1
|
Zhang Q, Zhu Y, Zhang G, Xue H, Ding B, Tu J, Zhang D, Guo X. 2D spatiotemporal passive cavitation imaging and evaluation during ultrasound thrombolysis based on diagnostic ultrasound platform. ULTRASONICS SONOCHEMISTRY 2024; 110:107051. [PMID: 39232288 PMCID: PMC11404082 DOI: 10.1016/j.ultsonch.2024.107051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024]
Abstract
Acoustic cavitation plays a critical role in various biomedical applications. However, uncontrolled cavitation can lead to undesired damage to healthy tissues. Therefore, real-time monitoring and quantitative evaluation of cavitation dynamics is essential for understanding underlying mechanisms and optimizing ultrasound treatment efficiency and safety. The current research addressed the limitations of traditionally used cavitation detection methods by developing introduced an adaptive time-division multiplexing passive cavitation imaging (PCI) system integrated into a commercial diagnostic ultrasound platform. This new method combined real-time cavitation monitoring with B-mode imaging, allowing for simultaneous visualization of treatment progress and 2D quantitative evaluation of cavitation dosage within targeted area. An improved delay-and-sum (DAS) algorithm, optimized with a minimum variance (MV) beamformer, is utilized to minimize the side lobe effect and improve the axial resolution typically associated with PCI. In additional to visualize and quantitatively assess the cavitation activities generated under varied acoustic pressures and microbubble concentrations, this system was specifically applied to perform 2D cavitation evaluation for ultrasound thrombolysis mediated by different solutions, e.g., saline, nanodiamond (ND) and nitrogen-annealed nanodiamond (N-AND). This research aims to bridge the gap between laboratory-based research systems and real-time spatiotemporal cavitation evaluation demands in practical uses. Results indicate that this improved 2D cavitation monitoring and evaluation system could offer a useful tool for comprehensive evaluating cavitation-mediated effects (e.g., ultrasound thrombolysis), providing valuable insights into in-depth understanding of cavitation mechanisms and optimization of cavitation applications.
Collapse
Affiliation(s)
- Qi Zhang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Yifei Zhu
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Guofeng Zhang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| | - Honghui Xue
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China; Wuxi Vocational Institute of Commerce, Wuxi 214153, Jiangsu, China
| | - Bo Ding
- Zhuhai Ecare Electronics Science & Technology Co., Ltd., Zhuhai 519041, China
| | - Juan Tu
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China.
| | - Dong Zhang
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China.
| | - Xiasheng Guo
- Key Laboratory of Modern Acoustics (MOE), Department of Physics, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093, China
| |
Collapse
|
2
|
Xin Y, Zhang A, Xu LX, Fowlkes JB. Numerical Study of Bubble Cloud and Thermal Lesion Evolution During Acoustic Droplet Vaporization Enhanced HIFU Treatment. J Biomech Eng 2022; 144:1119457. [PMID: 34505142 DOI: 10.1115/1.4052374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Indexed: 11/08/2022]
Abstract
Acoustic droplet vaporization (ADV) has been proven to enhance high intensity focused ultrasound (HIFU) thermal ablation of tumor. It has also been demonstrated that triggering droplets before HIFU exposure could be a potential way to control both the size and the shape of the thermal lesion. In this paper, a numerical model is proposed to predict the thermal lesion created in ADV enhanced HIFU treatment. Bubble oscillation was coupled into a viscoelastic medium in the model to more closely represent real applications in tissues. Several physical processes caused by continuous wave ultrasound and elevated temperature during the HIFU exposure were considered, including rectified diffusion, gas solubility variation with temperature in the medium, and boiling. Four droplet concentrations spanning two orders of magnitude were calculated. The bubble cloud formed from triggering of the droplets by the pulse wave ultrasound, along with the evolution of the shape and location of the bubble cloud and thermal lesion during the following continuous wave exposure was obtained. The increase of bubble void fraction caused by continuous wave exposure was found to be consistent with the experimental observation. With the increase of droplet concentration, the predicted bubble cloud shapes vary from tadpole to triangular and double triangular, while the thermal lesions move toward the transducer. The results show that the assumptions used in this model increased the accuracy of the results. This model may be used for parametrical study of ADV enhanced HIFU treatment and be further used for treatment planning and optimization in the future.
