1
|
Phoon CK, Aristizábal O, Farhoud M, Turnbull DH, Wadghiri YZ. Mouse Cardiovascular Imaging. Curr Protoc 2024; 4:e1116. [PMID: 39222027 PMCID: PMC11371386 DOI: 10.1002/cpz1.1116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The mouse is the mammalian model of choice for investigating cardiovascular biology, given our ability to manipulate it by genetic, pharmacologic, mechanical, and environmental means. Imaging is an important approach to phenotyping both function and structure of cardiac and vascular components. This review details commonly used imaging approaches, with a focus on echocardiography and magnetic resonance imaging, with brief overviews of other imaging modalities. In this update, we also emphasize the importance of rigor and reproducibility in imaging approaches, experimental design, and documentation. Finally, we briefly outline emerging imaging approaches but caution that reliability and validity data may be lacking. © 2024 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Colin K.L. Phoon
- Division of Pediatric Cardiology, Department of Pediatrics, New York University Grossman School of Medicine, New York, NY
| | - Orlando Aristizábal
- Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, & Center for Advanced Imaging Innovation and Research, New York University Grossman School of Medicine, New York, NY
- Preclinical Imaging, Division for Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY
| | | | - Daniel H. Turnbull
- Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, & Center for Advanced Imaging Innovation and Research, New York University Grossman School of Medicine, New York, NY
- Department of Pathology, New York University Grossman School of Medicine, New York, New York
| | - Youssef Z. Wadghiri
- Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, & Center for Advanced Imaging Innovation and Research, New York University Grossman School of Medicine, New York, NY
- Preclinical Imaging, Division for Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY
| |
Collapse
|
2
|
Huff RD, Houghton F, Earl CC, Ghajar-Rahimi E, Dogra I, Yu D, Harris-Adamson C, Goergen CJ, O'Connell GD. Deep learning enables accurate soft tissue tendon deformation estimation in vivo via ultrasound imaging. Sci Rep 2024; 14:18401. [PMID: 39117664 PMCID: PMC11310354 DOI: 10.1038/s41598-024-68875-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
Image-based deformation estimation is an important tool used in a variety of engineering problems, including crack propagation, fracture, and fatigue failure. These tools have been important in biomechanics research where measuring in vitro and in vivo tissue deformations are important for evaluating tissue health and disease progression. However, accurately measuring tissue deformation in vivo is particularly challenging due to limited image signal-to-noise ratio. Therefore, we created a novel deep-learning approach for measuring deformation from a sequence of images collected in vivo called StrainNet. Utilizing a training dataset that incorporates image artifacts, StrainNet was designed to maximize performance in challenging, in vivo settings. Artificially generated image sequences of human flexor tendons undergoing known deformations were used to compare benchmark StrainNet against two conventional image-based strain measurement techniques. StrainNet outperformed the traditional techniques by nearly 90%. High-frequency ultrasound imaging was then used to acquire images of the flexor tendons engaged during contraction. Only StrainNet was able to track tissue deformations under the in vivo test conditions. Findings revealed strong correlations between tendon deformation and applied forces, highlighting the potential for StrainNet to be a valuable tool for assessing rehabilitation strategies or disease progression. Additionally, by using real-world data to train our model, StrainNet was able to generalize and reveal important relationships between the effort exerted by the participant and tendon mechanics. Overall, StrainNet demonstrated the effectiveness of using deep learning for image-based strain analysis in vivo.
Collapse
Affiliation(s)
- Reece D Huff
- Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Frederick Houghton
- Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Conner C Earl
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Elnaz Ghajar-Rahimi
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Ishan Dogra
- Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Denny Yu
- School of Industrial Engineering, Purdue University, West Lafayette, IN, 47906, USA
| | - Carisa Harris-Adamson
- School of Public Health, University of California, Berkeley, Berkeley, CA, 94704, USA
- Department of Occupational and Environmental Medicine, University of California, San Francisco, San Francisco, CA, 94117, USA
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Grace D O'Connell
- Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA.
