1
|
van Helvert M, Ruisch J, de Bakker JMK, Saris AECM, de Korte CL, Versluis M, Groot Jebbink E, Reijnen MMPJ. High-Frame-Rate Ultrasound Velocimetry in the Healthy Femoral Bifurcation: A Comparative Study Against 4-D Flow Magnetic Resonance Imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:1755-1763. [PMID: 39244482 DOI: 10.1016/j.ultrasmedbio.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 09/09/2024]
Abstract
OBJECTIVE Local flow dynamics impact atherosclerosis yet are difficult to quantify with conventional ultrasound techniques. This study investigates the performance of ultrasound vector flow imaging (US-VFI) with and without ultrasound contrast agents in the healthy femoral bifurcation. METHODS High-frame-rate ultrasound data with incremental acoustic outputs were acquired in the femoral bifurcations of 20 healthy subjects before (50V) and after contrast injection (2V, 5V and 10V). 2-D blood-velocity profiles were obtained through native blood speckle tracking (BST) and contrast tracking (echo particle image velocimetry [echoPIV]). As a reference, 4-D flow magnetic resonance imaging (4-D flow MRI) was acquired. Contrast-to-background ratio and vector correlation were used to assess the quality of the US-VFI acquisitions. Spatiotemporal velocity profiles were extracted, from which peak velocities (PSV) were compared between the modalities. Furthermore, root-mean-square error analysis was performed. RESULTS US-VFI was successful in 99% of the cases and optimal VFI quality was established with the 10V echoPIV and BST settings. A good correspondence between 10V echoPIV and BST was found, with a mean PSV difference of -0.5 cm/s (limits of agreement: -14.1-13.2). Both US-VFI techniques compared well with 4-D flow MRI, with a mean PSV difference of 1.4 cm/s (-18.7-21.6) between 10V echoPIV and MRI, and 0.3 cm/s (-23.8-24.4) between BST and MRI. Similar complex flow patterns among all modalities were observed. CONCLUSION 2-D blood-flow quantification of femoral bifurcation is feasible with echoPIV and BST. Both modalities showed good agreement compared to 4-D flow MRI. For the femoral tract the administration of contrast was not needed to increase the echogenicity of the blood for optimal image quality.
Collapse
Affiliation(s)
- Majorie van Helvert
- Multi-Modality Medical Imaging Group, TechMed Centre, University of Twente, Enschede, The Netherlands; Department of Vascular Surgery, Rijnstate Hospital, Arnhem, The Netherlands; Physics of Fluids Group, TechMed Centre, University of Twente, Enschede, The Netherlands.
| | - Janna Ruisch
- Department of Vascular Surgery, Rijnstate Hospital, Arnhem, The Netherlands; Medical Ultrasound Imaging Centre, Department of Medical Imaging, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Joosje M K de Bakker
- Medical Ultrasound Imaging Centre, Department of Medical Imaging, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Anne E C M Saris
- Medical Ultrasound Imaging Centre, Department of Medical Imaging, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Chris L de Korte
- Physics of Fluids Group, TechMed Centre, University of Twente, Enschede, The Netherlands; Medical Ultrasound Imaging Centre, Department of Medical Imaging, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Michel Versluis
- Physics of Fluids Group, TechMed Centre, University of Twente, Enschede, The Netherlands
| | - Erik Groot Jebbink
- Multi-Modality Medical Imaging Group, TechMed Centre, University of Twente, Enschede, The Netherlands; Department of Vascular Surgery, Rijnstate Hospital, Arnhem, The Netherlands
| | - Michel M P J Reijnen
- Multi-Modality Medical Imaging Group, TechMed Centre, University of Twente, Enschede, The Netherlands; Department of Vascular Surgery, Rijnstate Hospital, Arnhem, The Netherlands
| |
Collapse
|
2
|
Ghanbarzadeh-Dagheyan A, van Helvert M, van de Velde L, Reijnen MMPJ, Versluis M, Groot Jebbink E. Swirling Flow Quantification in Helical Stents Using Ultrasound Velocimetry. J Endovasc Ther 2024:15266028241283326. [PMID: 39397375 DOI: 10.1177/15266028241283326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
OBJECTIVE Helical stents have been developed to treat peripheral arterial disease (PAD) in the superficial femoral artery (SFA), with the premise that their particular geometry could promote swirling flow in the blood. The aim of this work is to provide evidence on the existence of this swirling flow by quantifying its signatures. MATERIALS AND METHODS This study consists of in vitro and in vivo parts. For the in vitro part, 3 helical stent models of different helicity degrees and 1 straight model were fabricated, and the flow was assessed at the inlet and outlet of each model. For the in vivo part, only 1 patient, treated with the helical stent, was eligible to participate in the study. The stent implanted in the SFA of the patient was evaluated in 2 leg postures (straight and flexed), and flow was assessed in 12 locations along the SFA. The in vivo study was approved by an ethical board (NL80130.091.21) in the Netherlands. High-frame-rate ultrasound was used to acquire data from the regions of interest (ROIs), using microbubbles as contrast agents. After processing the data via a correlation-based algorithm (echo particle image velocimetry or echoPIV), the velocity vector field within each ROI was extracted and analyzed for parameters such as vector complexity and velocity profile skewedness. RESULTS The results show that in the outlet of the helical stents, when compared with the inlet, the flow vector field is more complex and the velocity profile is more skewed. For the in vivo case, the outcomes demonstrate more complexity and higher variability in the sign of skewedness inside the stent when compared with the flow in the proximal to the stent. CONCLUSIONS Helical stents make the vector field of the flow more complex and the velocity profile more skewed, both of which are signatures of swirling flow. Further studies are needed to evaluate whether these features can benefit patients in terms of patency rates. CLINICAL IMPACT This study demonstrates that helical stent models alter the blood flow when compared with straight stent models. Particularly, the flow grows more complex and its velocity profile becomes more skewed, both of which hint at the existence of swirling flow inside the helical stent. These observations, alongside with population-based studies that are currently being carried out, may provide the evidence that helical stents have some advantages over straight stents for the patients.