Collapse
Affiliation(s)
- Ying Xin
- School of Biomedical Engineering, Shanghai Jiao Tong University, 400 Med-X Research Institute, 1954 Huashan Road, Shanghai 200030, China
| | - Aili Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 400 Med-X Research Institute, 1954 Huashan Road, Shanghai 200030, China
| | - Lisa X Xu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 400 Med-X Research Institute, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China
| | - J Brian Fowlkes
- Department of Radiology, University of Michigan Health System, 3226C, Medical Sciences Building I, 1301 Catherine Street, Ann Arbor, MI 48109
| |
Collapse
|
3
|
Sleiman N, Hallez L, Pflieger R, Nikitenko SI, Hihn JY. Sonoluminescence emission spectra of a 3.6 MHz HIFU in sweeping mode. ULTRASONICS SONOCHEMISTRY 2022; 83:105939. [PMID: 35123254 PMCID: PMC8927739 DOI: 10.1016/j.ultsonch.2022.105939] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Use of sweeping mode with a 3.6 MHz High Intensity Focused Ultrasound (HIFU) allows cavitation activity to be controlled. This is especially true in the pre-focal zone where the high concentration of bubbles acts as an acoustic reflector and quenches cavitation above this area. Previous studies attributed the enhancement of cavitation activity under negative sweep to the activation of more bubble nuclei, requiring deeper investigations. After mapping this activity with SCL measurements, cavitation noise spectra were recorded. The behavior of the acoustic broadband noise follows the sonochemical one i.e., showing the same attenuation (positive scan) or intensification (negative scan) of cavitational activity. In 1 M NaCl 3.7 mM 2-propanol solution saturated by a mixture of Ar-15.5%O2-2.2%N2, intensities of SL spectra are high enough to allow detection of several molecular emissions (OH, NH, C2, Na) under negative frequency sweeps. This is the first report of molecular emissions at such high frequency. Their intensities are low, and they are very broad, following the trend obtained at fixed frequency up to 1 MHz. Under optimized conditions, CN emission chosen as a spectroscopic probe is strong enough to be simulated, which is reported for the first time at such high frequency. The resulting characteristics of the plasma do not show any spectral difference, so bubble nature is the same in the pre-and post-focal zone under different sweeping parameters. Consequently, SL and SCL intensification was not related to a change in plasma nature inside the bubbles but to the number of cavitation bubbles.
Collapse
Affiliation(s)
- Noura Sleiman
- UTINAM UMR 6213, Univ Bourgogne-Franche-Comté/CNRS, Besançon, France; ICSM UMR 5257 - CEA, Univ Montpellier, CNRS, ENSCM, Bagnols-sur-Cèze, France; IRT M2P, Metz, France
| | - Loïc Hallez
- UTINAM UMR 6213, Univ Bourgogne-Franche-Comté/CNRS, Besançon, France
| | - Rachel Pflieger
- ICSM UMR 5257 - CEA, Univ Montpellier, CNRS, ENSCM, Bagnols-sur-Cèze, France
| | - Sergey I Nikitenko
- ICSM UMR 5257 - CEA, Univ Montpellier, CNRS, ENSCM, Bagnols-sur-Cèze, France
| | - Jean-Yves Hihn
- UTINAM UMR 6213, Univ Bourgogne-Franche-Comté/CNRS, Besançon, France; IRT M2P, Metz, France.
