Left Ventricular Energy Loss: Relation to Age, Phase of Diastole, and Flow Velocity. J Am Soc Echocardiogr 2021; 34:698-700. [PMID: 33675945 DOI: 10.1016/j.echo.2021.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Fatemeh Adabifirouzjaei
- Division of Cardiology, University of California at San Diego, Sulpizio Cardiovascular Center, San Diego, California
| | - Sachiyo Igata
- Division of Cardiology, University of California at San Diego, Sulpizio Cardiovascular Center, San Diego, California
| | - Monet Strachan
- Division of Cardiology, University of California at San Diego, Sulpizio Cardiovascular Center, San Diego, California
| | - Anthony N DeMaria
- Division of Cardiology, University of California at San Diego, Sulpizio Cardiovascular Center, San Diego, California
| |
Collapse
|
9
|
Craft M, Jani V, Bliamptis J, Barnes BT, Erickson CC, Schuster A, Danford DA, Kutty S. Characterization of left ventricular cavity flow, wall stress and energy loss by color doppler vector flow mapping in children and adolescents with cardiomyopathy. IJC HEART & VASCULATURE 2021; 32:100703. [PMID: 33392387 PMCID: PMC7773570 DOI: 10.1016/j.ijcha.2020.100703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/07/2020] [Indexed: 11/02/2022]
Abstract
Background Vector flow mapping is an emerging echocardiographic method allowing for investigation of intracardiac blood flow mechanics, wall shear stress (WSS), and energy loss (EL). We hypothesized that alterations in EL and WSS will differ among subjects with hypertrophic (HCM), dilated (DCM) cardiomyopathy, and normal controls. Methods Echocardiograms were prospectively performed with the ProSound F75CV (Hitachi HealthCare., Tokyo, Japan) on all subjects. 2D color Doppler cine loop images were obtained from apical 5 and the apical long axis views and stored digitally. Measurements were averaged over three cardiac cycles using VFM software to derive flow patterns, WSS, and EL. Standard left ventricular (LV) systolic and diastolic functional parameters were also obtained. Results A total of 85 subjects, 22 with HCM (age 18 ± 9 yrs.), 18 DCM (age 18 ± 9 yrs.), and 45 age and gender matched controls were included in the study. Diastolic wall shear stress was found significantly different in HCM (0.004 ± 0.185 N/m2) compared with DCM (0.397 ± 0.301 N/m2, P < 0.001), and controls (0.175 ± 0.255 N/m2, P = 0.027). Furthermore, indexed systolic EL was found to be significantly elevated in HCM (13.91 ± 13.17 mW/m2/m3) compared with DCM (8.17 ± 9.77 mW/m2/m3, P < 0.001), but not controls (6.45 ± 7.47 mW/m2/m3). Conclusion Differences in abnormal ventricular mechanics observed in HCM and DCM are reflected in both EL and WSS, and are suggestive that changes in energetic parameters may represent novel indices of ventricular dysfunction.
Collapse
Affiliation(s)
- Mary Craft
- Dr. C.C. and Mabel L. Criss Heart Center, University of Nebraska College of Medicine and Children's Hospital and Medical Center, Omaha, NE, USA
| | - Vivek Jani
- Helen B. Taussig Heart Center, Department of Pediatrics, Johns Hopkins Hospital, Baltimore, MD 21205-2196, USA
| | - John Bliamptis
- Helen B. Taussig Heart Center, Department of Pediatrics, Johns Hopkins Hospital, Baltimore, MD 21205-2196, USA
| | - Benjamin T Barnes
- Helen B. Taussig Heart Center, Department of Pediatrics, Johns Hopkins Hospital, Baltimore, MD 21205-2196, USA
| | - Christopher C Erickson
- Dr. C.C. and Mabel L. Criss Heart Center, University of Nebraska College of Medicine and Children's Hospital and Medical Center, Omaha, NE, USA
| | - Andreas Schuster
- Department of Cardiology and Pneumology, University Medical Center Göttingen Georg-August University Göttingen Germany
| | - David A Danford
- Dr. C.C. and Mabel L. Criss Heart Center, University of Nebraska College of Medicine and Children's Hospital and Medical Center, Omaha, NE, USA
| | - Shelby Kutty
- Helen B. Taussig Heart Center, Department of Pediatrics, Johns Hopkins Hospital, Baltimore, MD 21205-2196, USA
| |
Collapse
|
10
|
Davarpasand T, Hosseinsabet A. Prediabetes, heart mechanics, and echocardiography: A narrative review. Echocardiography 2020; 38:304-313. [PMID: 33188654 DOI: 10.1111/echo.14929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/15/2020] [Accepted: 10/27/2020] [Indexed: 01/04/2023] Open
Abstract
Prediabetes is a dysglycemic state that affects many around the world and is a known risk factor for the occurrence of type 2 diabetes mellitus in the future, accompanied by vascular complications. Evidence abounds regarding myocardial involvement in prediabetes. We herein review studies having applied tissue Doppler imaging or speckle-tracking echocardiography to evaluate myocardial function in subjects with prediabetes to depict a picture of cardiac mechanics in individuals with prediabetes in comparison with patients suffering from diabetes mellitus and individuals in the normoglycemic state. Finally, we present the detrimental effects of prediabetes on cardiac mechanics.