Collapse
Affiliation(s)
- Ashkan Ghanbarzadeh-Dagheyan
- Multi-Modality Medical Imaging, Technical Medical (TechMed) Centre, University of Twente, Enschede, The Netherlands
- Biomedical Photonic Imaging Group, Technical Medical (TechMed) Centre, University of Twente, Enschede, The Netherlands
- Physics of Fluids, Technical Medical (TechMed) Centre, University of Twente, Enschede, The Netherlands
| | - Majorie van Helvert
- Multi-Modality Medical Imaging, Technical Medical (TechMed) Centre, University of Twente, Enschede, The Netherlands
- Department of Vascular Surgery, Rijnstate Hospital, Arnhem, The Netherlands
| | - Lennart van de Velde
- Multi-Modality Medical Imaging, Technical Medical (TechMed) Centre, University of Twente, Enschede, The Netherlands
- Department of Vascular Surgery, Rijnstate Hospital, Arnhem, The Netherlands
| | - Michel M P J Reijnen
- Multi-Modality Medical Imaging, Technical Medical (TechMed) Centre, University of Twente, Enschede, The Netherlands
- Department of Vascular Surgery, Rijnstate Hospital, Arnhem, The Netherlands
| | - Michel Versluis
- Physics of Fluids, Technical Medical (TechMed) Centre, University of Twente, Enschede, The Netherlands
| | - Erik Groot Jebbink
- Multi-Modality Medical Imaging, Technical Medical (TechMed) Centre, University of Twente, Enschede, The Netherlands
- Department of Vascular Surgery, Rijnstate Hospital, Arnhem, The Netherlands
| |
Collapse
|
3
|
Henry M, Fadnes S, Lovstakken L, Mawad W, Mertens L, Nyrnes SA. Flow Dynamics in Children With Bicuspid Aortic Valve: A Blood Speckle Tracking Study. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:2354-2360. [PMID: 37573177 DOI: 10.1016/j.ultrasmedbio.2023.07.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/27/2023] [Accepted: 07/16/2023] [Indexed: 08/14/2023]
Abstract
OBJECTIVE Bicuspid aortic valve (BAV) is associated with progressive aortic dilation. Although the etiology is complex, altered flow dynamics is thought to play an important role. Blood speckle tracking (BST) allows for visualization and quantification of complex flow, which could be useful in identifying patients at risk of root dilation and could aid in surgical planning. The aims of this study were to assess and quantify flow in the aortic root and left ventricle using BST in children with bicuspid aortic valves. METHODS AND RESULTS A total of 38 children <10 y of age were included (24 controls, 14 with BAV). Flow dynamics were examined using BST in the aortic root and left ventricle. Children with BAV had altered systolic flow patterns in the aortic root and higher aortic root average vorticity (25.9 [23.4-29.2] Hz vs. 17.8 [9.0-26.2] Hz, p < 0.05), vector complexity (0.17 [0.14-0.31] vs. 0.05 [0.02-0.13], p < 0.01) and rate of energy loss (7.9 [4.9-12.1] mW/m vs. 2.7 [1.2-7.4] mW/m, p = 0.01). Left ventricular average diastolic vorticity (20.9 ± 5.8 Hz vs. 11.4 ± 5.2 Hz, p < 0.01), kinetic energy (0.11 ± 0.05 J/m vs. 0.04 ± 0.02 J/m, p < 0.01), vector complexity (0.38 ± 0.1 vs. 0.23 ± 0.1, p < 0.01) and rate of energy loss (11.1 ± 4.8 mW/m vs. 2.7 ± 1.9 mW/m, p < 0.01) were higher in children with BAV. CONCLUSION Children with BAV exhibit altered flow dynamics in the aortic root and left ventricle in the absence of significant aortic root dilation. This may represent a substrate and potential predictor for future dilation and diastolic dysfunction.