| |
Collapse
|
4
|
Li M, Gu J, Vu T, Sankin G, Zhong P, Yao J, Jing Y. Time-Resolved Passive Cavitation Mapping Using the Transient Angular Spectrum Approach. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2361-2369. [PMID: 33635787 PMCID: PMC8269954 DOI: 10.1109/tuffc.2021.3062357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Passive cavitation mapping (PCM), which generates images using bubble acoustic emission signals, has been increasingly used for monitoring and guiding focused ultrasound surgery (FUS). PCM can be used as an adjunct to magnetic resonance imaging to provide crucial information on the safety and efficacy of FUS. The most widely used algorithm for PCM is delay-and-sum (DAS). One of the major limitations of DAS is its suboptimal computational efficiency. Although frequency-domain DAS can partially resolve this issue, such an algorithm is not suitable for imaging the evolution of bubble activity in real time and for cases in which cavitation events occur asynchronously. This study investigates a transient angular spectrum (AS) approach for PCM. The working principle of this approach is to backpropagate the received signal to the domain of interest and reconstruct the spatial-temporal wavefield encoded with the bubble location and collapse time. The transient AS approach is validated using an in silico model and water bath experiments. It is found that the transient AS approach yields similar results to DAS, but it is one order of magnitude faster. The results obtained by this study suggest that the transient AS approach is promising for fast and accurate PCM.
Collapse
|
5
|
Wang J, Huang C, Echeagaray OH, Amirfakhri S, Blair SL, Trogler WC, Kummel AC, Chen CC. Microshell Enhanced Acoustic Adjuvants for Immunotherapy in Glioblastoma. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- James Wang
- Department of Nanoengineering University of California, San Diego Pacific Hall, Room 4100H, 9500 Gilman Dr. Mail Code 0358 La Jolla CA 92093 USA
| | - Chin‐Hsin Huang
- Material Science and Engineering Program University of California, San Diego Pacific Hall, Room 4100H, 9500 Gilman Dr. Mail Code 0358 La Jolla CA 92093 USA
| | - Oscar H. Echeagaray
- Molecular Biology Institute San Diego State University 500 Campanile Drive San Diego CA 92182 USA
| | - Siamak Amirfakhri
- Moores Cancer Center University of California, San Diego 3855 Health Sciences Drive La Jolla CA 92093 USA
| | - Sarah L. Blair
- Moores Cancer Center University of California, San Diego 3855 Health Sciences Drive La Jolla CA 92093 USA
| | - William C. Trogler
- Department of Chemistry and Biochemistry University of California, San Diego Pacific Hall, Room B100, 9500 Gilman Dr. Mail Code 0358 La Jolla CA 92093 USA
| | - Andrew C. Kummel
- Department of Chemistry and Biochemistry University of California, San Diego Pacific Hall, Room B100, 9500 Gilman Dr. Mail Code 0358 La Jolla CA 92093 USA
| | - Clark C. Chen
- Department of Neurosurgery University of Minnesota 420 Delaware St SE Mayo D429, MMC 96 Minneapolis MN 55455 USA
| |
Collapse
|
6
|
Liu NN, Khoo BC, Zhang AM. Study on the structure and behaviour of cavitation bubbles generated in a high-intensity focused ultrasound (HIFU) field. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2019; 42:70. [PMID: 31165267 DOI: 10.1140/epje/i2019-11833-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/02/2019] [Indexed: 06/09/2023]
Abstract
In this study, structures and behaviours of acoustic cavitation bubbles induced by a high-intensity focused ultrasound (HIFU) transducer, operating at its resonance frequency of 250kHz, are experimentally explored with corresponding observations captured by a high-speed video camera system. The experiments were conducted in an open-top Perspex water tank with deionized water, and illumination was provided by a LED spotlight which is placed beside the water tank throughout the whole experiment. Experimental results show that the structure of ultrasonically generated bubbles forms in a conical shape with several concentric bubble rings above the transducer. The distance between the adjacent rings with equal spacing as determined by the driving frequency of the HIFU transducer is experimentally measured and compared with the theoretical value. Then, the distribution of acoustic pressure in the acoustically driven liquid is further studied to investigate the behaviours of cavitation bubbles generated in a HIFU field. Additionally, the analysis of Bjerknes forces on the bubble surface which are induced by the gradient of acoustic pressure and the adjacent oscillating bubbles is quantitatively carried out, and the radius and velocity of a typical larger bubble are measured to characterize the behaviours of ultrasonically induced bubbles. Particularly, the physical phenomena of large bubbles including the coalescence, attraction or repulsion between adjacent bubbles, as well as the jumping of an acoustic bubble from the lower concentric ring level to the higher level, are analysed. The moving trajectory of the bubble is next obtained, and some conclusions are summarized to provide a greater understanding of the complex behaviours of the ultrasonically generated bubbles.
