1
|
Li HM, Feng LL, Jiang Q, Yang Y, Zhang JY, Luo X, Yang X, Ren B, Ye LT, Hou ZJ, Li Y, Yu JH. A Novel Nanoscale Phase-Change Contrast Agent Evaluates the Hepatic Fibrosis Through Targeting Hepatic Stellate Cell Platelet-Derived Factor Beta Receptor by Ultrasound in Vitro. ULTRASOUND IN MEDICINE & BIOLOGY 2025; 51:508-518. [PMID: 39690041 DOI: 10.1016/j.ultrasmedbio.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/28/2024] [Accepted: 11/06/2024] [Indexed: 12/19/2024]
Abstract
OBJECTIVE As a reversible condition at its early stages, liver fibrosis can progress to cirrhosis and hepatocellular carcinoma, underscoring the importance of early detection for preventing severe outcomes and improving prognosis. To address this issue, we developed a platelet-derived growth factor receptor β (PDGFRβ)-targeted nanoscale phase-change contrast agent to target activated hepatic stellate cells (aHSC) and enable ultrasound imaging as a foundation for the early evaluation of liver fibrosis. METHODS PDGFR-β antibody-modified phase-change contrast agents (PPCAs) were synthesized utilizing film hydration and ultrasonic emulsification with perfluoropentane (PFP) encapsulated. PPCAs were specifically conjugated to aHSC with high PDGFR-β expression, whose targeting ability was evaluated using fluorescence confocal microscopy and flow cytometry. Phase transition at different temperatures and mechanical indices (MIs), as well as contrast-enhanced ultrasound imaging were analyzed. RESULTS PPCAs had an average diameter of 283.6 ± 11.3 nm with good dispersibility and relative stability, and the echo intensity increased correspondingly with increasing MIs. PPCAs exhibited both excellent biocompatibility and imaging ability when excited by high-frequency ultrasound set to an MI of 1.0 at 37°C, and simultaneously showed strong specific targeting ability to aHSC, with cellular uptake reaching 56.67 ± 5.96%. CONCLUSION As a new imaging avenue, PPCAs have the potential to enhance ultrasound imaging and establish the basis for diagnosis by targeting aHSC specifically with good biocompatibility and stability.
Collapse
Affiliation(s)
- Han-Mei Li
- Department of Ultrasound, Affiliated Hospital of North Sichuan Medical College, Innovation Centre for Science and Technology of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Lin-Li Feng
- Department of Ultrasound, Affiliated Hospital of North Sichuan Medical College, Innovation Centre for Science and Technology of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Qiong Jiang
- Department of Ultrasound, Affiliated Hospital of North Sichuan Medical College, Innovation Centre for Science and Technology of North Sichuan Medical College, Nanchong, Sichuan, China
| | - You Yang
- Department of Ultrasound, Affiliated Hospital of North Sichuan Medical College, Innovation Centre for Science and Technology of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Ju-Ying Zhang
- Department of Ultrasound, Affiliated Hospital of North Sichuan Medical College, Innovation Centre for Science and Technology of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xia Luo
- Department of Ultrasound, Affiliated Hospital of North Sichuan Medical College, Innovation Centre for Science and Technology of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xing Yang
- Department of Ultrasound, Affiliated Hospital of North Sichuan Medical College, Innovation Centre for Science and Technology of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Bo Ren
- Department of Ultrasound, Affiliated Hospital of North Sichuan Medical College, Innovation Centre for Science and Technology of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Li-Tao Ye
- Department of Ultrasound, Affiliated Hospital of North Sichuan Medical College, Innovation Centre for Science and Technology of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Zheng-Ju Hou
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Yang Li
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Jin-Hong Yu
- Department of Ultrasound, Affiliated Hospital of North Sichuan Medical College, Innovation Centre for Science and Technology of North Sichuan Medical College, Nanchong, Sichuan, China.
