1
|
Zafar MN, Pitt WG, Husseini GA. Encapsulation and release of calcein from herceptin-conjugated eLiposomes. Heliyon 2024; 10:e27882. [PMID: 38524567 PMCID: PMC10958368 DOI: 10.1016/j.heliyon.2024.e27882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024] Open
Abstract
Achieving an optimal therapeutic level is crucial in effectively eradicating cancer cells during treatment. However, conventional chemotherapy-associated systemic administration of anticancer agents leads to many side effects. To achieve the desired control over the target site, active targeting of HER2-positive breast cancer cells can be achieved by conjugating liposomal vesicles with Human Epidermal growth factor Receptor 2 (HER2) and inducing release of the encapsulated drug using ultrasound. To further enhance the delivery efficiency, nanoemulsion droplets exhibiting responsiveness to low-frequency ultrasound are encapsulated within these lipid vesicles. In this study, we prepared four different liposomal formulations, namely pegylated liposomes, emulsion liposomes (eLiposomes), HER-conjugated liposomes, and HER-conjugated eLiposomes, each loaded with calcein and subjected to a thorough characterization process. Their sizes, phospholipid concentration, and amount of antibody conjugation were compared and analyzed. Cryogenic transmission electron microscopy was used to confirm the encapsulation of nanoemulsion droplets within the liposomes. The drug-releasing performance of Herceptin-conjugated eLiposomes was found to surpass that of other liposomal formulations with a notably higher calcein release and established it as a highly effective nanocarrier. The study showcases the efficacy of calcein-loaded and Herceptin-conjugated eLiposomes, which demonstrate rapid and efficient drug release among other liposomal formulations when subjected to ultrasound. This discovery paves the way for a more targeted, efficient, and humane approach to cancer therapy.
Collapse
Affiliation(s)
- Mah Noor Zafar
- Biomedical Engineering Program, College of Engineering, American University of Sharjah, Sharjah, P.O. Box. 26666, United Arab Emirates
| | - William G. Pitt
- Department of Chemical Engineering, Brigham Young University, Provo, UT, 84602, USA
| | - Ghaleb A. Husseini
- Materials Science and Engineering Ph.D. Program, College of Arts and Sciences, American University of Sharjah, Sharjah, P.O. Box. 26666, United Arab Emirates
- Department of Chemical and Biological Engineering, College of Engineering, American University of Sharjah, Sharjah, P.O. Box 26666, United Arab Emirates
| |
Collapse
|
2
|
Boswell-Patterson CA, Hétu MF, Pang SC, Herr JE, Zhou J, Jain S, Bambokian A, Johri AM. Novel theranostic approaches to neovascularized atherosclerotic plaques. Atherosclerosis 2023; 374:1-10. [PMID: 37149970 DOI: 10.1016/j.atherosclerosis.2023.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/05/2023] [Accepted: 04/17/2023] [Indexed: 05/09/2023]
Abstract
As the global burden of atherosclerotic cardiovascular disease continues to rise, there is an increased demand for improved imaging techniques for earlier detection of atherosclerotic plaques and new therapeutic targets. Plaque lesions, vulnerable to rupture and thrombosis, are thought to be responsible for the majority of cardiovascular events, and are characterized by a large lipid core, a thin fibrous cap, and neovascularization. In addition to supplying the plaque core with increased inflammatory factors, these pathological neovessels are tortuous and leaky, further increasing the risk of intraplaque hemorrhage. Clinically, plaque neovascularization has been shown to be a significant and independent predictor of adverse cardiovascular outcomes. Microvessels can be detected through contrast-enhanced ultrasound (CEUS) imaging, however, clinical assessment in vivo is generally limited to qualitative measures of plaque neovascularization. There is no validated standard for quantitative assessment of the microvessel networks found in plaques. Advances in our understanding of the pathological mechanisms underlying plaque neovascularization and its significant role in the morbidity and mortality associated with atherosclerosis have made it an attractive area of research in translational medicine. Current areas of research include the development of novel therapeutic and diagnostic agents to target plaque neovascularization stabilization. With recent progress in nanotechnology, nanoparticles have been investigated for their ability to specifically target neovascularization. Contrast microbubbles have been similarly engineered to carry loads of therapeutic agents and can be visualized using CEUS. This review summarizes the pathogenesis, diagnosis, clinical significance of neovascularization, and importantly the emerging areas of theranostic tool development.