Collapse
Affiliation(s)
- N -N Liu
- College of Shipbuilding Engineering, Harbin Engineering University, 145, Nantong Street, 150001, Harbin, China
- Department of Mechanical Engineering, National University of Singapore, 10 Kent Ridge Crescent, 119260, Singapore, Singapore
| | - B -C Khoo
- Department of Mechanical Engineering, National University of Singapore, 10 Kent Ridge Crescent, 119260, Singapore, Singapore
| | - A -M Zhang
- College of Shipbuilding Engineering, Harbin Engineering University, 145, Nantong Street, 150001, Harbin, China.
| |
Collapse
|
7
|
Effects of Nonlinear Propagation of Focused Ultrasound on the Stable Cavitation of a Single Bubble. ACOUSTICS 2018. [DOI: 10.3390/acoustics1010003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Many biomedical applications such as ultrasonic targeted drug delivery, gene therapy, and molecular imaging entail the problems of manipulating microbubbles by means of a high-intensity focused ultrasound (HIFU) pressure field; namely stable cavitation. In high-intensity acoustic field, bubbles demonstrate translational instability, the well-known erratic dancing motion, which is caused by shape oscillations of the bubbles that are excited by their volume oscillations. The literature of bubble dynamics in the HIFU field is mainly centered on experiments, lacking a systematic study to determine the threshold for shape oscillations and translational motion. In this work, we extend the existing multiphysics mathematical modeling platform on bubble dynamics for taking account of (1) the liquid compressibility which allows us to apply a high-intensity acoustic field; (2) the mutual interactions of volume pulsation, shape modes, and translational motion; as well as (3) the effects of nonlinearity, diffraction, and absorption of HIFU to incorporate the acoustic nonlinearity due to wave kinematics or medium—all in one model. The effects of acoustic nonlinearity on the radial pulsations, axisymmetric modes of shape oscillations, and translational motion of a bubble, subjected to resonance and off-resonance excitation and various acoustic pressure, are examined. The results reveal the importance of considering all the involved harmonics and wave distortion in the bubble dynamics, to accurately predict the oscillations, translational trajectories, and the threshold for inertial (unstable) cavitation. This result is of interest for understanding the bubble dynamical behaviors observed experimentally in the HIFU field.
Collapse
|
8
|
Xin Y, Zhang A, Xu LX, Brian Fowlkes J. Numerical Study of Bubble Area Evolution During Acoustic Droplet Vaporization-Enhanced HIFU Treatment. J Biomech Eng 2018; 139:2635775. [PMID: 28654938 DOI: 10.1115/1.4037150] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Indexed: 01/05/2023]
Abstract
Acoustic droplet vaporization has the potential to shorten treatment time of high-intensity focused ultrasound (HIFU) while minimizing the possible effects of microbubbles along the propagation path. Distribution of the bubbles formed from the droplets during the treatment is the major factor shaping the therapeutic region. A numerical model was proposed to simulate the bubble area evolution during this treatment. Using a linear acoustic equation to describe the ultrasound field, a threshold range was defined that determines the amount of bubbles vaporized in the treated area. Acoustic parameters, such as sound speed, acoustic attenuation coefficient, and density, were treated as a function of the bubble size distribution and the gas void fraction, which were related to the vaporized bubbles in the medium. An effective pressure factor was proposed to account for the influence of the existing bubbles on the vaporization of the nearby droplets. The factor was obtained by fitting one experimental result and was then used to calculate bubble clouds in other experimental cases. Comparing the simulation results to these other experiments validated the model. The dynamic change of the pressure and the bubble distribution after exposure to over 20 pulses of HIFU are obtained. It is found that the bubble area grows from a grainlike shape to a "tadpole," with comparable dimensions and shape to those observed in experiments. The process was highly dynamic with the shape of the bubble area changing with successive HIFU pulses and the focal pressure. The model was further used to predict the shape of the bubble region triggered by HIFU when a bubble wall pre-exists. The results showed that the bubble wall helps prevent droplet vaporization on the distal side of the wall and forms a particularly shaped region with bubbles. This simulation model has predictive potential that could be beneficial in applications, such as cancer treatment, by parametrically studying conditions associated with these treatments and designing treatment protocols.