Collapse
Affiliation(s)
| | - Solveig Fadnes
- Norwegian University of Science and Technology, Trondheim, Norway
| | - Lasse Lovstakken
- Norwegian University of Science and Technology, Trondheim, Norway
| | - Wadi Mawad
- McGill University Health Centre, Montreal, QC, Canada
| | - Luc Mertens
- Hospital for Sick Children, Toronto, ON, Canada
| | - Siri Ann Nyrnes
- Norwegian University of Science and Technology, Trondheim, Norway; Children's Clinic, St. Olav's University Hospital, Trondheim, Norway
| |
Collapse
|
4
|
Mawad W, Fadnes S, Løvstakken L, Henry M, Mertens L, Nyrnes SA. Pulmonary Hypertension in Children is Associated With Abnormal Flow Patterns in the Main Pulmonary Artery as Demonstrated by Blood Speckle Tracking. CJC PEDIATRIC AND CONGENITAL HEART DISEASE 2022; 1:213-218. [PMID: 37969432 PMCID: PMC10642129 DOI: 10.1016/j.cjcpc.2022.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2023]
Abstract
Background Paediatric pulmonary arterial hypertension (PAH) is characterized by increased pulmonary vascular resistance resulting in increased pulmonary artery (PA) and right ventricular pressure (RV). This is associated with disturbed flow dynamics in the PA and RV that are not well characterized. We aimed to compare flow dynamics in children with PAH compared with healthy controls using blood speckle tracking echocardiography. Methods Patients <10 years of age with PAH and healthy controls were included. We examined flow dynamics in the main PA (MPA) and right ventricle based on acquisition blood speckle tracking images obtained from the RV and PA. Qualitative and quantitative analyses were performed. Results Eighteen subjects were included in each group. A diastolic vortex in the MPA was identified in 16 of the patients with PAH, but not in controls. Significantly higher MPA systolic (4.84 vs 2.42 mW/m; P = 0.01) and diastolic (0.69 vs 0.14 mW/m; P = 0.01) energy loss, as well as increased vector complexity (systole: 0.21 vs 0.04, P = 0.003; diastole: 0.13 vs 0.05, P = 0.04) and diastolic vorticity (15.2 vs 4.4 Hz; P = 0.001), were noted in PAH compared with controls. Conclusion This study demonstrates the presence of abnormal flow patterns in the MPA with diastolic vortex formation in most patients with PAH. This diastolic vortex likely results from reflected waves from the distal pulmonary bed. Our data indicate that the diastolic vortex could potentially be used in the diagnosis of PAH. The clinical significance of the energy loss findings warrants further investigation in a larger cohort of patients with PAH.
Collapse
Affiliation(s)
- Wadi Mawad
- Division of Cardiology, Department of Paediatric, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Paediatrics, Montreal Children’s Hospital, McGill University Health Centre, Montréal, Québec, Canada
| | - Solveig Fadnes
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Moere & Romsdal Hospital Trust, Division of Aalesund Hospital, Department of Pediatrics, Aalesund, Norway
| | - Lasse Løvstakken
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Matthew Henry
- Division of Cardiology, Department of Paediatric, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Luc Mertens
- Division of Cardiology, Department of Paediatric, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Siri Ann Nyrnes
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Children’s Clinic, St. Olavs University Hospital, Trondheim, Norway
| |
Collapse
|
5
|
van Helvert M, Engelhard S, Voorneveld J, van der Vee M, Bosch JG, Versluis M, Groot Jebbink E, Reijnen MMPJ. High-frame-rate contrast-enhanced ultrasound particle image velocimetry in patients with a stented superficial femoral artery: a feasibility study. Eur Radiol Exp 2022; 6:32. [PMID: 35790584 PMCID: PMC9256892 DOI: 10.1186/s41747-022-00278-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 04/14/2022] [Indexed: 11/20/2022] Open
Abstract
Background Local blood flow affects vascular disease and outcomes of endovascular treatment, but quantifying it is challenging, especially inside stents. We assessed the feasibility of blood flow quantification in native and stented femoral arteries, using high-frame-rate (HFR) contrast-enhanced ultrasound (CEUS) particle image velocimetry (PIV), also known as echoPIV. Methods Twenty-one patients with peripheral arterial disease, recently treated with a stent in the femoral artery, were included. HFR CEUS measurements were performed in the native femoral artery and at the inflow and outflow of the stent. Two-dimensional blood flow was quantified through PIV analysis. EchoPIV recordings were visually assessed by five observers and categorised as optimal, partial, or unfeasible. To evaluate image quality and tracking performance, contrast-to-tissue ratio (CTR) and vector correlation were calculated, respectively. Results Fifty-eight locations were measured and blood flow quantification was established in 49 of them (84%). Results were optimal for 17/58 recordings (29%) and partial for 32 recordings (55%) due to loss of correlation (5/32; 16%), short vessel segment (8/32; 25%), loss of contrast (14/32; 44%), and/or shadows (18/32; 56%). In the remaining 9/58 measurements (16%) no meaningful flow information was visualised. Overall, CTR and vector correlation were lower during diastole. CTR and vector correlation were not different between stented and native vessel segments, except for a higher native CTR at the inflow during systole (p = 0.037). Conclusions Blood flow quantification is feasible in untreated and stented femoral arteries using echoPIV. Limitations remain, however, none of them related to the presence of the stent. Trial registration ClinicalTrials.gov, NCT04934501 (retrospectively registered). Supplementary Information The online version contains supplementary material available at 10.1186/s41747-022-00278-w.