Collapse
Affiliation(s)
| | - Marie-France Hétu
- Department of Medicine, Cardiovascular Imaging Network at Queen's (CINQ), Queen's University, Canada
| | - Stephen C Pang
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Julia E Herr
- Department of Medicine, Cardiovascular Imaging Network at Queen's (CINQ), Queen's University, Canada
| | - Jianhua Zhou
- Department of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Shagun Jain
- Department of Medicine, Cardiovascular Imaging Network at Queen's (CINQ), Queen's University, Canada
| | - Alexander Bambokian
- Department of Medicine, Cardiovascular Imaging Network at Queen's (CINQ), Queen's University, Canada
| | - Amer M Johri
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada; Department of Medicine, Cardiovascular Imaging Network at Queen's (CINQ), Queen's University, Canada.
| |
Collapse
|
3
|
Bourn MD, Mohajerani SZ, Mavria G, Ingram N, Coletta PL, Evans SD, Peyman SA. Tumour associated vasculature-on-a-chip for the evaluation of microbubble-mediated delivery of targeted liposomes. LAB ON A CHIP 2023; 23:1674-1693. [PMID: 36779251 PMCID: PMC10013341 DOI: 10.1039/d2lc00963c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The vascular system is the primary route for the delivery of therapeutic drugs throughout the body and is an important barrier at the region of disease interest, such as a solid tumour. The development of complex 3D tumour cultures has progressed significantly in recent years however, the generation of perfusable vascularised tumour models still presents many challenges. This study presents a microfluidic-based vasculature system that can be induced to display properties of tumour-associated blood vessels without direct incorporation of tumour cells. Conditioning healthy endothelial-fibroblast cell vasculature co-cultures with media taken from tumour cell cultures was found to result in the formation of disorganised, tortuous networks which display characteristics consistent with those of tumour-associated vasculature. Integrin αvβ3, a cell adhesion receptor associated with angiogenesis, was found to be upregulated in vasculature co-cultures conditioned with tumour cell media (TCM) - consistent with the reported αvβ3 expression pattern in angiogenic tumour vasculature in vivo. Increased accumulation of liposomes (LSs) conjugated to antibodies against αvβ3 was observed in TCM networks compared to non-conditioned networks, indicating αvβ3 may be a potential target for the delivery of drugs specifically to tumour vasculature. Furthermore, the use of microbubbles (MBs) and ultrasound (US) to further enhance the delivery of LSs to TCM-conditioned vasculature was investigated. Quantification of fluorescent LS accumulation post-perfusion of the vascular network showed 3-fold increased accumulation with the use of MBs and US, suggesting that targeted LS delivery could be further improved with the use of locally administered MBs and US.
Collapse
Affiliation(s)
- Matthew D Bourn
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK.
- Leeds Institute for Medical Research, Wellcome Trust Brenner Building, St James' University Hospital, Leeds, LS9 7TF, UK
| | - Safoura Zahed Mohajerani
- Leeds Institute for Medical Research, Wellcome Trust Brenner Building, St James' University Hospital, Leeds, LS9 7TF, UK
| | - Georgia Mavria
- Leeds Institute for Medical Research, Wellcome Trust Brenner Building, St James' University Hospital, Leeds, LS9 7TF, UK
| | - Nicola Ingram
- Leeds Institute for Medical Research, Wellcome Trust Brenner Building, St James' University Hospital, Leeds, LS9 7TF, UK
| | - P Louise Coletta
- Leeds Institute for Medical Research, Wellcome Trust Brenner Building, St James' University Hospital, Leeds, LS9 7TF, UK
| | - Stephen D Evans
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK.
| | - Sally A Peyman
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK.