Collapse
Affiliation(s)
- Tahereh Davarpasand
- Cardiology Department, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Hosseinsabet
- Cardiology Department, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Chen X, Wang Y, Wang W, Yuan L, Qi Z, Song D. Assessment of left ventricular energy loss using vector flow mapping in patients with stages 1-3 chronic kidney disease. BMC Cardiovasc Disord 2020; 20:355. [PMID: 32741356 PMCID: PMC7397582 DOI: 10.1186/s12872-020-01640-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 07/23/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Patients with chronic kidney disease (CKD) experience abnormality of intracardiac blood flow status during early-stages of disease. Left ventricular energy loss (EL) derived from vector flow mapping (VFM) represents fluid energy lost as heat in left ventricle and had been used to detect intracardiac blood flow efficiency. We aimed to evaluate the left ventricular EL in stage 1-3 CKD patients, and explored whether hypertension, a main cardiovascular risk, deteriorate the abnormality of intracardiac blood flow status. METHODS Transthoracic echocardiography was performed in 41 controls and 48 patients with stages 1-3 CKD. CKD patients consisted a subgroup with no hypertension, a subgroup with well-controlled hypertension and a subgroup with poorly controlled hypertension. The EL were calculated in the left ventricle using VFM analysis from the apical 3-chamber view. Furthermore, the correlation and stepwise multiple regression analysis were used to explore the potential independent predictors of left ventricular EL. RESULTS Compared with controls, stage 1-3 CKD patients showed increased left ventricular EL during total diastole, late diastole, total systole, isovolumic contraction and ejection. CKD patients with poorly controlled hypertension had higher left ventricular EL compared to the other CKD subgroups. Additionally, the ratio of mitral early filling wave peak velocity and early mitral annular peak velocity on septal side, mitral early filling wave peak velocity, and left ventricular mass index were independent predictors of the diastolic EL; whereas systolic blood pressure and left ventricular mass index were independent predictors of the systolic EL. CONCLUSIONS Left ventricular EL was a useful echocardiographic parameter to evaluate the impaired intracardiac blood flow efficiency in patients with stages 1-3 CKD. Hypertension was a crucial contributor for intracardiac blood flow abnormality. This study might provide valuable clinical data to discern cardiac dysfunction and reduce the cardiovascular risk in early-stage CKD.
Collapse
Affiliation(s)
- Xiaoxue Chen
- Department of Cardiac Ultrasound, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, China
| | - Yueheng Wang
- Department of Cardiac Ultrasound, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, China.
| | - Wei Wang
- Department of Cardiac Ultrasound, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, China
| | - Lijun Yuan
- Department of Cardiac Ultrasound, Second Hospital of Hebei Medical University, 215 Hepingxi Road, Shijiazhuang, 050000, Hebei, China
| | - Zhengqin Qi
- First Hospital of Qinhuangdao, Qinhuangdao, 066000, Hebei, China
| | - Degang Song
- First Hospital of Qinhuangdao, Qinhuangdao, 066000, Hebei, China
| |
Collapse
|
12
|
Zhu X, Xu L, Zuo L, Wang J, Wang B, Hu R, Zhou M, Zhao X, Lei C, Yang Q, Liu L. Quantitative Analysis of Left Ventricular Flow Dynamics in Latent Obstructive Hypertrophic Cardiomyopathy Using Vector Flow Mapping. Cardiology 2020; 145:227-235. [PMID: 32097929 DOI: 10.1159/000504665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 11/07/2019] [Indexed: 11/19/2022]
Abstract
OBJECTIVES This study aimed to assess left ventricular (LV) energy loss (EL), circulation and vortex area using vector flow mapping (VFM) in patients with latent obstructive hyper-trophic cardiomyopathy (LOHCM) and nonobstructive hypertrophic cardiomyopathy (NOHCM). METHODS Fourteen LOHCM patients, 10 NOHCM patients, and 11 healthy individuals were evaluated by transthoracic echocardiography. An offline VFM workstation was used to analyze the LV blood flow patterns and fluid dynamics. The hemodynamic parameters, EL, circulation, and vortex area in 7 cardiac phases were calculated and analyzed. RESULTS Compared with controls and NOHCM patients, EL was significantly higher in -LOHCM patients during the rapid ejection phase, slow ejection (SE) phase, and isovolumetric relaxation phase (p < 0.05). LOHCM patients also showed increased circulation during SE compared to the other two groups (p < 0.05). The ability to discriminate between NOHCM and LOHCM was assessed by the area under the receiver-operating characteristic curve (AUC), and EL during SE was found to have the largest AUC (0.964); the best cutoff value was 6.34 J/m3/s, with a sensitivity of 100% and specificity of 80%. CONCLUSIONS The VFM technique can detect abnormal changes of LV EL and vortex characteristics in hypertrophic cardiomyopathy patients. Compared with controls and NOHCM patients, the LOHCM patients have worse systolic and diastolic functions.