Collapse
Affiliation(s)
- Ying Xin
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; 400 Med-X Research Institute, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China e-mail:
| | - Aili Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; 400 Med-X Research Institute, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China e-mail:
| | - Lisa X Xu
- Fellow ASME School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China; 400 Med-X Research Institute, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, China e-mail:
| | - J Brian Fowlkes
- Department of Radiology, University of Michigan Health System, 3226C Medical Sciences Building I, 1301 Catherine Street, Ann Arbor, MI 48109-5667 e-mail:
| |
Collapse
|
9
|
Shen ZY, Jiang YM, Zhou YF, Si HF, Wang L. High-speed photographic observation of the sonication of a rabbit carotid artery filled with microbubbles by 20-kHz low frequency ultrasound. ULTRASONICS SONOCHEMISTRY 2018; 40:980-987. [PMID: 28946510 DOI: 10.1016/j.ultsonch.2017.09.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 08/29/2017] [Accepted: 09/08/2017] [Indexed: 06/07/2023]
Abstract
The aim of this study is to assess the physical damage of cavitation effects induced by low frequency ultrasound and microbubbles (MBs) to an in vitro vessel. A rabbit carotid artery filled with SonoVue MBs and methylene blue was irradiated with 20-kHz ultrasound, and the results were recorded by high-speed photography at 3000 frames per second. The carotid artery filled with MBs experienced a slight tremor during ultrasonication. Six intermittent blue flow events occurred in two places on the artery wall during the 5-s process. The duration of each leakage event was 90-360ms with an average of 200ms. Hematoxylin-eosin (H-E) staining demonstrated the separation of the carotid artery elastic membrane, local blood vessel wall defects and hole formation, and the surface of the ruptured area was rough and irregular. Another carotid artery was filled with a 0.9% NaCl solution and methylene blue as a control and irradiated with 20-kHz ultrasound. No blue liquid flow was seen, and no holes in the vessel were observed. H-E staining revealed intact vascular endothelial cells and smooth muscles with no vascular wall defects. Low-frequency ultrasound combined with MBs can cause a vessel to rupture and holes to form in a short time. High-speed photography is useful for observing transient changes caused by the effects of ultrasound cavitation on an in vitro vessel.
Collapse
Affiliation(s)
- Zhi Yong Shen
- Department of Radiology, Nantong University affiliated Nantong Tumor Hospital, 226361, PR China.