- Leeds Institute for Medical Research, Wellcome Trust Brenner Building, St James' University Hospital, Leeds, LS9 7TF, UK
| |
Collapse
|
4
|
Wang C, Li N, Li Y, Hou S, Zhang W, Meng Z, Wang S, Jia Q, Tan J, Wang R, Zhang R. Engineering a HEK-293T exosome-based delivery platform for efficient tumor-targeting chemotherapy/internal irradiation combination therapy. J Nanobiotechnology 2022; 20:247. [PMID: 35642064 PMCID: PMC9153154 DOI: 10.1186/s12951-022-01462-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 05/16/2022] [Indexed: 12/21/2022] Open
Abstract
Exosomes are nanoscale monolayer membrane vesicles that are actively endogenously secreted by mammalian cells. Currently, multifunctional exosomes with tumor-targeted imaging and therapeutic potential have aroused widespread interest in cancer research. Herein, we developed a multifunctional HEK-293T exosome-based targeted delivery platform by engineering HEK-293T cells to express a well-characterized exosomal membrane protein (Lamp2b) fused to the αv integrin-specific iRGD peptide and tyrosine fragments. This platform was loaded with doxorubicin (Dox) and labeled with radioiodine-131 (131I) using the chloramine-T method. iRGD exosomes showed highly efficient targeting and Dox delivery to integrin αvβ3-positive anaplastic thyroid carcinoma (ATC) cells as demonstrated by confocal imaging and flow cytometry in vitro and an excellent tumor-targeting capacity confirmed by single-photon emission computed tomography-computed tomography after labeling with 131I in vivo. In addition, intravenous injection of this vehicle delivered Dox and 131I specifically to tumor tissues, leading to significant tumor growth inhibition in an 8505C xenograft mouse model, while showing biosafety and no side effects. These as-developed multifunctional exosomes (denoted as Dox@iRGD-Exos-131I) provide novel insight into the current treatment of ATC and hold great potential for improving therapeutic efficacy against a wide range of integrin αvβ3-overexpressing tumors.
Collapse
Affiliation(s)
- Congcong Wang
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
- Department of Nuclear Medicine, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Shinan District, Qingdao, 266003, Shandong, China
| | - Ning Li
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Yutian Li
- Department of Radiology, Qingdao Women and Children's Hospital, No. 217 Liaoyang West Road, Shibei District, Qingdao, 266000, Shandong, China
| | - Shasha Hou
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Wenxin Zhang
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Zhaowei Meng
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Shen Wang
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Qiang Jia
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Jian Tan
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China
| | - Renfei Wang
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China.
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Ruiguo Zhang
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin, 300052, China.
| |
Collapse
|
5
|
Gurwin A, Kowalczyk K, Knecht-Gurwin K, Stelmach P, Nowak Ł, Krajewski W, Szydełko T, Małkiewicz B. Alternatives for MRI in Prostate Cancer Diagnostics-Review of Current Ultrasound-Based Techniques. Cancers (Basel) 2022; 14:1859. [PMID: 35454767 PMCID: PMC9028694 DOI: 10.3390/cancers14081859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 02/04/2023] Open
Abstract
The purpose of this review is to present the current role of ultrasound-based techniques in the diagnostic pathway of prostate cancer (PCa). With overdiagnosis and overtreatment of a clinically insignificant PCa over the past years, multiparametric magnetic resonance imaging (mpMRI) started to be recommended for every patient suspected of PCa before performing a biopsy. It enabled targeted sampling of the suspicious prostate regions, improving the accuracy of the traditional systematic biopsy. However, mpMRI is associated with high costs, relatively low availability, long and separate procedure, or exposure to the contrast agent. The novel ultrasound modalities, such as shear wave elastography (SWE), contrast-enhanced ultrasound (CEUS), or high frequency micro-ultrasound (MicroUS), may be capable of maintaining the performance of mpMRI without its limitations. Moreover, the real-time lesion visualization during biopsy would significantly simplify the diagnostic process. Another value of these new techniques is the ability to enhance the performance of mpMRI by creating the image fusion of multiple modalities. Such models might be further analyzed by artificial intelligence to mark the regions of interest for investigators and help to decide about the biopsy indications. The dynamic development and promising results of new ultrasound-based techniques should encourage researchers to thoroughly study their utilization in prostate imaging.