| |
Collapse
|
2
|
Wang Z, Jiang N, Jiang Z, Deng Q, Zhou Q, Hu B. Beyond silence: evolving ultrasound strategies in the battle against cardiovascular thrombotic challenges. J Thromb Thrombolysis 2024; 57:1040-1050. [PMID: 38689069 DOI: 10.1007/s11239-024-02989-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/18/2024] [Indexed: 05/02/2024]
Abstract
Cardiovascular thrombotic events have long been a perplexing factor in clinical settings, influencing patient prognoses significantly. Ultrasound-mediated acoustic therapy, an innovative thrombolytic treatment method known for its high efficiency, non-invasiveness, safety, and convenience, has demonstrated promising potential for clinical applications and has gradually become a focal point in cardiovascular thrombotic disease research. The current challenge lies in the technical complexities of preparing ultrasound-responsive carriers with thrombus-targeting capabilities and high thrombolytic efficiency. Additionally, optimizing the corresponding acoustic treatment mode is crucial to markedly enhance the thrombolytic effectiveness of ultrasound-mediated acoustic therapy. In light of the current status, this article provides a comprehensive review of the research progress in innovative ultrasound-mediated acoustic therapy for cardiovascular thrombotic diseases. It explores the impact of technical methods, therapeutic mechanisms, and influencing factors on the thrombolytic efficiency and clinical potential of ultrasound-mediated acoustic therapy. The review places particular emphasis on identifying solutions and key considerations in addressing the challenges associated with this cutting-edge therapeutic approach.
Collapse
Affiliation(s)
- Zhiwen Wang
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, 238# Jiefang Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Nan Jiang
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, 238# Jiefang Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Zhixin Jiang
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, 238# Jiefang Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Qing Deng
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, 238# Jiefang Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Qing Zhou
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, 238# Jiefang Road, Wuhan, 430060, Hubei, People's Republic of China.
| | - Bo Hu
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, 238# Jiefang Road, Wuhan, 430060, Hubei, People's Republic of China.
| |
Collapse
|
3
|
Wang Z, Jiang N, Jiang Z, Wang H, Guo Y, Zhong F, Gui B, Chen Y, Deng Q, Zhou Q, Hu B. Dual-mode nanoprobe strategy integrating ultrasound and near-infrared light for targeted and synergistic arterial thrombolysis. J Nanobiotechnology 2024; 22:311. [PMID: 38831332 PMCID: PMC11145811 DOI: 10.1186/s12951-024-02562-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/16/2024] [Indexed: 06/05/2024] Open
Abstract
Efficient thrombolysis in time is crucial for prognostic improvement of patients with acute arterial thromboembolic disease, while limitations and complications still exist in conventional thrombolytic treatment methods. Herein, our study sought to investigate a novel dual-mode strategy that integrated ultrasound (US) and near-infrared light (NIR) with establishment of hollow mesoporous silica nanoprobe (HMSN) which contains Arginine-glycine-aspartate (RGD) peptide (thrombus targeting), perfluoropentane (PFP) (thrombolysis with phase-change and stable cavitation) and indocyanine green (ICG) (thrombolysis with photothermal conversion). HMSN is used as the carrier, the surface is coupled with targeted RGD to achieve high targeting and permeability of thrombus, PFP and ICG are loaded to achieve the collaborative diagnosis and treatment of thrombus by US and NIR, so as to provide a new strategy for the integration of diagnosis and treatment of arterial thrombus. From the in vitro and in vivo evaluation, RGD/ICG/PFP@HMSN can aggregate and penetrate at the site of thrombus, and finally establish the dual-mode directional development and thrombolytic treatment under the synergistic effect of US and NIR, providing strong technical support for the accurate diagnosis and treatment of arterial thrombosis.