Collapse
Affiliation(s)
- Xiaoli Zhu
- Ultrasound Department of Xijing Hospital, Xijing Hypertrophic Cardiomyopathy Center, Fourth Military Medical University, Xi'an, China
| | - Lei Xu
- Ultrasound Department of Xijing Hospital, Xijing Hypertrophic Cardiomyopathy Center, Fourth Military Medical University, Xi'an, China
| | - Lei Zuo
- Ultrasound Department of Xijing Hospital, Xijing Hypertrophic Cardiomyopathy Center, Fourth Military Medical University, Xi'an, China
| | - Jing Wang
- Ultrasound Department of Xijing Hospital, Xijing Hypertrophic Cardiomyopathy Center, Fourth Military Medical University, Xi'an, China
| | - Bo Wang
- Ultrasound Department of Xijing Hospital, Xijing Hypertrophic Cardiomyopathy Center, Fourth Military Medical University, Xi'an, China
| | - Rui Hu
- Ultrasound Department of Xijing Hospital, Xijing Hypertrophic Cardiomyopathy Center, Fourth Military Medical University, Xi'an, China
| | - Mengyao Zhou
- Ultrasound Department of Xijing Hospital, Xijing Hypertrophic Cardiomyopathy Center, Fourth Military Medical University, Xi'an, China
| | - Xueli Zhao
- Ultrasound Department of Xijing Hospital, Xijing Hypertrophic Cardiomyopathy Center, Fourth Military Medical University, Xi'an, China
| | - Changhui Lei
- Ultrasound Department of Xijing Hospital, Xijing Hypertrophic Cardiomyopathy Center, Fourth Military Medical University, Xi'an, China
| | - Qianli Yang
- Ultrasound Department of Xijing Hospital, Xijing Hypertrophic Cardiomyopathy Center, Fourth Military Medical University, Xi'an, China
| | - Liwen Liu
- Ultrasound Department of Xijing Hospital, Xijing Hypertrophic Cardiomyopathy Center, Fourth Military Medical University, Xi'an, China,
| |
Collapse
|
13
|
Liu R, Cui C, Li Y, Qiu Z, Hu Y, Wang Y, Cui M, Yin S, Liu L. Analysis of left ventricular diastolic energy loss in patients with aortic stenosis with preserved ejection fraction by using vector flow mapping. Echocardiography 2019; 36:2216-2226. [PMID: 31876982 DOI: 10.1111/echo.14555] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Ruijie Liu
- Department of Ultrasound Henan Provincial People’s Hospital Heart Center Fuwai Central China Cardiovascular Hospital People’s Hospital of Zhengzhou University Zhengzhou China
| | - Cunying Cui
- Department of Ultrasound Henan Provincial People’s Hospital Heart Center Fuwai Central China Cardiovascular Hospital People’s Hospital of Zhengzhou University Zhengzhou China
| | - Yanan Li
- Department of Ultrasound Henan Provincial People’s Hospital Heart Center Fuwai Central China Cardiovascular Hospital People’s Hospital of Zhengzhou University Zhengzhou China
| | - Zhaoying Qiu
- Department of Ultrasound Henan Provincial People’s Hospital Heart Center Fuwai Central China Cardiovascular Hospital People’s Hospital of Zhengzhou University Zhengzhou China
| | - Yanbin Hu
- Department of Ultrasound Henan Provincial People’s Hospital Heart Center Fuwai Central China Cardiovascular Hospital People’s Hospital of Zhengzhou University Zhengzhou China
| | - Ying Wang
- Department of Ultrasound Henan Provincial People’s Hospital Heart Center Fuwai Central China Cardiovascular Hospital People’s Hospital of Zhengzhou University Zhengzhou China
| | - Mingxia Cui
- Department of Ultrasound Henan Provincial People’s Hospital Heart Center Fuwai Central China Cardiovascular Hospital People’s Hospital of Zhengzhou University Zhengzhou China
| | - Shanshan Yin
- Henan Academy of Medical Sciences Zhengzhou China
| | - Lin Liu
- Department of Ultrasound Henan Provincial People’s Hospital Heart Center Fuwai Central China Cardiovascular Hospital People’s Hospital of Zhengzhou University Zhengzhou China
| |
Collapse
|
14
|
Chan BT, Ahmad Bakir A, Al Abed A, Dokos S, Leong CN, Ooi EH, Lim R, Lim E. Impact of myocardial infarction on intraventricular vortex and flow energetics assessed using computational simulations. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2019; 35:e3204. [PMID: 30912313 DOI: 10.1002/cnm.3204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 03/11/2019] [Accepted: 03/19/2019] [Indexed: 06/09/2023]