Collapse
Affiliation(s)
- Adam Gurwin
- University Center of Excellence in Urology, Department of Minimally Invasive and Robotic Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (K.K.); (P.S.); (Ł.N.); (W.K.); (T.S.)
| | - Kamil Kowalczyk
- University Center of Excellence in Urology, Department of Minimally Invasive and Robotic Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (K.K.); (P.S.); (Ł.N.); (W.K.); (T.S.)
| | - Klaudia Knecht-Gurwin
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Paweł Stelmach
- University Center of Excellence in Urology, Department of Minimally Invasive and Robotic Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (K.K.); (P.S.); (Ł.N.); (W.K.); (T.S.)
| | - Łukasz Nowak
- University Center of Excellence in Urology, Department of Minimally Invasive and Robotic Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (K.K.); (P.S.); (Ł.N.); (W.K.); (T.S.)
| | - Wojciech Krajewski
- University Center of Excellence in Urology, Department of Minimally Invasive and Robotic Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (K.K.); (P.S.); (Ł.N.); (W.K.); (T.S.)
| | - Tomasz Szydełko
- University Center of Excellence in Urology, Department of Minimally Invasive and Robotic Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (K.K.); (P.S.); (Ł.N.); (W.K.); (T.S.)
| | - Bartosz Małkiewicz
- University Center of Excellence in Urology, Department of Minimally Invasive and Robotic Urology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (K.K.); (P.S.); (Ł.N.); (W.K.); (T.S.)
| |
Collapse
|
6
|
Li H, Cai E, Cheng H, Ye X, Ma R, Zhu H, Chang X. FGA Controls VEGFA Secretion to Promote Angiogenesis by Activating the VEGFR2-FAK Signalling Pathway. Front Endocrinol (Lausanne) 2022; 13:791860. [PMID: 35498401 PMCID: PMC9043601 DOI: 10.3389/fendo.2022.791860] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 03/15/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Our previous work revealed the high expression of fibrinogen alpha chain (FGA) in patients with endometriosis (EM) and that it could promote the migration and invasion of endometrial stromal cells. Angiogenesis is the key condition for the development of EM. This study was aimed to elucidate the role of FGA in endometrial stromal cells involved in angiogenesis in EM. METHODS Immunohistochemistry was used to detect the microvessel density (MVD) and VEGF expression in the eutopic endometrium samples from EM and non-EM. The conditioned medium (CM) of human primary eutopic endometrial stromal cells (EuESC) and immortalized endometrial stromal cell line hEM15A with FGA knockdown were collected and used to treat human umbilical vein endothelial cells (HUVECs). Then, tube formation assay, EdU assay, wound assay, transwell assay and flow cytometry assays were performed to assess the function of HUEVCs in vitro. The angiogenic capability of HUVECs was further measured using a matrigel plug assay with BALB/c nude mice in vivo. Immunofluorescence was used to detect the expression of F-actin and VE-cadherin. RT-PCR and western blotting were used to detect the expression of angiogenesis-related factors in endometrial stromal cells and downstream signalling pathways in HUVECs. RESULTS MVD and VEGF expression in the eutopic endometrium of EM patients were significantly higher than those in the normal endometrium of non-EM patients, and the increased MVD in EM indicates an increased risk of recurrence. Functionally, we found that CM of endometrial stromal cells with FGA knockdown could inhibit HUEVCs migration and tube formation in vitro and in vivo, while having no significant effect on HUVECs proliferation, apoptosis and cell cycle. Mechanically, the expression of VEGFA, PDGF, FGF-B, VEGF, MMP-2 and MMP-9 was reduced in hEM15A cells with FGA knockdown. CM of hEM15A cells with FGA knockdown reduced the number of microfilaments and pseudopodia, as well as the expression of VE-cadherin, and inhibited the activity of VEGFR2 and the FAK signalling pathway in HUVECs. CONCLUSION Our study demonstrated FGA could enhance the interaction between endometrial stromal cells and HUVECs via the potential VEGA-VEGFR-FAK signalling axis and promote EM angiogenesis, revealing a promising therapeutic approach for EM.