| | - Ying Mei Jiang
- Nantong University Affiliated Laboratory Animal Center, 226001, PR China
| | - Yu Feng Zhou
- Department of Radiology, Nantong University affiliated Nantong Tumor Hospital, 226361, PR China
| | - Hai Feng Si
- Department of Radiology, Nantong University affiliated Nantong Tumor Hospital, 226361, PR China
| | - Li Wang
- Department of Radiology, Nantong University affiliated Nantong Tumor Hospital, 226361, PR China
| |
Collapse
|
10
|
Yin H, Chang N, Xu S, Wan M. Sonoluminescence characterization of inertial cavitation inside a BSA phantom treated by pulsed HIFU. ULTRASONICS SONOCHEMISTRY 2016; 32:158-164. [PMID: 27150756 DOI: 10.1016/j.ultsonch.2016.02.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 02/28/2016] [Accepted: 02/29/2016] [Indexed: 06/05/2023]
Abstract
The aim of this study was to investigate the inertial cavitation inside a phantom treated by pulsed HIFU (pHIFU). Basic bovine serum albumin (BSA) phantoms without any inherent ultrasound contrast agents (UCAs) or phase-shift nano-emulsions (PSNEs) were used. During the treatment, sonoluminescence (SL) recordings were performed to characterize the spatial distribution of inertial cavitation adjacent to the focal region. High-speed photographs and thermal coagulations, comparing with the SL results, were also recorded and presented. A series of pulse parameters (pulse duration (PD) was between 1 and 23 cycles and pulse repetition frequency (PRF) was between 0.5kHz and 100kHz) were performed to make a systematic investigation under certain acoustic power (APW). Continuous HIFU (cHIFU) investigation was also performed to serve as control group. It was found that, when APW was 19.5W, pHIFU with short PD was much easier to form SL adjacent to the focal region inside the phantom, while it was difficult for cHIFU to generate cavitation bubbles. With appropriate PD and PRF, the residual bubbles of the previous pulses could be stimulated by the incident pulses to oscillate in a higher level and even violently collapse, resulting to enhanced physical thermogenesis. The experimental results showed that the most violent inertial cavitation occurs when PD was set to 6 cycles (5μs) and PRF to 10kHz, while the highest level of thermal coagulation was observed when PD was set to 10 cycles. The cavitational and thermal characteristics were in good correspondence, exhibiting significant potentiality regarding to inject-free cavitation bubble enhanced thermal ablation under lower APW, compared to the conventional thermotherapy.
Collapse
Affiliation(s)
- Hui Yin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, PR China
| | - Nan Chang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, PR China
| | - Shanshan Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, PR China
| | - Mingxi Wan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, PR China.
| |
Collapse
|
11
|
Lu S, Xu S, Liu R, Hu H, Wan M. High-contrast active cavitation imaging technique based on multiple bubble wavelet transform. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2016; 140:1000. [PMID: 27586732 DOI: 10.1121/1.4960589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this study, a unique method that combines the ultrafast active cavitation imaging technique with multiple bubble wavelet transform (MBWT) for improving cavitation detection contrast was presented. The bubble wavelet was constructed by the modified Keller-Miksis equation that considered the mutual effect among bubbles. A three-dimensional spatial model was applied to simulate the spatial distribution of multiple bubbles. The effects of four parameters on the signal-to-noise ratio (SNR) of cavitation images were evaluated, including the following: initial radii of bubbles, scale factor in the wavelet transform, number of bubbles, and the minimum inter-bubble distance. And the other two spatial models and cavitation bubble size distributions were introduced in the MBWT method. The results suggested that in the free-field experiments, the averaged SNR of images acquired by the MBWT method was improved by 7.16 ± 0.09 dB and 3.14 ± 0.14 dB compared with the values of images acquired by the B-mode and single bubble wavelet transform (SBWT) methods. In addition, in the tissue experiments, the averaged cavitation-to-tissue ratio of cavitation images acquired by the MBWT method was improved by 4.69 ± 0.25 dB and 1.74± 0.29 dB compared with that of images acquired by B-mode and SBWT methods.