Abstract
Flow energetics have been proposed as early indicators of progressive left ventricular (LV) functional impairment in patients with myocardial infarction (MI), but its correlation with individual MI parameters has not been fully explored. Using electro-fluid-structure interaction LV models, this study investigated the correlation between four MI parameters: infarct size, infarct multiplicity, regional enhancement of contractility at the viable myocardium area (RECVM), and LV mechanical dyssynchrony (LVMD) with intraventricular vortex and flow energetics. In LV with small infarcts, our results showed that infarct appearance amplified the energy dissipation index (DI), where substantial viscous energy loss was observed in areas with high flow velocity and near the infarct-vortex interface. The LV with small multiple infarcts and RECVM showed remarkable DI increment during systole and diastole. In correlation analysis, the systolic kinetic energy fluctuation index (E') was positively related to ejection fraction (EF) (R2 = 0.982) but negatively correlated with diastolic E' (R2 = 0.970). Diastolic E' was inversely correlated with vortex kinetic energy (R2 = 0.960) and vortex depth (R2 = 0.876). We showed an excessive systolic DI could differentiate infarcted LV with normal EF from healthy LV. Strong flow acceleration, LVMD, and vortex-infarct interactions were predominant factors that induced excessive DI in infarcted LVs. Instead of causing undesired flow turbulence, high systolic E' suggested the existence of energetic flow acceleration, while high diastolic E' implied an inefficient diastolic filling. Thus, systolic E' is not a suitable early indicator for progressive LV dysfunction in MI patients, while diastolic E' may be a useful index to indicate diastolic impairment in these patients.
Collapse
Affiliation(s)
- Bee Ting Chan
- Department of Mechanical Engineering, Faculty of Engineering, Technology & Built Environment, UCSI University, 56000, Kuala Lumpur, Malaysia
| | - Azam Ahmad Bakir
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Amr Al Abed
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Socrates Dokos
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Chin Neng Leong
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ean Hin Ooi
- School of Engineering, Monash University Malaysia, Bandar Sunway, 47500, Selangor, Malaysia
| | - Renly Lim
- Quality Use of Medicines and Pharmacy Research Centre, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, 5001, Australia
| | - Einly Lim
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
15
|
Wang W, Wang Y, Chen X, Yuan L, Bai H. Evaluation of left ventricular diastolic function based on flow energetic parameters in chronic kidney disease with diastolic dysfunction. Echocardiography 2019; 36:567-576. [PMID: 30677176 DOI: 10.1111/echo.14264] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/27/2018] [Accepted: 12/28/2018] [Indexed: 10/27/2022] Open
Affiliation(s)
- Wei Wang
- Department of Cardiac Ultrasound; The Second Hospital of He bei Medical University; Shijiazuhang China
| | - Yueheng Wang
- Department of Cardiac Ultrasound; The Second Hospital of He bei Medical University; Shijiazuhang China
| | - Xiaoxue Chen
- Department of Cardiac Ultrasound; The Second Hospital of He bei Medical University; Shijiazuhang China
| | - Lijun Yuan
- Department of Cardiac Ultrasound; The Second Hospital of He bei Medical University; Shijiazuhang China
| | - Hui Bai
- Department of Cardiac Ultrasound; The Second Hospital of He bei Medical University; Shijiazuhang China
| |
Collapse
|
16
|
Chen Z, Li Y, Li C, Tang H, Wang H, Zhong Y, Cai Y, Rao L. Right Ventricular Dissipative Energy Loss Detected by Vector Flow Mapping in Children: Characteristics of Normal Values. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2019; 38:131-140. [PMID: 30027672 DOI: 10.1002/jum.14674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/23/2018] [Accepted: 04/01/2018] [Indexed: 06/08/2023]
Abstract