Collapse
Affiliation(s)
- Hui Li
- Department of Obstetrics and Gynaecology, Peking University People’s Hospital, Beijing, China
- Center of Gynaecological Oncology, Peking University People’s Hospital, Beijing, China
| | - E. Cai
- Department of Obstetrics and Gynaecology, Peking University People’s Hospital, Beijing, China
- Center of Gynaecological Oncology, Peking University People’s Hospital, Beijing, China
| | - Hongyan Cheng
- Department of Obstetrics and Gynaecology, Peking University People’s Hospital, Beijing, China
- Center of Gynaecological Oncology, Peking University People’s Hospital, Beijing, China
| | - Xue Ye
- Department of Obstetrics and Gynaecology, Peking University People’s Hospital, Beijing, China
- Center of Gynaecological Oncology, Peking University People’s Hospital, Beijing, China
| | - Ruiqiong Ma
- Department of Obstetrics and Gynaecology, Peking University People’s Hospital, Beijing, China
- Center of Gynaecological Oncology, Peking University People’s Hospital, Beijing, China
| | - Honglan Zhu
- Department of Obstetrics and Gynaecology, Peking University People’s Hospital, Beijing, China
- *Correspondence: Xiaohong Chang, ; Honglan Zhu,
| | - Xiaohong Chang
- Department of Obstetrics and Gynaecology, Peking University People’s Hospital, Beijing, China
- Center of Gynaecological Oncology, Peking University People’s Hospital, Beijing, China
- *Correspondence: Xiaohong Chang, ; Honglan Zhu,
| |
Collapse
|
7
|
Chen Q, Chen AZ, Jia G, Li J, Zheng C, Chen K. Molecular Imaging of Tumor Microenvironment to Assess the Effects of Locoregional Treatment for Hepatocellular Carcinoma. Hepatol Commun 2021; 6:652-664. [PMID: 34738743 PMCID: PMC8948593 DOI: 10.1002/hep4.1850] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/12/2021] [Accepted: 10/17/2021] [Indexed: 12/22/2022] Open
Abstract
Liver cancer is one of the leading causes of cancer deaths worldwide. Among all primary liver cancers, hepatocellular carcinoma (HCC) is the most common type, representing 75%‐85% of all primary liver cancer cases. Median survival following diagnosis of HCC is approximately 6 to 20 months due to late diagnosis in its course and few effective treatment options. Interventional therapy with minimal invasiveness is recognized as a promising treatment for HCC. However, due to the heterogeneity of HCC and the complexity of the tumor microenvironment, the long‐term efficacy of treatment for HCC remains a challenge in the clinic. Tumor microenvironment, including factors such as hypoxia, angiogenesis, low extracellular pH, interstitial fluid pressure, aerobic glycolysis, and various immune responses, has emerged as a key contributor to tumor residual and progression after locoregional treatment for HCC. New approaches to noninvasively assess the treatment response and assist in the clinical decision‐making process are therefore urgently needed. Molecular imaging tools enabling such an assessment may significantly advance clinical practice by allowing real‐time optimization of treatment protocols for the individual patient. This review discusses recent advances in the application of molecular imaging technologies for noninvasively assessing changes occurring in the microenvironment of HCC after locoregional treatment.