- Department of Orthopaedic Surgery, University of California, San Francisco, San Francisco, CA, 94142, USA.
| |
Collapse
|
3
|
Kakaletsis S, Malinowski M, Snider JC, Mathur M, Sugerman GP, Luci JJ, Kostelnik CJ, Jazwiec T, Bersi MR, Timek TA, Rausch MK. Untangling the mechanisms of pulmonary arterial hypertension-induced right ventricular stiffening in a large animal model. Acta Biomater 2023; 171:155-165. [PMID: 37797706 PMCID: PMC11048731 DOI: 10.1016/j.actbio.2023.09.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023]
Abstract
Pulmonary hypertension (PHT) is a devastating disease with low survival rates. In PHT, chronic pressure overload leads to right ventricle (RV) stiffening; thus, impeding diastolic filling. Multiple mechanisms may contribute to RV stiffening, including wall thickening, microstructural disorganization, and myocardial stiffening. The relative importance of each mechanism is unclear. Our objective is to use a large animal model to untangle these mechanisms. Thus, we induced pulmonary arterial hypertension (PAH) in sheep via pulmonary artery banding. After eight weeks, the hearts underwent anatomic and diffusion tensor MRI to characterize wall thickening and microstructural disorganization. Additionally, myocardial samples underwent histological and gene expression analyses to quantify compositional changes and mechanical testing to quantify myocardial stiffening. Finally, we used finite element modeling to disentangle the relative importance of each stiffening mechanism. We found that the RVs of PAH animals thickened most at the base and the free wall and that PAH induced excessive collagen synthesis, increased cardiomyocyte cross-sectional area, and led to microstructural disorganization, consistent with increased expression of fibrotic genes. We also found that the myocardium itself stiffened significantly. Importantly, myocardial stiffening correlated significantly with collagen synthesis. Finally, our computational models predicted that myocardial stiffness contributes to RV stiffening significantly more than other mechanisms. Thus, myocardial stiffening may be the most important predictor for PAH progression. Given the correlation between myocardial stiffness and collagen synthesis, collagen-sensitive imaging modalities may be useful for estimating myocardial stiffness and predicting PAH outcomes. STATEMENT OF SIGNIFICANCE: Ventricular stiffening is a significant contributor to pulmonary hypertension-induced right heart failure. However, the mechanisms that lead to ventricular stiffening are not fully understood. The novelty of our work lies in answering this question through the use of a large animal model in combination with spatially- and directionally sensitive experimental techniques. We find that myocardial stiffness is the primary mechanism that leads to ventricular stiffening. Clinically, this knowledge may be used to improve diagnostic, prognostic, and therapeutic strategies for patients with pulmonary hypertension.
Collapse
Affiliation(s)
- Sotirios Kakaletsis
- Department of Aerospace Engineering & Engineering Mechanics, The University of Texas at Austin, Austin, TX, USA
| | - Marcin Malinowski
- Division of Cardiothoracic Surgery, Spectrum Health, Grand Rapids, MI, USA; Department of Cardiac Surgery, Medical University of Silesia, Katowice, Poland
| | - J Caleb Snider
- Department of Mechanical Engineering & Materials Science, Washington University at St. Louis, St. Louis, MO, USA
| | - Mrudang Mathur
- Department of Mechanical Engineering, The University of Texas at Austin, TX, USA
| | - Gabriella P Sugerman
- Department of Biomedical Engineering, The University of Texas at Austin, TX, USA
| | - Jeffrey J Luci
- Center for Advanced Human Brain Imaging Research, Rutgers University, Piscataway, NJ, USA; Scully Neuroimaging Center, Princeton University, Princeton, NJ, USA
| | - Colton J Kostelnik
- Department of Mechanical Engineering, The University of Texas at Austin, TX, USA; Department of Biomedical Engineering, The University of Texas at Austin, TX, USA
| | - Tomasz Jazwiec
- Division of Cardiothoracic Surgery, Spectrum Health, Grand Rapids, MI, USA; Department of Cardiac, Vascular and Endovascular Surgery and Transplantology, Medical University of Silesia in Katowice, Silesian Centre for Heart Diseases, Zabrze, Poland
| | - Matthew R Bersi
- Department of Mechanical Engineering & Materials Science, Washington University at St. Louis, St. Louis, MO, USA
| | - Tomasz A Timek
- Division of Cardiothoracic Surgery, Spectrum Health, Grand Rapids, MI, USA
| | - Manuel K Rausch
- Department of Aerospace Engineering & Engineering Mechanics, The University of Texas at Austin, Austin, TX, USA; Department of Mechanical Engineering, The University of Texas at Austin, TX, USA; Department of Biomedical Engineering, The University of Texas at Austin, TX, USA.