OBJECTIVES The feasible application of vector flow mapping (VFM)-derived right ventricular (RV) energy loss (EL) is lacking. This study was designed to determine reference values of VFM-derived EL within the right ventricle and evaluate potential correlated variables. METHODS A total of 90 healthy children were enrolled. Velocity vector fields of the intra-RV outflow tract and pulmonary trunk (OP) and RV blood flow were obtained from the parasternal short-axis view and RV focused apical 4-chamber view, respectively. RV-EL and OP-EL values during diastole and systole were calculated using VFM analysis. The potential relationships between demographic and echocardiographic parameters and the dissipative EL were also identified. RESULTS Mean subject age was 8.99 ± 5.35 years. The median (interquartile range) values were 8.82 (5.47-14.30) W/m for RV diastolic EL, 3.17 (2.11-5.54) W/m for RV systolic EL, 18.82 (13.93-24.92) W/m for OP diastolic EL, and 29.88 (20.62-40.78) W/m for OP systolic EL, respectively. The dissipative EL values were negatively correlated with age and RV global strain, and positively correlated with heart rate and RV Tei index. Multivariate analysis showed that age was the primary independent predictor of these 4 types of EL, while heart rate and strain were contributors of the RV diastolic EL and OP systolic EL. CONCLUSIONS The present study initially validated the application of vector flow mapping-derived EL analysis in right ventricle and established reference values for the future assessment of children with cardiopulmonary disease. Age, heart rate, and strain were independent variables correlated with the dissipative EL.
Collapse
Affiliation(s)
- Zhongxiu Chen
- Department of Cardiology, West China Hospital of Sichuan University, Chengdu, China
| | - Yajiao Li
- Department of Cardiology, West China Hospital of Sichuan University, Chengdu, China
| | - Chen Li
- Department of Cardiology, West China Hospital of Sichuan University, Chengdu, China
| | - Hong Tang
- Department of Cardiology, West China Hospital of Sichuan University, Chengdu, China
| | - Hui Wang
- Department of Cardiology, West China Hospital of Sichuan University, Chengdu, China
| | - Yue Zhong
- Department of Cardiology, West China Hospital of Sichuan University, Chengdu, China
| | - Yuyan Cai
- Department of Cardiology, West China Hospital of Sichuan University, Chengdu, China
| | - Li Rao
- Department of Cardiology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Bechsgaard T, Hansen KL, Brandt AH, Moshavegh R, Forman JL, Føgh P, Klitfod L, Bækgaard N, Lönn L, Nielsen MB, Jensen JA. Respiratory variability of peak velocities in the common femoral vein estimated with vector flow imaging and Doppler ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:1941-1950. [PMID: 29960752 DOI: 10.1016/j.ultrasmedbio.2018.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 04/26/2018] [Accepted: 05/04/2018] [Indexed: 06/08/2023]
Abstract
Respiratory variability of peak velocities (RVPV) in the common femoral vein measured with ultrasound can reveal venous outflow obstruction. Pulse wave (PW) Doppler is the gold standard for venous velocity estimation of the lower extremities. PW Doppler measurements are angle dependent, whereas vector flow imaging (VFI) can yield angle-independent measures. The hypothesis of the present study was that VFI can provide RVPV estimations without the angle dependency of PW Doppler for an improved venous disease assessment. Sixty-seven patients with symptomatic chronic venous disease were included in the study. On average, VFI measured a lower RVPV than PW Doppler (VFI: 14.11 cm/s; PW: 17.32 cm/s, p = 0.002) with a non-significant improved precision compared with PW Doppler (VFI: 21.09%; PW: 26.49%, p = 0.08). In a flow phantom, VFI had improved accuracy (p < 0.01) and equal precision compared with PW Doppler. The study indicated that VFI can characterize the hemodynamic fluctuations in the common femoral vein.
Collapse
Affiliation(s)
- Thor Bechsgaard
- Department of Diagnostic Radiology, Rigshospitalet - Copenhagen University Hospital, Copenhagen Ø, Denmark.