Collapse
Affiliation(s)
- Quan Chen
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.,Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Austin Z Chen
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Guorong Jia
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jindian Li
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Chen
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
8
|
Zhang N, Wang J, Foiret J, Dai Z, Ferrara KW. Synergies between therapeutic ultrasound, gene therapy and immunotherapy in cancer treatment. Adv Drug Deliv Rev 2021; 178:113906. [PMID: 34333075 PMCID: PMC8556319 DOI: 10.1016/j.addr.2021.113906] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/12/2021] [Accepted: 07/25/2021] [Indexed: 12/14/2022]
Abstract
Due to the ease of use and excellent safety profile, ultrasound is a promising technique for both diagnosis and site-specific therapy. Ultrasound-based techniques have been developed to enhance the pharmacokinetics and efficacy of therapeutic agents in cancer treatment. In particular, transfection with exogenous nucleic acids has the potential to stimulate an immune response in the tumor microenvironment. Ultrasound-mediated gene transfection is a growing field, and recent work has incorporated this technique into cancer immunotherapy. Compared with other gene transfection methods, ultrasound-mediated gene transfection has a unique opportunity to augment the intracellular uptake of nucleic acids while safely and stably modulating the expression of immunostimulatory cytokines. The development and commercialization of therapeutic ultrasound systems further enhance the potential translation. In this Review, we introduce the underlying mechanisms and ongoing preclinical studies of ultrasound-based techniques in gene transfection for cancer immunotherapy. Furthermore, we expand on aspects of therapeutic ultrasound that impact gene therapy and immunotherapy, including tumor debulking, enhancing cytokines and chemokines and altering nanoparticle pharmacokinetics as these effects of ultrasound cannot be fully dissected from targeted gene therapy. We finally explore the outlook for this rapidly developing field.
Collapse
Affiliation(s)
- Nisi Zhang
- Department of Radiology, Stanford University, Palo Alto, CA, USA; Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - James Wang
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Josquin Foiret
- Department of Radiology, Stanford University, Palo Alto, CA, USA
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China.
| | | |
Collapse
|
9
|
Krafft MP, Riess JG. Therapeutic oxygen delivery by perfluorocarbon-based colloids. Adv Colloid Interface Sci 2021; 294:102407. [PMID: 34120037 DOI: 10.1016/j.cis.2021.102407] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 03/18/2021] [Accepted: 03/25/2021] [Indexed: 02/06/2023]
Abstract
After the protocol-related indecisive clinical trial of Oxygent, a perfluorooctylbromide/phospholipid nanoemulsion, in cardiac surgery, that often unduly assigned the observed untoward effects to the product, the development of perfluorocarbon (PFC)-based O2 nanoemulsions ("blood substitutes") has come to a low. Yet, significant further demonstrations of PFC O2-delivery efficacy have continuously been reported, such as relief of hypoxia after myocardial infarction or stroke; protection of vital organs during surgery; potentiation of O2-dependent cancer therapies, including radio-, photodynamic-, chemo- and immunotherapies; regeneration of damaged nerve, bone or cartilage; preservation of organ grafts destined for transplantation; and control of gas supply in tissue engineering and biotechnological productions. PFC colloids capable of augmenting O2 delivery include primarily injectable PFC nanoemulsions, microbubbles and phase-shift nanoemulsions. Careful selection of PFC and other colloid components is critical. The basics of O2 delivery by PFC nanoemulsions will be briefly reminded. Improved knowledge of O2 delivery mechanisms has been acquired. Advanced, size-adjustable O2-delivering nanoemulsions have been designed that have extended room-temperature shelf-stability. Alternate O2 delivery options are being investigated that rely on injectable PFC-stabilized microbubbles or phase-shift PFC nanoemulsions. The latter combine prolonged circulation in the vasculature, capacity for penetrating tumor tissues, and acute responsiveness to ultrasound and other external stimuli. Progress in microbubble and phase-shift emulsion engineering, control of phase-shift activation (vaporization), understanding and control of bubble/ultrasound/tissue interactions is