| |
Collapse
|
4
|
O'Riordan CE, Trochet P, Steiner M, Fuchs D. Standardisation and future of preclinical echocardiography. Mamm Genome 2023; 34:123-155. [PMID: 37160810 DOI: 10.1007/s00335-023-09981-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 01/31/2023] [Indexed: 05/11/2023]
Abstract
Echocardiography is a non-invasive imaging technique providing real-time information to assess the structure and function of the heart. Due to advancements in technology, ultra-high-frequency transducers have enabled the translation of ultrasound from humans to small animals due to resolutions down to 30 µm. Most studies are performed using mice and rats, with ages ranging from embryonic, to neonatal, and adult. In addition, alternative models such as zebrafish and chicken embryos are becoming more frequently used. With the achieved high temporal and spatial resolution in real-time, cardiac function can now be monitored throughout the lifespan of these small animals to investigate the origin and treatment of a range of acute and chronic pathological conditions. With the increased relevance of in vivo real-time imaging, there is still an unmet need for the standardisation of small animal echocardiography and the appropriate cardiac measurements that should be reported in preclinical cardiac models. This review focuses on the development of standardisation in preclinical echocardiography and reports appropriate cardiac measurements throughout the lifespan of rodents: embryonic, neonatal, ageing, and acute and chronic pathologies. Lastly, we will discuss the future of cardiac preclinical ultrasound.
Collapse
Affiliation(s)
| | | | | | - Dieter Fuchs
- FUJIFILM VisualSonics, Inc, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Kakaletsis S, Malinowski M, Mathur M, Sugerman GP, Lucy JJ, Snider C, Jazwiec T, Bersi M, Timek TA, Rausch MK. Untangling the mechanisms of pulmonary hypertension-induced right ventricular stiffening in a large animal model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535491. [PMID: 37066294 PMCID: PMC10104078 DOI: 10.1101/2023.04.03.535491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Background Pulmonary arterial hypertension (PHT) is a devastating disease with low survival rates. In PHT, chronic pressure overload leads to right ventricle (RV) remodeling and stiffening; thus, impeding diastolic filling and ventricular function. Multiple mechanisms contribute to RV stiffening, including wall thickening, microstructural disorganization, and myocardial stiffening. The relative importance of each mechanism is unclear. Our objective is to use a large animal model as well as imaging, experimental, and computational approaches to untangle these mechanisms. Methods We induced PHT in eight sheep via pulmonary artery banding. After eight weeks, the hearts underwent anatomic and diffusion tensor MRI to characterize wall thickening and microstructural disorganization. Additionally, myocardial samples underwent histological and gene expression analyses to quantify compositional changes and mechanical testing to quantify myocardial stiffening. All findings were compared to 12 control animals. Finally, we used computational modeling to disentangle the relative importance of each stiffening mechanism. Results First, we found that the RVs of PHT animals thickened most at the base and the free wall. Additionally, we found that PHT induced excessive collagen synthesis and microstructural disorganization, consistent with increased expression of fibrotic genes. We also found that the myocardium itself stiffened significantly. Importantly, myocardial stiffening correlated significantly with excess collagen synthesis. Finally, our model of normalized RV pressure-volume relationships predicted that myocardial stiffness contributes to RV stiffening significantly more than other mechanisms. Conclusions In summary, we found that PHT induces wall thickening, microstructural disorganization, and myocardial stiffening. These remodeling mechanisms were both spatially and directionally dependent. Using modeling, we show that myocardial stiffness is the primary contributor to RV stiffening. Thus, myocardial stiffening may be an important predictor for PHT progression. Given the significant correlation between myocardial stiffness and collagen synthesis, collagen-sensitive imaging modalities may be useful for non-invasively estimating myocardial stiffness and predicting PHT outcomes.
Collapse
Affiliation(s)
- Sotirios Kakaletsis
- Department of Aerospace Engineering & Engineering Mechanics, The University of Texas at Austin, Austin, TX
| | - Marcin Malinowski
- Division of Cardiothoracic Surgery, Spectrum Health, Grand Rapids, MI
- Department of Cardiac Surgery, Medical University of Silesia, Katowice, Poland
| | - Mrudang Mathur
- Department of Mechanical Engineering, The University of Texas at Austin, TX
| | | | - Jeff J. Lucy
- Center for Advanced Brain Imaging Research, Rutgers University, New Brunswick, NJ
| | - Caleb Snider
- Department of Mechanical Engineering & Materials Science, Washington University at St. Louis, St. Louis, MO
| | - Tomasz Jazwiec
- Division of Cardiothoracic Surgery, Spectrum Health, Grand Rapids, MI
- Department of Cardiac, Vascular and Endovascular Surgery and Transplantology, Medical University of Silesia in Katowice, Silesian Centre for Heart Diseases, Zabrze, Poland
| | - Matthew Bersi
- Department of Mechanical Engineering & Materials Science, Washington University at St. Louis, St. Louis, MO
| | - Tomasz A. Timek
- Division of Cardiothoracic Surgery, Spectrum Health, Grand Rapids, MI
| | - Manuel K. Rausch
- Department of Aerospace Engineering & Engineering Mechanics, The University of Texas at Austin, Austin, TX
- Department of Biomedical Engineering, The University of Texas at Austin, TX