Collapse
Affiliation(s)
- Zhiwen Wang
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, 238# Jiefang Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Nan Jiang
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, 238# Jiefang Road, Wuhan, 430060, Hubei, People's Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China
| | - Zhixin Jiang
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, 238# Jiefang Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Hao Wang
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, 238# Jiefang Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Yuxin Guo
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, 238# Jiefang Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Fanglu Zhong
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, 238# Jiefang Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Bin Gui
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, 238# Jiefang Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Yueying Chen
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, 238# Jiefang Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Qing Deng
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, 238# Jiefang Road, Wuhan, 430060, Hubei, People's Republic of China
| | - Qing Zhou
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, 238# Jiefang Road, Wuhan, 430060, Hubei, People's Republic of China.
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China.
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China.
| | - Bo Hu
- Echo Lab, Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, 238# Jiefang Road, Wuhan, 430060, Hubei, People's Republic of China.
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China.
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People's Republic of China.
| |
Collapse
|
4
|
Liao M, Du J, Chen L, Huang J, Yang R, Bao W, Zeng K, Wang W, Aphan BC, Wu Z, Ma L, Lu Q. Sono-activated materials for enhancing focused ultrasound ablation: Design and application in biomedicine. Acta Biomater 2024; 173:36-50. [PMID: 37939816 DOI: 10.1016/j.actbio.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/10/2023]
Abstract
The ablation effect of focused ultrasound (FUS) has played an increasingly important role in the biomedical field over the past decades, and its non-invasive features have great advantages, especially for clinical diseases where surgical treatment is not available or appropriate. Recently, rapid advances in the adjustable morphology, enzyme-mimetic activity, and biostability of sono-activated materials have significantly promoted the medical application of FUS ablation. However, a systematic review of sono-activated materials based on FUS ablation is not yet available. This progress review focuses on the recent design, fundamental principles, and applications of sono-activated materials in the FUS ablation biomedical field. First, the different ablation mechanisms and the key factors affecting ablation are carefully determined. Then, the design of sono-activated materials with high FUS ablation efficiencies is comprehensively discussed. Subsequently, the representative biological applications are summarized in detail. Finally, the primary challenges and future perspectives are also outlined. We believe this timely review will provide key information and insights for further exploration of focused ultrasound ablation and new inspiration for designing future sono-activated materials. STATEMENT OF SIGNIFICANCE: The ablation effect of focused ultrasound (FUS) has played an increasingly important role in the biomedical field over the past decades. However, there are also some challenges of FUS ablation, such as skin burns, tumour recurrence after thermal ablation, and difficulty in controlling cavitation ablation. The rapid advance in adjustable morphology, enzyme-mimetic activity, and biostability of sono-activated materials has significantly promoted the medical application of FUS ablation. However, the systematic review of sono-activated materials based on FUS ablation is not yet available. This progress review focuses on the recent design, fundamental principles, and applications in the FUS ablation biomedical field of sono-activated materials. We believe this timely review will provide key information and insights for further exploration of FUS ablation.
Collapse
Affiliation(s)
- Min Liao
- Department of Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinpeng Du
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Lin Chen
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Jiayan Huang
- Department of Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rui Yang
- Department of Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wuyongga Bao
- Department of Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Keyu Zeng
- Department of Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenhui Wang
- Department of Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Benjamín Castañeda Aphan
- Department of Engineering, Medical Imaging Laboratory, Pontificia Universidad Católica del Perú, Lima, Peru
| | - Zhe Wu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| | - Lang Ma
- Department of Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qiang Lu
- Department of Ultrasound, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
5
|
Bautista KJB, Kim J, Xu Z, Jiang X, Dayton PA. Current Status of Sub-micron Cavitation-Enhancing Agents for Sonothrombolysis. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:1049-1057. [PMID: 36868959 DOI: 10.1016/j.ultrasmedbio.2023.01.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/11/2023] [Accepted: 01/23/2023] [Indexed: 05/11/2023]
Abstract
Thrombosis in cardiovascular disease is an urgent global issue, but treatment progress is limited by the risks of current antithrombotic approaches. The cavitation effect in ultrasound-mediated thrombolysis offers a promising mechanical alternative for clot lysis. Further addition of microbubble contrast agents introduces artificial cavitation nuclei that can enhance the mechanical disruption induced by ultrasound. Recent studies have proposed sub-micron particles as novel sonothrombolysis agents with increased spatial specificity, safety and stability for thrombus disruption. In this article, the applications of different sub-micron particles for sonothrombolysis are discussed. Also reviewed are in vitro and in vivo studies that apply these particles as cavitation agents and as adjuvants to thrombolytic drugs. Finally, perspectives on future developments in sub-micron agents for cavitation-enhanced sonothrombolysis are shared.