discussed. Control of the phase-shift event and of microbubble size require utmost attention. Further PFC-based colloidal systems, including polymeric micelles, PFC-loaded organic or inorganic nanoparticles and scaffolds, have been devised that also carry substantial amounts of O2. Local, on-demand O2 delivery can be triggered by external stimuli, including focused ultrasound irradiation or tumor microenvironment. PFC colloid functionalization and targeting can help adjust their properties for specific indications, augment their efficacy, improve safety profiles, and expand the range of their indications. Many new medical and biotechnological applications involving fluorinated colloids are being assessed, including in the clinic. Further uses of PFC-based colloidal nanotherapeutics will be briefly mentioned that concern contrast diagnostic imaging, including molecular imaging and immune cell tracking; controlled delivery of therapeutic energy, as for noninvasive surgical ablation and sonothrombolysis; and delivery of drugs and genes, including across the blood-brain barrier. Even when the fluorinated colloids investigated are designed for other purposes than O2 supply, they will inevitably also carry and deliver a certain amount of O2, and may thus be considered for O2 delivery or co-delivery applications. Conversely, O2-carrying PFC nanoemulsions possess by nature a unique aptitude for 19F MR imaging, and hence, cell tracking, while PFC-stabilized microbubbles are ideal resonators for ultrasound contrast imaging and can undergo precise manipulation and on-demand destruction by ultrasound waves, thereby opening multiple theranostic opportunities.
Collapse
Affiliation(s)
- Marie Pierre Krafft
- University of Strasbourg, Institut Charles Sadron (CNRS), 23 rue du Loess, 67034 Strasbourg, France.
| | - Jean G Riess
- Harangoutte Institute, 68160 Ste Croix-aux-Mines, France
| |
Collapse
|
10
|
Phospholipid-coated targeted microbubbles for ultrasound molecular imaging and therapy. Curr Opin Chem Biol 2021; 63:171-179. [PMID: 34102582 DOI: 10.1016/j.cbpa.2021.04.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 01/24/2023]
Abstract
Phospholipid-coated microbubbles are ultrasound contrast agents that, when functionalized, adhere to specific biomarkers on cells. In this concise review, we highlight recent developments in strategies for targeting the microbubbles and their use for ultrasound molecular imaging (UMI) and therapy. Recently developed novel targeting strategies include magnetic functionalization, triple targeting, and the use of several new ligands. UMI is a powerful technique for studying disease progression, diagnostic imaging, and monitoring of therapeutic responses. Targeted microbubbles (tMBs) have been used for the treatment of cardiovascular diseases and cancer, with therapeutics either coadministered or loaded onto the tMBs. Regardless of which disease was treated, the use of tMBs always resulted in a better therapeutic outcome than non-tMBs when compared in vitro or in vivo.
Collapse
|
11
|
Bevacizumab and folic acid dual-targeted gadolinium-carbon dots for fluorescence/magnetic resonance imaging of hepatocellular carcinoma. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
12
|
|
13
|
Kargozar S, Baino F, Hamzehlou S, Hamblin MR, Mozafari M. Nanotechnology for angiogenesis: opportunities and challenges. Chem Soc Rev 2020; 49:5008-5057. [PMID: 32538379 PMCID: PMC7418030 DOI: 10.1039/c8cs01021h] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Angiogenesis plays a critical role within the human body, from the early stages of life (i.e., embryonic development) to life-threatening diseases (e.g., cancer, heart attack, stroke, wound healing). Many pharmaceutical companies have expended huge efforts on both stimulation and inhibition of angiogenesis. During the last decade, the nanotechnology revolution has made a great impact in medicine, and regulatory approvals are starting to be achieved for nanomedicines to treat a wide range of diseases. Angiogenesis therapies involve the inhibition of angiogenesis in oncology and ophthalmology, and stimulation of angiogenesis in wound healing and tissue engineering. This review aims to summarize nanotechnology-based strategies that have been explored in the broad area of angiogenesis. Lipid-based, carbon-based and polymeric nanoparticles, and a wide range of inorganic and metallic nanoparticles are covered in detail. Theranostic and imaging approaches can be facilitated by nanoparticles. Many preparations have been reported to have a bimodal effect where they stimulate angiogenesis at low dose and inhibit it at higher doses.