Collapse
Affiliation(s)
- Majorie van Helvert
- Multi-Modality Medical Imaging Group, TechMed Centre, University of Twente, Enschede, The Netherlands. .,Department of Vascular Surgery, Rijnstate Hospital, Arnhem, The Netherlands. .,Physics of Fluids Group, TechMed Centre, University of Twente, Enschede, The Netherlands.
| | - Stefan Engelhard
- Multi-Modality Medical Imaging Group, TechMed Centre, University of Twente, Enschede, The Netherlands.,Department of Vascular Surgery, Rijnstate Hospital, Arnhem, The Netherlands.,Physics of Fluids Group, TechMed Centre, University of Twente, Enschede, The Netherlands
| | - Jason Voorneveld
- Department of Biomedical Engineering, Thorax Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Marije van der Vee
- Department of Vascular Surgery, Rijnstate Hospital, Arnhem, The Netherlands.,Physics of Fluids Group, TechMed Centre, University of Twente, Enschede, The Netherlands
| | - Johan G Bosch
- Department of Biomedical Engineering, Thorax Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Michel Versluis
- Physics of Fluids Group, TechMed Centre, University of Twente, Enschede, The Netherlands
| | - Erik Groot Jebbink
- Multi-Modality Medical Imaging Group, TechMed Centre, University of Twente, Enschede, The Netherlands.,Department of Vascular Surgery, Rijnstate Hospital, Arnhem, The Netherlands
| | - Michel M P J Reijnen
- Multi-Modality Medical Imaging Group, TechMed Centre, University of Twente, Enschede, The Netherlands.,Department of Vascular Surgery, Rijnstate Hospital, Arnhem, The Netherlands
| |
Collapse
|
6
|
Slart RHJA, Reijnen MMPJ. Carotid plaque stenosis, metabolism and flow dynamics: Important determinants of atherosclerotic risk? J Nucl Cardiol 2022; 29:578-580. [PMID: 32910416 DOI: 10.1007/s12350-020-02311-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 10/23/2022]
Affiliation(s)
- Riemer H J A Slart
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands.
- Biomedical Photonic Imaging Group, University of Twente, Enschede, The Netherlands.
| | - Michel M P J Reijnen
- Multi-Modality Medical Imaging Group, Technical Medical Centre, University of Twente, Enschede, The Netherlands
- Department of Surgery, Rijnstate, Arnhem, The Netherlands
| |
Collapse
|
7
|
Nguyen TQ, Bechsgaard T, Schmidt MR, Juul K, Moshavegh R, Lönn L, Nielsen MB, Jensen JA, Hansen KL. Transthoracic Vector Flow Imaging in Pediatric Patients with Valvular Stenosis - A Proof of Concept Study. Ultrasound Int Open 2021; 7:E48-E54. [PMID: 34804771 PMCID: PMC8598391 DOI: 10.1055/a-1652-1261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 09/05/2021] [Indexed: 11/17/2022] Open
Abstract
Purpose
Continuous wave Doppler ultrasound is routinely used to detect
cardiac valve stenoses. Vector flow imaging (VFI) is an angle-independent
real-time ultrasound method that can quantify flow complexity. We aimed to
evaluate if quantification of flow complexity could reliably assess valvular
stenosis in pediatric patients.
Materials and Methods
Nine pediatric patients with echocardiographically
confirmed valvular stenosis were included in the study. VFI and Doppler
measurements were compared with transvalvular peak-to-peak pressure differences
derived from invasive endovascular catheterization.
Results
Vector concentration correlated with the catheter measurements
before intervention after exclusion of one outlier (r=−0.83,
p=0.01), whereas the Doppler method did not (r=0.49,
p=0.22). The change in vector concentration after intervention
correlated strongly with the change in the measured catheter pressure difference
(r=−0.86, p=0.003), while Doppler showed a tendency for
a moderate correlation (r=0.63, p=0.07).
Conclusion
Transthoracic flow complexity quantification calculated from
VFI data is feasible and may be useful for assessing valvular stenosis severity
in pediatric patients.