Collapse
Affiliation(s)
- Kathlyne Jayne B Bautista
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| | - Jinwook Kim
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Xiaoning Jiang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA
| | - Paul A Dayton
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA.
| |
Collapse
|
6
|
Cheng X, Xie Q, Sun Y. Advances in nanomaterial-based targeted drug delivery systems. Front Bioeng Biotechnol 2023; 11:1177151. [PMID: 37122851 PMCID: PMC10133513 DOI: 10.3389/fbioe.2023.1177151] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/31/2023] [Indexed: 05/02/2023] Open
Abstract
Nanomaterial-based drug delivery systems (NBDDS) are widely used to improve the safety and therapeutic efficacy of encapsulated drugs due to their unique physicochemical and biological properties. By combining therapeutic drugs with nanoparticles using rational targeting pathways, nano-targeted delivery systems were created to overcome the main drawbacks of conventional drug treatment, including insufficient stability and solubility, lack of transmembrane transport, short circulation time, and undesirable toxic effects. Herein, we reviewed the recent developments in different targeting design strategies and therapeutic approaches employing various nanomaterial-based systems. We also discussed the challenges and perspectives of smart systems in precisely targeting different intravascular and extravascular diseases.
Collapse
|
7
|
Pan Y, Li Y, Li Y, Zheng X, Zou C, Li J, Chen H. Nanodroplet-Coated Microbubbles Used in Sonothrombolysis with Two-Step Cavitation Strategy. Adv Healthc Mater 2023; 12:e2202281. [PMID: 36433664 DOI: 10.1002/adhm.202202281] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/23/2022] [Indexed: 11/27/2022]
Abstract
Thrombosis is a major cause of morbidity and mortality and sonothrombolysis is a promising method for its treatment. However, the slow diffusion of the thrombolytic agents into the thrombus results in slow recanalization. Here, nanodroplet-coated microbubbles (NCMBs) are designed and fabricated and a two-step cavitation strategy is used to accelerate the thrombolysis. The first cavitation of the NCMBs, cavitation and collapse of the microbubbles induced by low frequency ultrasound, drives the nanodroplets on the shell into the thrombus, while the second cavitation, the phase-change and volume expansion of drug-loaded nanodroplets triggered by high frequency ultrasound, loosens the thrombus by the sono-porosity effect. This two-step cavitation of the NCMBs is verified using a fibrin agarose model, where a rapid diffusion of the thrombolytic agents is observed. Furthermore, the NCMBs reach much higher thrombolysis efficiency in both in vitro and proof-of-concept experiments performed with living mice. The nanodroplet-coated microbubbles are a promising diffusion medicines carrier for efficient drug delivery.