| | - Kristoffer Lindskov Hansen
- Department of Diagnostic Radiology, Rigshospitalet - Copenhagen University Hospital, Copenhagen Ø, Denmark
| | - Andreas Hjelm Brandt
- Department of Diagnostic Radiology, Rigshospitalet - Copenhagen University Hospital, Copenhagen Ø, Denmark
| | - Ramin Moshavegh
- Center for Fast Ultrasound Imaging, Department of Electrical Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Julie Lyng Forman
- Section of Biostatistics, Department of Public Health, Copenhagen University, Copenhagen K, Denmark
| | - Pia Føgh
- Department of Vascular Surgery, Rigshospitalet & Gentofte Hospital - Copenhagen University Hospital, Hellerup, Denmark
| | - Lotte Klitfod
- Department of Vascular Surgery, Rigshospitalet & Gentofte Hospital - Copenhagen University Hospital, Hellerup, Denmark
| | - Niels Bækgaard
- Department of Vascular Surgery, Rigshospitalet & Gentofte Hospital - Copenhagen University Hospital, Hellerup, Denmark
| | - Lars Lönn
- Department of Diagnostic Radiology, Rigshospitalet - Copenhagen University Hospital, Copenhagen Ø, Denmark
| | - Michael Bachmann Nielsen
- Department of Diagnostic Radiology, Rigshospitalet - Copenhagen University Hospital, Copenhagen Ø, Denmark
| | - Jørgen Arendt Jensen
- Center for Fast Ultrasound Imaging, Department of Electrical Engineering, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
18
|
Ji L, Hu W, Yong Y, Wu H, Zhou L, Xu D. Left ventricular energy loss and wall shear stress assessed by vector flow mapping in patients with hypertrophic cardiomyopathy. Int J Cardiovasc Imaging 2018; 34:1383-1391. [PMID: 29626283 DOI: 10.1007/s10554-018-1348-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Accepted: 04/03/2018] [Indexed: 10/17/2022]
Abstract
The aim of this study was to assess left ventricular (LV) summation of energy loss (EL-SUM), average energy loss (EL-AVE) and wall shear stress (WSS) using vector flow mapping (VFM) in patients with hypertrophic cardiomyopathy (HCM). Forty HCM patients, and 40 controls were evaluated by transthoracic echocardiography. Conventional echocardiographic parameters, summation and average of energy loss (EL-total, EL-base, EL-mid and EL-apex), and WSS in each segment were calculated at different phases. Compared with controls, conventional diastolic measurements were impaired in HCM patients. HCM patients also showed increased EL-SUM-total and EL-AVE-total at the peak of LV rapid ejection period as well as decreased EL-SUM-total and EL-AVE-total at the end of early diastole. In controls, EL-SUM and EL-AVE showed a gradual decrease from the basal segment to the apex, this regularity was not observed in HCM patients. Compared with controls, HCM patients showed increased WSS at the peak of the LV rapid ejection period and the atrial contraction period as well as decreased WSS at the end of early diastole (all p < 0.05). WSS was increased slightly at the peak of the LV rapid filling period in HCM patients (p = 0.055). EL and WSS values derived from VFM are novel flow dynamic parameters that can effectively evaluate systolic and diastolic hemodynamic function in HCM patients.
Collapse
Affiliation(s)
- Ling Ji
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wenzhi Hu
- Department of Cardiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yonghong Yong
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hongping Wu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lei Zhou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Di Xu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
19
|
Akhavan-Khaleghi N, Hosseinsabet A. Evaluation of the longitudinal deformation of the left ventricular myocardium in subjects with impaired fasting glucose with and without increased glycated hemoglobin. Anatol J Cardiol 2018; 19:160-167. [PMID: 29363665 PMCID: PMC5864763 DOI: 10.14744/anatoljcardiol.2017.7957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2017] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE Prediabetes comprises a heterogeneous group because of the poor concordance of its definition. The aim of our study was to evaluate the longitudinal deformation of the left ventricular (LV) myocardium at the two opposite ends of the prediabetes spectrum as defined by fasting blood sugar and glycated hemoglobin (HbA1c). METHODS Eighty consecutive subjects in a cross-sectional single-center study with impaired fasting glucose (IFG) (100-126 mg/dL) and without significant epicardial coronary artery stenosis seen on selective coronary angiography were included in our study and were divided into two groups based on their HbA1c levels (<5.7% and 5.7%-6.4%). The longitudinal deformation of the LV myocardium was compared between the two groups using two-dimensional speckle-tracking echocardiography (2DSTE). RESULTS The Student t-test, Mann-Whitney U test, or X2 test was used for data analysis, whichever was appropriate. The systolic strain (-16.1%±2.0 vs. -16.8%±2.4; p=0.214), systolic strain rate (-1.3±0.2 s-1 vs. -1.4±0.2 s-1; p=0.403), and early and late-diastolic strain rates (1.4±0.3 s-1 vs. 1.5±0.3 s-1; p=0.456 and 0.9±0.1 s-1 vs. 1.0±0.2 s-1; p=0.684, respectively) of the LV myocardium were not statistically different between the IFG subjects with and without increased HbA1c as detected using 2DSTE. CONCLUSION The longitudinal deformation of the LV myocardium as detected using 2DSTE in the subjects without significant epicardial coronary artery stenosis was not statistically significantly different between the IFG subjects with and without increased HbA1c.