Collapse
Affiliation(s)
- Shukuan Lu
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Shanshan Xu
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Runna Liu
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Hong Hu
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Mingxi Wan
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| |
Collapse
|
12
|
Ding T, Hu H, Bai C, Guo S, Yang M, Wang S, Wan M. Spatial-temporal three-dimensional ultrasound plane-by-plane active cavitation mapping for high-intensity focused ultrasound in free field and pulsatile flow. ULTRASONICS 2016; 69:166-181. [PMID: 27111870 DOI: 10.1016/j.ultras.2016.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 03/22/2016] [Accepted: 04/11/2016] [Indexed: 06/05/2023]
Abstract
Cavitation plays important roles in almost all high-intensity focused ultrasound (HIFU) applications. However, current two-dimensional (2D) cavitation mapping could only provide cavitation activity in one plane. This study proposed a three-dimensional (3D) ultrasound plane-by-plane active cavitation mapping (3D-UPACM) for HIFU in free field and pulsatile flow. The acquisition of channel-domain raw radio-frequency (RF) data in 3D space was performed by sequential plane-by-plane 2D ultrafast active cavitation mapping. Between two adjacent unit locations, there was a waiting time to make cavitation nuclei distribution of the liquid back to the original state. The 3D cavitation map equivalent to the one detected at one time and over the entire volume could be reconstructed by Marching Cube algorithm. Minimum variance (MV) adaptive beamforming was combined with coherence factor (CF) weighting (MVCF) or compressive sensing (CS) method (MVCS) to process the raw RF data for improved beamforming or more rapid data processing. The feasibility of 3D-UPACM was demonstrated in tap-water and a phantom vessel with pulsatile flow. The time interval between temporal evolutions of cavitation bubble cloud could be several microseconds. MVCF beamformer had a signal-to-noise ratio (SNR) at 14.17dB higher, lateral and axial resolution at 2.88times and 1.88times, respectively, which were compared with those of B-mode active cavitation mapping. MVCS beamformer had only 14.94% time penalty of that of MVCF beamformer. This 3D-UPACM technique employs the linear array of a current ultrasound diagnosis system rather than a 2D array transducer to decrease the cost of the instrument. Moreover, although the application is limited by the requirement for a gassy fluid medium or a constant supply of new cavitation nuclei that allows replenishment of nuclei between HIFU exposures, this technique may exhibit a useful tool in 3D cavitation mapping for HIFU with high speed, precision and resolution, especially in a laboratory environment where more careful analysis may be required under controlled conditions.
Collapse
Affiliation(s)
- Ting Ding
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China; National Key Laboratory for Electronic Measurement Technology, Department of Biomedical Engineering, School of Information and Communication Engineering, North University of China, Taiyuan, Shanxi 030051, China
| | - Hong Hu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Chen Bai
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shifang Guo
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Miao Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Supin Wang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Mingxi Wan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
13
|
Hallez L, Touyeras F, Hihn JY, Bailly Y. Characterization of HIFU transducers designed for sonochemistry application: Acoustic streaming. ULTRASONICS SONOCHEMISTRY 2016; 29:420-427. [PMID: 26585023 DOI: 10.1016/j.ultsonch.2015.10.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 10/05/2015] [Accepted: 10/27/2015] [Indexed: 06/05/2023]
Abstract
Cavitation distribution in a High Intensity Focused Ultrasound sonoreactors (HIFU) has been extensively described in the recent literature, including quantification by an optical method (Sonochemiluminescence SCL). The present paper provides complementary measurements through the study of acoustic streaming generated by the same kind of HIFU transducers. To this end, results of mass transfer measurements (electrodiffusional method) were compared to optical method ones (Particle Image Velocimetry). This last one was used in various configurations: with or without an electrode in the acoustic field in order to have the same perturbation of the wave propagation. Results show that the maximum velocity is not located at the focal but shifted near the transducer, and that this shift is greater for high powers. The two cavitation modes (stationary and moving bubbles) are greatly affect the hydrodynamic behavior of our sonoreactors: acoustic streaming and the fluid generated by bubble motion. The results obtained by electrochemical measurements show the same low hydrodynamic activity in the transducer vicinity, the same shift of the active focal toward the transducer, and the same absence of activity in the post-focal axial zone. The comparison with theoretical Eckart's velocities (acoustic streaming in non-cavitating media) confirms a very high activity at the "sonochemical focal", accounted for by wave distortion, which induced greater absorption coefficients. Moreover, the equivalent liquid velocities are one order of magnitude larger than the ones measured by PIV, confirming the enhancement of mass transfer by bubbles oscillation and collapse close to the surface, rather than from a pure streaming effect.