Collapse
Affiliation(s)
- Tin-Quoc Nguyen
- Department of Diagnostic Radiology, Rigshospitalet Diagnostisk Center, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Thor Bechsgaard
- Department of Radiology, Odense University Hospital, Odense, Denmark
| | | | - Klaus Juul
- Department of Pediatric Cardiology, Rigshospitalet, Copenhagen, Denmark
| | | | - Lars Lönn
- Department of Diagnostic Radiology, Rigshospitalet Diagnostisk Center, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Michael Bachmann Nielsen
- Department of Diagnostic Radiology, Rigshospitalet Diagnostisk Center, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Jørgen Arendt Jensen
- Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Kristoffer Lindskov Hansen
- Department of Diagnostic Radiology, Rigshospitalet Diagnostisk Center, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Faculty of Health and Medical Sciences, Copenhagen, Denmark
| |
Collapse
|
8
|
Engelhard S, van Helvert M, Voorneveld J, Bosch JG, Lajoinie GPR, Versluis M, Groot Jebbink E, Reijnen MMPJ. US Velocimetry in Participants with Aortoiliac Occlusive Disease. Radiology 2021; 301:332-338. [PMID: 34427462 DOI: 10.1148/radiol.2021210454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background The accurate quantification of blood flow in aortoiliac arteries is challenging but clinically relevant because local flow patterns can influence atherosclerotic disease. Purpose To investigate the feasibility and clinical application of two-dimensional blood flow quantification using high-frame-rate contrast-enhanced US (HFR-CEUS) and particle image velocimetry (PIV), or US velocimetry, in participants with aortoiliac stenosis. Materials and Methods In this prospective study, participants with a recently diagnosed aortoiliac stenosis underwent HFR-CEUS measurements of the pre- and poststenotic vessel segments (August 2018 to July 2019). Two-dimensional quantification of blood flow was achieved by performing PIV analysis, which was based on pairwise cross-correlation of the HFR-CEUS images. Visual inspection of the entire data set was performed by five observers to evaluate the ability of the technique to enable adequate visualization of blood flow. The contrast-to-background ratio and average vector correlation were calculated. In two participants who showed flow disturbances, the flow complexity and vorticity were calculated. Results Thirty-five participants (median age, 67 years; age range, 56-84 years; 22 men) were included. Visual scoring showed that flow quantification was achieved in 41 of 42 locations. In 25 locations, one or multiple issues occurred that limited optimal flow quantification, including loss of correlation during systole (n = 12), shadow regions (n = 8), a short vessel segment in the image plane (n = 7), and loss of contrast during diastole (n = 5). In the remaining 16 locations, optimal quantification was achieved. The contrast-to-background ratio was higher during systole than during diastole (11.0 ± 2.9 vs 6.9 ± 3.4, respectively; P < .001), whereas the vector correlation was lower (0.58 ± 0.21 vs 0.47 ± 0.13; P < .001). The flow complexity and vorticity were high in regions with disturbed flow. Conclusion Blood flow quantification with US velocimetry is feasible in patients with an aortoiliac stenosis, but several challenges must be overcome before implementation into clinical practice. Clinical trial registration no. NTR6980 © RSNA, 2021 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Stefan Engelhard
- From the Department of Vascular Surgery, Rijnstate Hospital, Wagnerlaan 55, 6815 AD Arnhem, the Netherlands (S.E., M.v.H., E.G.J., M.M.P.J.R.); Multi-modality Medical Imaging Group (S.E., M.v.H., E.G.J., M.M.P.J.R.) and Physics of Fluids Group (S.E., M.v.H., G.P.R.L., M.V.), Technical Medical (TechMed) Centre, University of Twente, Enschede, the Netherlands; and Department of Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, the Netherlands (J.V., J.G.B.)
| | - Majorie van Helvert
- From the Department of Vascular Surgery, Rijnstate Hospital, Wagnerlaan 55, 6815 AD Arnhem, the Netherlands (S.E., M.v.H., E.G.J., M.M.P.J.R.); Multi-modality Medical Imaging Group (S.E., M.v.H., E.G.J., M.M.P.J.R.) and Physics of Fluids Group (S.E., M.v.H., G.P.R.L., M.V.), Technical Medical (TechMed) Centre, University of Twente, Enschede, the Netherlands; and Department of Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, the Netherlands (J.V., J.G.B.)
| | - Jason Voorneveld
- From the Department of Vascular Surgery, Rijnstate Hospital, Wagnerlaan 55, 6815 AD Arnhem, the Netherlands (S.E., M.v.H., E.G.J., M.M.P.J.R.); Multi-modality Medical Imaging Group (S.E., M.v.H., E.G.J., M.M.P.J.R.) and Physics of Fluids Group (S.E., M.v.H., G.P.R.L., M.V.), Technical Medical (TechMed) Centre, University of Twente, Enschede, the Netherlands; and Department of Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, the Netherlands (J.V., J.G.B.)
| | - Johan G Bosch
- From the Department of Vascular Surgery, Rijnstate Hospital, Wagnerlaan 55, 6815 AD Arnhem, the Netherlands (S.E., M.v.H., E.G.J., M.M.P.J.R.); Multi-modality Medical Imaging Group (S.E., M.v.H., E.G.J., M.M.P.J.R.) and Physics of Fluids Group (S.E., M.v.H., G.P.R.L., M.V.), Technical Medical (TechMed) Centre, University of Twente, Enschede, the Netherlands; and Department of Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, the Netherlands (J.V., J.G.B.)
| | - Guillaume P R Lajoinie
- From the Department of Vascular Surgery, Rijnstate Hospital, Wagnerlaan 55, 6815 AD Arnhem, the Netherlands (S.E., M.v.H., E.G.J., M.M.P.J.R.); Multi-modality Medical Imaging Group (S.E., M.v.H., E.G.J., M.M.P.J.R.) and Physics of Fluids Group (S.E., M.v.H., G.P.R.L., M.V.), Technical Medical (TechMed) Centre, University of Twente, Enschede, the Netherlands; and Department of Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, the Netherlands (J.V., J.G.B.)