Collapse
Affiliation(s)
| | - Ali Hosseinsabet
- Department of Cardiology, Tehran Heart Center, Tehran University of Medical Sciences, Tehran-I.R.-Iran.
| |
Collapse
|
20
|
Hansen KL, Nielsen MB, Jensen JA. Vector velocity estimation of blood flow - A new application in medical ultrasound. ULTRASOUND : JOURNAL OF THE BRITISH MEDICAL ULTRASOUND SOCIETY 2017; 25:189-199. [PMID: 29163655 DOI: 10.1177/1742271x17713353] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/24/2017] [Indexed: 11/15/2022]
Abstract
Vector flow techniques in the field of ultrasound encompass different pulse emission and estimation strategies. Numerous techniques have been introduced over the years, and recently commercial implementations usable in the clinic have been made. A number of clinical papers using different vector velocity approaches have been published. This review will give an overview of the most significant in vivo results achieved with ultrasound vector flow techniques, and will outline some of the possible clinical applications for vector velocity estimation in the future.
Collapse
Affiliation(s)
| | | | - Jørgen Arendt Jensen
- Department of Electrical Engineering, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
21
|
Zhou BY, Xie MX, Wang J, Wang XF, Lv Q, Liu MW, Kong SS, Zhang PY, Liu JF. Relationship between the abnormal diastolic vortex structure and impaired left ventricle filling in patients with hyperthyroidism. Medicine (Baltimore) 2017; 96:e6711. [PMID: 28445281 PMCID: PMC5413246 DOI: 10.1097/md.0000000000006711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Intraventricular hydrodynamics plays an important role in evaluating cardiac function. Relationship between diastolic vortex and left ventricular (LV) filling is still rarely elucidated. The aim of this study was to evaluate the evolution of vortex during diastole in hyperthyroidism (HT) and explore the alteration of hydromechanics characteristics with sensitive indexes.Forty-three patients diagnosed with HT were classified into 2 groups according to whether myocardial damage existed: simple hyperthyroid group (HT1, n = 21) and thyrotoxic cardiomyopathy (HT2, n = 22). Twenty-seven age- and gender-matched healthy volunteers were enrolled as the control group. Offline vector flow mapping (VFM model) was used to analyze the LV diastolic blood flow patterns and fluid dynamics. Hemodynamic parameters, vortex area (A), circulation (C), and intraventricular pressure gradient (ΔP), in different diastolic phases (early, mid, and late) were calculated and analyzed.HT2, with a lower E/A ratio and left ventricular ejection fraction (LVEF), had a larger left atrium diameter (LAD) compared with those of the control group and HT1 (P < .05). Compared with the control group, the vortex size and strength, intraventricular pressure gradient during early and mid-diastole were higher in HT1 and lower in HT2 (P < .05). And in late diastole, the vortex size and strength, intraventricular pressure gradient of HT2 became higher than those of the control group (P < .05). Good correlation could be found between CE and E/A (P < .05), CM and ΔPM (P < .01), CL and FT3 (P < .05).VFM is proven practical for detecting the relationship between the changes of left ventricular diastolic vortex and the abnormal left ventricular filling.
Collapse
Affiliation(s)
- Bin-Yu Zhou
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
- Department of Ultrasound, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Ming-Xing Xie
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| | - Jing Wang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| | - Xin-Fang Wang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| | - Qing Lv
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| | - Man-Wei Liu
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| | - Shuang-Shuang Kong
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| | - Ping-Yu Zhang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| | - Jin-Feng Liu
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| |
Collapse
|
22
|
Vasudevan V, Low AJJ, Annamalai SP, Sampath S, Poh KK, Totman T, Mazlan M, Croft G, Richards AM, de Kleijn DPV, Chin CL, Yap CH. Flow dynamics and energy efficiency of flow in the left ventricle during myocardial infarction. Biomech Model Mechanobiol 2017; 16:1503-1517. [PMID: 28364199 DOI: 10.1007/s10237-017-0902-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/22/2017] [Indexed: 11/26/2022]
Abstract
Cardiovascular disease is a leading cause of death worldwide, where myocardial infarction (MI) is a major category. After infarction, the heart has difficulty providing sufficient energy for circulation, and thus, understanding the heart's energy efficiency is important. We induced MI in a porcine animal model via circumflex ligation and acquired multiple-slice cine magnetic resonance (MR) images in a longitudinal manner-before infarction, and 1 week (acute) and 4 weeks (chronic) after infarction. Computational fluid dynamic simulations were performed based on MR images to obtain detailed fluid dynamics and energy dynamics of the left ventricles. Results showed that energy efficiency flow through the heart decreased at the acute time point. Since the heart was observed to experience changes in heart rate, stroke volume and chamber size over the two post-infarction time points, simulations were performed to test the effect of each of the three parameters. Increasing heart rate and stroke volume were found to significantly decrease flow energy efficiency, but the effect of chamber size was inconsistent. Strong complex interplay was observed between the three parameters, necessitating the use of non-dimensional parameterization to characterize flow energy efficiency. The ratio of Reynolds to Strouhal number, which is a form of Womersley number, was found to be the most effective non-dimensional parameter to represent energy efficiency of flow in the heart. We believe that this non-dimensional number can be computed for clinical cases via ultrasound and hypothesize that it can serve as a biomarker for clinical evaluations.