Collapse
Affiliation(s)
- Yunfan Pan
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yongjian Li
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yan Li
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xiaobing Zheng
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Chenghong Zou
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jiang Li
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Haosheng Chen
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
8
|
Fang N, Liu J, Hou J, Zhong Y, Luo Y, Hu L, Zhang W, Wang J, Xu J, Zhou J, Zhang Y, Ran H, Guo D. Magnet-Guided Bionic System with LIFU Responsiveness and Natural Thrombus Tropism for Enhanced Thrombus-Targeting Ability. Int J Nanomedicine 2022; 17:2019-2039. [PMID: 35558339 PMCID: PMC9087377 DOI: 10.2147/ijn.s357050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/21/2022] [Indexed: 11/23/2022] Open
Abstract
Background Arterial thrombosis is a serious threat to human health. Recently, many thrombus-targeted nanoparticles (NPs) have been constructed for detecting thrombi or monitoring thrombolysis, but their thrombus-targeting performance is limited. Considering this drawback, we designed a specific bionic system with enhanced thrombus-targeting ability. Materials and Methods In the bionic system, gelatin was chosen as a carrier, and Fe3O4 served as a magnetic navigation medium and a magnetic resonance (MR) imaging agent. The CREKA peptide, which targets fibrin, was conjugated to the surface of gelatin to prepare targeted NPs (TNPs), which were then engulfed by macrophages to construct the bionic system. At the targeted site, the bionic system released its interior TNPs under low-intensity focused ultrasound (LIFU) irradiation. Moreover, the targeting performance was further improved by the conjugated CREKA peptide. Results In this study, we successfully constructed a bionic system and demonstrated its targeting ability in vitro and in vivo. The results indicated that most TNPs were released from macrophages under LIFU irradiation at 2 W/cm2 for 10 min in vitro. Additionally, the enhanced thrombus-targeting ability, based on the natural tropism of macrophages toward inflammatory thrombi, magnetic navigation and the CREKA peptide, was verified ex vivo and in vivo. Moreover, compared with the bionic system group, the group treated with TNPs had significantly decreased liver and spleen signals in MR images and significantly enhanced liver and spleen signals in fluorescence images, indicating that the bionic system is less likely to be cleared by the reticuloendothelial system (RES) than TNPs, which may promote the accumulation of the bionic system at the site of the thrombus. Conclusion These results suggest that the magnet-guided bionic system with LIFU responsiveness is an excellent candidate for targeting thrombi and holds promise as an innovative drug delivery system for thrombolytic therapy.
Collapse
Affiliation(s)
- Ni Fang
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Jia Liu
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Jingxin Hou
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Yixin Zhong
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Ying Luo
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Liu Hu
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Wenli Zhang
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Junrui Wang
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Jie Xu
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Jun Zhou
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Yu Zhang
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Haitao Ran
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
| | - Dajing Guo
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, People’s Republic of China
- Correspondence: Dajing Guo, Email
| |
Collapse
|
9
|
Nanomaterials as Ultrasound Theragnostic Tools for Heart Disease Treatment/Diagnosis. Int J Mol Sci 2022; 23:ijms23031683. [PMID: 35163604 PMCID: PMC8835969 DOI: 10.3390/ijms23031683] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 01/27/2023] Open
Abstract
A variety of different nanomaterials (NMs) such as microbubbles (MBs), nanobubbles (NBs), nanodroplets (NDs), and silica hollow meso-structures have been tested as ultrasound contrast agents for the detection of heart diseases. The inner part of these NMs is made gaseous to yield an ultrasound contrast, which arises from the difference in acoustic impedance between the interior and exterior of such a structure. Furthermore, to specifically achieve a contrast in the diseased heart region (DHR), NMs can be designed to target this region in essentially three different ways (i.e., passively when NMs are small enough to diffuse through the holes of the vessels supplying the DHR, actively by being associated with a ligand that recognizes a receptor of the DHR, or magnetically by applying a magnetic field orientated in the direction of the DHR on a NM responding to such stimulus). The localization and resolution of ultrasound imaging can be further improved by applying ultrasounds in the DHR, by increasing the ultrasound frequency, or by using harmonic, sub-harmonic, or super-resolution imaging. Local imaging can be achieved with other non-gaseous NMs of metallic composition (i.e., essentially made of Au) by using photoacoustic imaging, thus widening the range of NMs usable for cardiac applications. These contrast agents may also have a therapeutic efficacy by carrying/activating/releasing a heart disease drug, by triggering ultrasound targeted microbubble destruction or enhanced cavitation in the DHR, for example, resulting in thrombolysis or helping to prevent heart transplant rejection.
Collapse
|