| | - Michel Versluis
- From the Department of Vascular Surgery, Rijnstate Hospital, Wagnerlaan 55, 6815 AD Arnhem, the Netherlands (S.E., M.v.H., E.G.J., M.M.P.J.R.); Multi-modality Medical Imaging Group (S.E., M.v.H., E.G.J., M.M.P.J.R.) and Physics of Fluids Group (S.E., M.v.H., G.P.R.L., M.V.), Technical Medical (TechMed) Centre, University of Twente, Enschede, the Netherlands; and Department of Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, the Netherlands (J.V., J.G.B.)
| | - Erik Groot Jebbink
- From the Department of Vascular Surgery, Rijnstate Hospital, Wagnerlaan 55, 6815 AD Arnhem, the Netherlands (S.E., M.v.H., E.G.J., M.M.P.J.R.); Multi-modality Medical Imaging Group (S.E., M.v.H., E.G.J., M.M.P.J.R.) and Physics of Fluids Group (S.E., M.v.H., G.P.R.L., M.V.), Technical Medical (TechMed) Centre, University of Twente, Enschede, the Netherlands; and Department of Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, the Netherlands (J.V., J.G.B.)
| | - Michel M P J Reijnen
- From the Department of Vascular Surgery, Rijnstate Hospital, Wagnerlaan 55, 6815 AD Arnhem, the Netherlands (S.E., M.v.H., E.G.J., M.M.P.J.R.); Multi-modality Medical Imaging Group (S.E., M.v.H., E.G.J., M.M.P.J.R.) and Physics of Fluids Group (S.E., M.v.H., G.P.R.L., M.V.), Technical Medical (TechMed) Centre, University of Twente, Enschede, the Netherlands; and Department of Biomedical Engineering, Thorax Center, Erasmus MC, Rotterdam, the Netherlands (J.V., J.G.B.)
| |
Collapse
|
9
|
Blood Flow Quantification in Peripheral Arterial Disease: Emerging Diagnostic Techniques in Vascular Surgery. Surg Technol Int 2021. [PMID: 33970476 DOI: 10.52198/21.sti.38.cv1410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The assessment of local blood flow patterns in patients with peripheral arterial disease is clinically relevant, since these patterns are related to atherosclerotic disease progression and loss of patency in stents placed in peripheral arteries, through mechanisms such as recirculating flow and low wall shear stress (WSS). However, imaging of vascular flow in these patients is technically challenging due to the often complex flow patterns that occur near atherosclerotic lesions. While several flow quantification techniques have been developed that could improve the outcomes of vascular interventions, accurate 2D or 3D blood flow quantification is not yet used in clinical practice. This article provides an overview of several important topics that concern the quantification of blood flow in patients with peripheral arterial disease. The hemodynamic mechanisms involved in the development of atherosclerosis and the current clinical practice in the diagnosis of this disease are discussed, showing the unmet need for improved and validated flow quantification techniques in daily clinical practice. This discussion is followed by a showcase of state-of-the-art blood flow quantification techniques and how these could be used before, during and after treatment of stenotic lesions to improve clinical outcomes. These techniques include novel ultrasound-based methods, Phase-Contrast Magnetic Resonance Imaging (PC-MRI) and Computational Fluid Dynamics (CFD). The last section discusses future perspectives, with advanced (hybrid) imaging techniques and artificial intelligence, including the implementation of these techniques in clinical practice.
Collapse
|
10
|
Engelhard S, van de Velde L, Jebbink E, Jain K, Westenberg J, Zeebregts C, Versluis M, Reijnen M. Blood Flow Quantification in Peripheral Arterial Disease: Emerging Diagnostic Techniques in Vascular Surgery. Surg Technol Int 2021. [DOI: https:/doi.org/10.52198/21.sti.38.cv1410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
The assessment of local blood flow patterns in patients with peripheral arterial disease is clinically relevant, since these patterns are related to atherosclerotic disease progression and loss of patency in stents placed in peripheral arteries, through mechanisms such as recirculating flow and low wall shear stress (WSS). However, imaging of vascular flow in these patients is technically challenging due to the often complex flow patterns that occur near atherosclerotic lesions. While several flow quantification techniques have been developed that could improve the outcomes of vascular interventions, accurate 2D or 3D blood flow quantification is not yet used in clinical practice. This article provides an overview of several important topics that concern the quantification of blood flow in patients with peripheral arterial disease. The hemodynamic mechanisms involved in the development of atherosclerosis and the current clinical practice in the diagnosis of this disease are discussed, showing the unmet need for improved and validated flow quantification techniques in daily clinical practice. This discussion is followed by a showcase of state-of-the-art blood flow quantification techniques and how these could be used before, during and after treatment of stenotic lesions to improve clinical outcomes. These techniques include novel ultrasound-based methods, Phase-Contrast Magnetic Resonance Imaging (PC-MRI) and Computational Fluid Dynamics (CFD). The last section discusses future perspectives, with advanced (hybrid) imaging techniques and artificial intelligence, including the implementation of these techniques in clinical practice.