Collapse
Affiliation(s)
- Vivek Vasudevan
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Adriel Jia Jun Low
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | | | - Smita Sampath
- Translational Biomarkers, Merck Research Laboratories, MSD, Singapore, Singapore
| | - Kian Keong Poh
- Department of Cardiology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health Systems, Singapore, Singapore
| | - Teresa Totman
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, National University Health Systems, Singapore, Singapore
| | - Muhammad Mazlan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, National University Health Systems, Singapore, Singapore
| | - Grace Croft
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, National University Health Systems, Singapore, Singapore
| | - A Mark Richards
- Cardiovascular Research Institute, National University Heart Centre, Singapore, Singapore
- The Christchurch Heart Institute, University of Otago, Dunedin, New Zealand
| | - Dominique P V de Kleijn
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, National University Health Systems, Singapore, Singapore
| | - Chih-Liang Chin
- Translational Biomarkers, Merck Research Laboratories, MSD, Singapore, Singapore
| | - Choon Hwai Yap
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
23
|
Xu L, Sun C, Zhu X, Liu W, Ta S, Zhao D, Wang F, Liu L. Characterization of left ventricle energy loss in healthy adults using vector flow mapping: Preliminary results. Echocardiography 2017; 34:700-708. [PMID: 28295565 DOI: 10.1111/echo.13504] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Energy loss (EL) is a new quantitative hemodynamic index based on vector flow mapping (VFM). This study aimed to characterize EL of the left ventricle (LV) in healthy adults. METHODS Fifty-one healthy adults were enrolled in this study. EL of LV was analyzed frame by frame using color Doppler images of a standard apical three-chamber dynamic view on an offline VFM workstation. The average EL of systole and diastole was calculated, and the results were averaged over three cardiac cycles. RESULTS The average EL for systole and diastole was 11.07±5.82J/m/s and 11.58±5.54 J/m/s, respectively. Multivariate regression analysis showed that the aortic velocity time integral (AOVTI), A-wave peak velocity, and isovolumetric contraction time (IVCT) were independently associated with the average systolic EL. E-wave peak velocity, height, and IVCT were independently associated with the average diastolic EL. For females, the average systolic and diastolic EL was 12.66±7.06J/m/s and 13.90±5.37J/m/s, respectively. For males, the systolic and diastolic EL was 9.29±3.33J/m/s and 8.97±4.55J/m/s, respectively. CONCLUSIONS Energy loss in LV changes regularly during the cardiac cycle. The average systolic EL has a high positive correlation with AOVTI, whereas the average diastolic EL has with E-wave peak velocity. Women have higher average EL than men in both systole and diastole. By recognizing the EL characterization of healthy adults, the variation in EL may reflect cardiac dysfunction. These were preliminary results, and thus, the clinical implications of EL warrant further investigation.
Collapse
Affiliation(s)
- Lei Xu
- Ultrasound Department, Xijing Hospital, Xi'an, China
| | - Chao Sun
- Ultrasound Department, Xijing Hospital, Xi'an, China
| | - Xiaoli Zhu
- Ultrasound Department, Xijing Hospital, Xi'an, China
| | - Weihua Liu
- Ultrasound Department, Xijing Hospital, Xi'an, China.,Ultrasound Department, The Third Hospital of People's Liberation Army, Bao Ji, China
| | - Shengjun Ta
- Ultrasound Department, Xijing Hospital, Xi'an, China.,Ultrasound Department, Yan'an People's Hospital, Yan'an, China
| | - Dan Zhao
- Ultrasound Department, Xijing Hospital, Xi'an, China.,Ultrasound Department, Ningxia Medical University, Yin Chuan, China
| | - Feifei Wang
- Ultrasound Department, Xijing Hospital, Xi'an, China
| | - Liwen Liu
- Ultrasound Department, Xijing Hospital, Xi'an, China
| |
Collapse
|