1
|
McCune EP, Lee SA, Konofagou EE. Interdependence of Tissue Temperature, Cavitation, and Displacement Imaging During Focused Ultrasound Nerve Sonication. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:600-612. [PMID: 37256815 PMCID: PMC10332467 DOI: 10.1109/tuffc.2023.3280455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Focused ultrasound (FUS) peripheral neuromodulation has been linked to nerve displacement caused by the acoustic radiation force; however, the roles of cavitation and temperature accumulation on nerve modulation are less clear, as are the relationships between these three mechanisms of action. Temperature directly changes tissue stiffness and viscosity. Viscoelastic properties have been shown to affect cavitation thresholds in both theoretical and ex vivo models, but the direct effect of temperature on cavitation has not been investigated in vivo. Here, cavitation and tissue displacement were simultaneously mapped in response to baseline tissue temperatures of either 30 °C or 38 °C during sciatic nerve sonication in mice. In each mouse, the sciatic nerve was repeatedly sonicated at 1.1-MHz, 4-MPa peak-negative pressure, 5-ms pulse duration, and either 15- or 30-Hz pulse repetition frequency (PRF) for 10 s at each tissue temperature. Cavitation increased by 1.8-4.5 dB at a tissue temperature of 38 °C compared to 30 °C, as measured both by passive cavitation images and cavitation doses. Tissue displacement also increased by 1.3- [Formula: see text] at baseline temperatures of 38 °C compared to 30 °C. Histological findings indicated small increases in red blood cell extravasation in the 38 °C baseline temperature condition compared to 30 °C at both PRFs. A strong positive correlation was found between the inertial cavitation dose and displacement imaging noise, indicating the potential ability of displacement imaging to simultaneously detect inertial cavitation in vivo. Overall, tissue temperature was found to modulate both in vivo cavitation and tissue displacement, and thus, both tissue temperature and cavitation can be monitored during FUS to ensure both safety and efficiency.
Collapse
|
2
|
Bao SC, Li F, Xiao Y, Niu L, Zheng H. Peripheral focused ultrasound stimulation and its applications: From therapeutics to human-computer interaction. Front Neurosci 2023; 17:1115946. [PMID: 37123351 PMCID: PMC10140332 DOI: 10.3389/fnins.2023.1115946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
Peripheral focused ultrasound stimulation (pFUS) has gained increasing attention in the past few decades, because it can be delivered to peripheral nerves, neural endings, or sub-organs. With different stimulation parameters, ultrasound stimulation could induce different modulation effects. Depending on the transmission medium, pFUS can be classified as body-coupled US stimulation, commonly used for therapeutics or neuromodulation, or as an air-coupled contactless US haptic system, which provides sensory inputs and allows distinct human-computer interaction paradigms. Despite growing interest in pFUS, the underlying working mechanisms remain only partially understood, and many applications are still in their infancy. This review focused on existing applications, working mechanisms, the latest progress, and future directions of pFUS. In terms of therapeutics, large-sample randomized clinical trials in humans are needed to translate these state of art techniques into treatments for specific diseases. The airborne US for human-computer interaction is still in its preliminary stage, but further efforts in task-oriented US applications might provide a promising interaction tool soon.
Collapse
Affiliation(s)
- Shi-Chun Bao
- National Innovation Center for Advanced Medical Devices, Shenzhen, China
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Fei Li
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yang Xiao
- National Innovation Center for Advanced Medical Devices, Shenzhen, China
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Lili Niu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- *Correspondence: Hairong Zheng,
| |
Collapse
|
3
|
Kim YH, Kang KC, Kim JN, Pai CN, Zhang Y, Ghanouni P, Park KK, Firouzi K, Khuri-Yakub BT. Patterned Interference Radiation Force for Transcranial Neuromodulation. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:497-511. [PMID: 34955292 DOI: 10.1016/j.ultrasmedbio.2021.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 11/06/2021] [Accepted: 11/10/2021] [Indexed: 06/14/2023]
Abstract
Compared with the conventional method of transcranial focused ultrasound stimulation using a single transducer or a focused beam, the compression and tensile forces are generated from the high-pressure gradient of a standing wave that can generate increased stimulation. We experimentally verified a neuromodulation system using patterned interference radiation force (PIRF) and propose a method for obtaining the magnitude of the radiation force, which is considered the main factor influencing ultrasound neuromodulation. The radiation forces generated using a single focused transducer and a standing wave created via two focused transducers were compared using simulations. Radiation force was calculated based on the relationship between the acoustic pressure, radiation force and time-averaged second-order pressure obtained using an acoustic streaming simulation. The presence of the radiation force was verified by measuring the time-averaged second-order pressure generated due to the radiation force, by using a glass tube.
Collapse
Affiliation(s)
- Young Hun Kim
- E. L. Ginzton Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California, USA; Mechanical Convergence Engineering, Hanyang University, Seoul, Republic of Korea
| | - Ki Chang Kang
- E. L. Ginzton Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California, USA; Mechanical Convergence Engineering, Hanyang University, Seoul, Republic of Korea
| | - Jeong Nyeon Kim
- E. L. Ginzton Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Chi Nan Pai
- E. L. Ginzton Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California, USA; Department of Mechatronics Engineering, Polytechnic School of the University of Sao Paulo, Sao Paulo, Brazil
| | - Yichi Zhang
- E. L. Ginzton Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Pejman Ghanouni
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Kwan Kyu Park
- E. L. Ginzton Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California, USA; Mechanical Convergence Engineering, Hanyang University, Seoul, Republic of Korea.
| | - Kamyar Firouzi
- E. L. Ginzton Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Burtus T Khuri-Yakub
- E. L. Ginzton Laboratory, Department of Electrical Engineering, Stanford University, Stanford, California, USA
| |
Collapse
|