Collapse
Affiliation(s)
- Stefan Engelhard
- Department of Vascular Surgery, Rijnstate, Arnhem, The Netherlands
| | | | - Erik Jebbink
- Department of Vascular Surgery, Rijnstate, Arnhem, The Netherlands
| | - Kartik Jain
- Department of Thermal and Fluid Engineering, University of Twente, Enschede, The Netherlands
| | - Jos Westenberg
- Department of Radiology, Cardiovascular Imaging Group, Leiden University Medical Center, Leiden, The Netherlands
| | - Clark Zeebregts
- Department of Surgery (Division of Vascular Surgery), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Michel Versluis
- Physics of Fluids Group, Technical Medical (TechMed) Centre, University of Twente, Enschede, The Netherlands
| | - Michel Reijnen
- Department of Vascular Surgery, Rijnstate, Arnhem, The Netherlands
| |
Collapse
|
11
|
He B, Zhang Y, Zhang K, Chen J, Zhang J, Liang H. Optimum Speckle Tracking Based on Ultrafast Ultrasound for Improving Blood Flow Velocimetry. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:494-509. [PMID: 32746230 DOI: 10.1109/tuffc.2020.3012344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Speckle tracking using optimum comparison frames (STO) is proposed to improve the blood flow velocity profile (BFVP) estimation based on ultrafast ultrasound with coherent plane-wave compounding. The optimum comparison frames are as far as possible from the reference frame image while possessing a speckle correlation above a given threshold. The correlation thresholds for different kernel sizes are determined via an experiment based on a vascular-mimicking phantom. In in vitro experiments with different peak velocities of the flow ranging from 0.38 to 1.18 m/s, the proposed STO method with three kernel sizes ( 0.46 × 0.46 , 0.31 × 0.69 , and 0.92 × 0.92 mm2) is used for the BFVP estimations. The normalized root mean square errors (NRMSEs) between the estimated and theoretical BFVPs are calculated and compared with the results based on the speckle tracking using adjacent-frame images. For the three kernel sizes, the mean relative decrements in the STO-based NRMSEs are 46.6%, 44.7%, and 52.9%, and the standard deviations are 36.8%, 37.6%, and 35.9%, respectively. The STO method is also validated by in vivo experiments using rabbit iliac arteries with contrast agents. With parabolic curves fitting to the mean velocity estimates, the average relative increments for the STO-based R2 (coefficients of determination) are 7.22% and 6.25% for kernel sizes of 0.46 × 0.46 and 0.31 × 0.69 mm2, respectively. In conclusion, the STO method improves the BFVP measurement accuracy, whereby accurate diagnosis information can be acquired for clinical applications.
Collapse
|
12
|
Vos HJ, Voorneveld JD, Groot Jebbink E, Leow CH, Nie L, van den Bosch AE, Tang MX, Freear S, Bosch JG. Contrast-Enhanced High-Frame-Rate Ultrasound Imaging of Flow Patterns in Cardiac Chambers and Deep Vessels. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:2875-2890. [PMID: 32843233 DOI: 10.1016/j.ultrasmedbio.2020.07.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Cardiac function and vascular function are closely related to the flow of blood within. The flow velocities in these larger cavities easily reach 1 m/s, and generally complex spatiotemporal flow patterns are involved, especially in a non-physiologic state. Visualization of such flow patterns using ultrasound can be greatly enhanced by administration of contrast agents. Tracking the high-velocity complex flows is challenging with current clinical echographic tools, mostly because of limitations in signal-to-noise ratio; estimation of lateral velocities; and/or frame rate of the contrast-enhanced imaging mode. This review addresses the state of the art in 2-D high-frame-rate contrast-enhanced echography of ventricular and deep-vessel flow, from both technological and clinical perspectives. It concludes that current advanced ultrasound equipment is technologically ready for use in human contrast-enhanced studies, thus potentially leading to identification of the most clinically relevant flow parameters for quantifying cardiac and vascular function.
Collapse
Affiliation(s)
- Hendrik J Vos
- Biomedical Engineering, Department of Cardiology, Erasmus University Medical Center, Rotterdam, The Netherlands; Medical Imaging, Department of Imaging Physics, Applied Sciences, Delft University of Technology, Delft, The Netherlands.