| |
Collapse
|
6
|
Zhou YQ, Bonafiglia QA, Zhang H, Heximer SP, Bendeck MP. Comprehensive ultrasound imaging of right ventricular remodeling under surgically induced pressure overload in mice. Am J Physiol Heart Circ Physiol 2023; 324:H391-H410. [PMID: 36607797 DOI: 10.1152/ajpheart.00590.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This study reports a new methodology for right heart imaging by ultrasound in mice under right ventricular (RV) pressure overload. Pulmonary artery constriction (PAC) or sham surgeries were performed on C57BL/6 male mice at 8 wk of age. Ultrasound imaging was conducted at 2, 4, and 8 wk postsurgery using both classical and advanced ultrasound imaging modalities including electrocardiogram (ECG)-based kilohertz visualization, anatomical M-mode, and strain imaging. Based on pulsed Doppler, the PAC group demonstrated dramatically enhanced pressure gradient in the main pulmonary artery (MPA) as compared with the sham group. By the application of advanced imaging modalities in novel short-axis views of the ventricles, the PAC group demonstrated increased thickness of RV free wall, enlarged RV chamber, and reduced RV fractional shortening compared with the sham group. The PAC group also showed prolonged RV contraction, asynchronous interplay between RV and left ventricle (LV), and passive leftward motion of the interventricular septum (IVS) at early diastole. Consequently, the PAC group exhibited prolongation of LV isovolumic relaxation time, without change in LV wall thickness or systolic function. Significant correlations were found between the maximal pressure gradient in MPA measured by Doppler and the RV systolic pressure by catheterization, as well as the morphological and functional parameters of RV by ultrasound.NEW & NOTEWORTHY The established protocol overcomes the challenges in right heart imaging in mice, thoroughly elucidating the changes of RV, the dynamics of IVS, and the impact on LV and provides new insights into the pathophysiological mechanism of RV remodeling.
Collapse
Affiliation(s)
- Yu-Qing Zhou
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada.,Institute of Biomedical Engineering, Faculty of Applied Science and Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Quinn A Bonafiglia
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Hangjun Zhang
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Scott P Heximer
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Michelle P Bendeck
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Xu R, Ding Z, Li H, Shi J, Cheng L, Xu H, Wu J, Zou Y. Identification of early cardiac dysfunction and heterogeneity after pressure and volume overload in mice by high-frequency echocardiographic strain imaging. Front Cardiovasc Med 2023; 9:1071249. [PMID: 36712248 PMCID: PMC9880208 DOI: 10.3389/fcvm.2022.1071249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/30/2022] [Indexed: 01/15/2023] Open
Abstract
Object Aortic stenosis and regurgitation are clinically important conditions characterized with different hypertrophic types induced by pressure or volume overload, respectively, but with comparable cardiac function in compensated stage. Speckle-tracking based strain imaging has been applied to assess subtle alterations in cardiac abnormality, but its application in differentiating these two types of ventricular hypertrophy is still sparse. Here, we performed strain imaging analysis of cardiac remodeling in these two loading conditions. Methods C57BL/6J mice were subjected to transverse aortic constriction (TAC)-induced pressure overload or aortic regurgitation (AR)-induced volume overload. Conventional echocardiography and strain imaging were comprehensively assessed to detect stimulus-specific alterations in TAC and AR hearts. Results Conventional echocardiography did not detect significant changes in left ventricular systolic (ejection fraction and fractional shortening) and diastolic (E/E') function in either TAC or AR mice. On the contrary, global strain analysis revealed global longitudinal strain and strain rate were remarkably impaired in TAC while preserved in AR mice, although global radial, and circumferential strain and strain rate were significantly reduced in both models. Regional strain analysis in the long axis demonstrated that longitudinal strain and strain rate in all or most segments were decreased in TAC but maintained or slightly dented in AR mice, while radial strain and strain rate indicated overt decline in both models. Moreover, decreased radial and circumferential strain and strain rate were observed in most segments of TAC and AR mice in the short axis. Conclusion Strain imaging is superior to conventional echocardiography to detect subtle changes in myocardial deformation, with longitudinal strain and strain rate indicating distinct functional changes in pressure versus volume overload myocardial hypertrophy, making it potentially an advanced approach for early detection and differential diagnosis of cardiac dysfunction.
Collapse
Affiliation(s)
- Ran Xu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Zhiwen Ding
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Hao Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Shi
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China,Department of Echocardiography, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Leilei Cheng
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China,Department of Echocardiography, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Huixiong Xu
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Wu
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China,*Correspondence: Jian Wu,
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China,Yunzeng Zou,
| |
Collapse
|