Collapse
Affiliation(s)
- Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, 917794-8564 Mashhad, Iran
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 101 29 Torino, Italy
| | - Sepideh Hamzehlou
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Masoud Mozafari
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
14
|
Abstract
Contrast-enhanced ultrasound (CEUS) imaging is a valuable tool for preclinical and clinical diagnostics. The most frequently used ultrasound contrast agents are microbubbles. Besides them, novel nano-sized materials are under investigation, which are briefly discussed in this chapter. For molecular CEUS, the ultrasound contrast agents are modified to actively target disease-associated molecular markers with a site-specific ligand. The most common markers for tumor imaging are related to neoangiogenesis, like the vascular endothelial growth factor receptor-2 (VEGFR2) and αvβ3 integrin. In this chapter, applications of molecular ultrasound to longitudinally monitor receptor expression during tumor growth, to detect neovascularization, and to evaluate therapy responses are described. Furthermore, we report on first clinical trials of molecular CEUS with VEGFR2-targeted phospholipid microbubbles showing promising results regarding patient safety and its ability to detect tumors of prostate, breast, and ovary. The chapter closes with an outlook on ultrasound theranostics, where (targeted) ultrasound contrast agents are used to increase the permeability of tumor tissues and to support drug delivery.
Collapse
Affiliation(s)
- Jasmin Baier
- Institute for Experimental Molecular Imaging Organization University Clinics, RWTH Aachen University, Forckenbeckstrasse 55, 52074 Aachen, Germany
| | - Anne Rix
- Institute for Experimental Molecular Imaging Organization University Clinics, RWTH Aachen University, Forckenbeckstrasse 55, 52074 Aachen, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging Organization University Clinics, RWTH Aachen University, Forckenbeckstrasse 55, 52074 Aachen, Germany.
| |
Collapse
|
15
|
Advances in the strategies for designing receptor-targeted molecular imaging probes for cancer research. J Control Release 2019; 305:1-17. [DOI: 10.1016/j.jconrel.2019.04.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 04/09/2019] [Accepted: 04/21/2019] [Indexed: 12/24/2022]
|
16
|
Applications of Ultrasound to Stimulate Therapeutic Revascularization. Int J Mol Sci 2019; 20:ijms20123081. [PMID: 31238531 PMCID: PMC6627741 DOI: 10.3390/ijms20123081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 12/13/2022] Open
Abstract
Many pathological conditions are characterized or caused by the presence of an insufficient or aberrant local vasculature. Thus, therapeutic approaches aimed at modulating the caliber and/or density of the vasculature by controlling angiogenesis and arteriogenesis have been under development for many years. As our understanding of the underlying cellular and molecular mechanisms of these vascular growth processes continues to grow, so too do the available targets for therapeutic intervention. Nonetheless, the tools needed to implement such therapies have often had inherent weaknesses (i.e., invasiveness, expense, poor targeting, and control) that preclude successful outcomes. Approximately 20 years ago, the potential for using ultrasound as a new tool for therapeutically manipulating angiogenesis and arteriogenesis began to emerge. Indeed, the ability of ultrasound, especially when used in combination with contrast agent microbubbles, to mechanically manipulate the microvasculature has opened several doors for exploration. In turn, multiple studies on the influence of ultrasound-mediated bioeffects on vascular growth and the use of ultrasound for the targeted stimulation of blood vessel growth via drug and gene delivery have been performed and published over the years. In this review article, we first discuss the basic principles of therapeutic ultrasound for stimulating angiogenesis and arteriogenesis. We then follow this with a comprehensive cataloging of studies that have used ultrasound for stimulating revascularization to date. Finally, we offer a brief perspective on the future of such approaches, in the context of both further research development and possible clinical translation.
Collapse
|