| | - Jason D Voorneveld
- Biomedical Engineering, Department of Cardiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Erik Groot Jebbink
- M3i: Multi-modality Medical Imaging Group, Technical Medical Centre, University of Twente, Enschede, The Netherlands; Department of Vascular Surgery, Rijnstate Hospital, Arnhem, The Netherlands
| | - Chee Hau Leow
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Luzhen Nie
- School of Electronic and Electrical Engineering, University of Leeds, Leeds, United Kingdom
| | | | - Meng-Xing Tang
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Steven Freear
- School of Electronic and Electrical Engineering, University of Leeds, Leeds, United Kingdom
| | - Johan G Bosch
- Biomedical Engineering, Department of Cardiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
13
|
Nguyen TQ, Traberg MS, Olesen JB, Heerwagen ST, Brandt AH, Bechsgaard T, Pedersen BL, Moshavegh R, Lönn L, Jensen JA, Nielsen MB, Hansen KL. Flow Complexity Estimation in Dysfunctional Arteriovenous Dialysis Fistulas using Vector Flow Imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:2493-2504. [PMID: 32595057 DOI: 10.1016/j.ultrasmedbio.2020.05.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 05/25/2020] [Accepted: 05/31/2020] [Indexed: 06/11/2023]
Abstract
Non-invasive assessment is preferred for monitoring arteriovenous dialysis fistulas (AVFs). Vector concentration assesses flow complexity, which may correlate with stenosis severity. We determined whether vector concentration could assess stenosis severity in dysfunctional AVFs. Vector concentration was estimated in four stenotic phantoms at different pulse repetition frequencies. Spectral Doppler peak velocity and vector concentration were measured in 12 patients with dysfunctional AVFs. Additionally, 5 patients underwent digital subtraction angiography (DSA). In phantoms, vector concentration exhibited an inverse relationship with stenosis severity and was less affected by aliasing in severe stenoses. In nine stenoses of 5 patients undergoing DSA, vector concentration correlated strongly with stenosis severity (first stenosis: r = -0.73, p = 0.04; other stenoses; r = -0.69, p = 0.02) and mid-stenotic diameter (first stenosis: r = 0.87, p = 0.006; other stenoses: r = 0.70, p = 0.02) as opposed to peak velocities (p > 0.05). Vector concentration is less affected by aliasing in severe stenoses and correlates with DSA in patients with dysfunctional AVF.
Collapse
Affiliation(s)
- Tin-Quoc Nguyen
- Department of Diagnostic Radiology, Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| | - Marie Sand Traberg
- Center for Fast Ultrasound Imaging, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Jacob Bjerring Olesen
- Center for Fast Ultrasound Imaging, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark; BK Medical, Herlev, Denmark
| | | | | | - Thor Bechsgaard
- Department of Radiology, Odense University Hospital, Odense C, Denmark
| | | | - Ramin Moshavegh
- Center for Fast Ultrasound Imaging, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark; BK Medical, Herlev, Denmark
| | - Lars Lönn
- Department of Diagnostic Radiology, Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen Arendt Jensen
- Center for Fast Ultrasound Imaging, Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Michael Bachmann Nielsen
- Department of Diagnostic Radiology, Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Kristoffer Lindskov Hansen
- Department of Diagnostic Radiology, Rigshospitalet, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Brandt AH, Nguyen TQ, Gutte H, Frederik Carlsen J, Moshavegh R, Jensen JA, Bachmann Nielsen M, Hansen KL. Carotid Stenosis Assessment with Vector Concentration before and after Stenting. Diagnostics (Basel) 2020; 10:E420. [PMID: 32575759 PMCID: PMC7345475 DOI: 10.3390/diagnostics10060420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/08/2020] [Accepted: 06/18/2020] [Indexed: 11/16/2022] Open
Abstract
Digital subtraction angiography (DSA) is considered the reference method for the assessment of carotid artery stenosis; however, the procedure is invasive and accompanied by ionizing radiation. Velocity estimation with duplex ultrasound (DUS) is widely used for carotid artery stenosis assessment since no radiation or intravenous contrast is required; however, the method is angle-dependent. Vector concentration (VC) is a parameter for flow complexity assessment derived from the angle independent ultrasound method vector flow imaging (VFI), and VC has shown to correlate strongly with stenosis degree. The aim of this study was to compare VC estimates and DUS estimated peak-systolic (PSV) and end-diastolic velocities (EDV) for carotid artery stenosis patients, with the stenosis degree obtained with DSA. Eleven patients with symptomatic carotid artery stenosis were examined with DUS, VFI, and DSA before and after stent treatment. Compared to DSA, VC showed a strong correlation (r = -0.79, p < 0.001), while PSV (r = 0.68, p = 0.002) and EDV (r = 0.51, p = 0.048) obtained with DUS showed a moderate correlation. VFI using VC calculations may be a useful ultrasound method for carotid artery stenosis and stent patency assessment.
Collapse
Affiliation(s)
- Andreas Hjelm Brandt
- Department of Radiology, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark; (T.-Q.N.); (H.G.); (J.F.C.); (M.B.N.); (K.L.H.)
| | - Tin-Quoc Nguyen
- Department of Radiology, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark; (T.-Q.N.); (H.G.); (J.F.C.); (M.B.N.); (K.L.H.)
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Henrik Gutte
- Department of Radiology, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark; (T.-Q.N.); (H.G.); (J.F.C.); (M.B.N.); (K.L.H.)
| | - Jonathan Frederik Carlsen
- Department of Radiology, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark; (T.-Q.N.); (H.G.); (J.F.C.); (M.B.N.); (K.L.H.)
| | | | - Jørgen Arendt Jensen
- Center for Fast Ultrasound Imaging, Department of Health Technology, Technical University of Denmark, 2800 Lyngby, Denmark;
| | - Michael Bachmann Nielsen
- Department of Radiology, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark; (T.-Q.N.); (H.G.); (J.F.C.); (M.B.N.); (K.L.H.)
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kristoffer Lindskov Hansen
- Department of Radiology, Copenhagen University Hospital, Rigshospitalet, 2100 Copenhagen, Denmark; (T.-Q.N.); (H.G.); (J.F.C.); (M.B.N.); (K.L.H.)
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|