Collapse
Affiliation(s)
- L Hallez
- Institut UTINAM/SRS, UMR 6213, CNRS, University of Bourgogne Franche-Comté, Besançon, France
| | - F Touyeras
- Institut UTINAM/SRS, UMR 6213, CNRS, University of Bourgogne Franche-Comté, Besançon, France
| | - J-Y Hihn
- Institut UTINAM/SRS, UMR 6213, CNRS, University of Bourgogne Franche-Comté, Besançon, France.
| | - Y Bailly
- Institut FEMTO-ST/ENISYS, UMR 6174, CNRS, University of Bourgogne Franche-Comté, ENSMM, UTBM, Belfort, France
| |
Collapse
|
14
|
Hu H, Xu S, Yuan Y, Liu R, Wang S, Wan M. Spatial-temporal ultrasound imaging of residual cavitation bubbles around a fluid-tissue interface in histotripsy. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2015; 137:2563-2572. [PMID: 25994689 DOI: 10.1121/1.4919286] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Cavitation is considered as the primary mechanism of soft tissue fragmentation (histotripsy) by pulsed high-intensity focused ultrasound. The residual cavitation bubbles have a dual influence on the histotripsy pulses: these serve as nuclei for easy generation of new cavitation, and act as strong scatterers causing energy "shadowing." To monitor the residual cavitation bubbles in histotripsy, an ultrafast active cavitation imaging method with relatively high signal-to-noise ratio and good spatial-temporal resolution was proposed in this paper, which combined plane wave transmission, minimum variance beamforming, and coherence factor weighting. The spatial-temporal evolutions of residual cavitation bubbles around a fluid-tissue interface in histotripsy under pulse duration (PD) of 10-40 μs and pulse repetition frequency (PRF) of 0.67-2 kHz were monitored by this method. The integrated bubble area curves inside the tissue interface were acquired from the bubble image sequence, and the formation process of histotripsy damage was estimated. It was observed that the histotripsy efficiency decreased with both longer PDs and higher PRFs. A direct relationship with a coefficient of 1.0365 between histotripsy lesion area and inner residual bubble area was found. These results can assist in monitoring and optimization of the histotripsy treatment further.
Collapse
Affiliation(s)
- Hong Hu
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Shanshan Xu
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Yuan Yuan
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Runna Liu
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Supin Wang
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Mingxi Wan
- The Key Laboratory of Biomedical Information Engineering of the Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| |
Collapse
|
15
|
Xu S, Zong Y, Feng Y, Liu R, Liu X, Hu Y, Han S, Wan M. Dependence of pulsed focused ultrasound induced thrombolysis on duty cycle and cavitation bubble size distribution. ULTRASONICS SONOCHEMISTRY 2015; 22:160-6. [PMID: 25043556 DOI: 10.1016/j.ultsonch.2014.06.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 06/16/2014] [Accepted: 06/30/2014] [Indexed: 05/06/2023]
Abstract
In this study, we investigated the relationship between the efficiency of pulsed, focused ultrasound (FUS)-induced thrombolysis, the duty cycle (2.3%, 9%, and 18%) and the size distribution of cavitation bubbles. The efficiency of thrombolysis was evaluated through the degree of mechanical fragmentation, namely the number, mass, and size of clot debris particles. First, we found that the total number and mass of clot debris particles were highest when a duty cycle of 9% was used and that the mean diameter of clot debris particles was smallest. Second, we found that the size distribution of cavitation bubbles was mainly centered around the linear resonance radius (2.5μm) of the emission frequency (1.2MHz) of the FUS transducer when a 9% duty cycle was used, while the majority of cavitation bubbles became smaller or larger than the linear resonance radius when a 2.3% or 18% duty cycle was used. In addition, the inertial cavitation dose from the treatment performed at 9% duty cycle was much higher than the dose obtained with the other two duty cycles. The data presented here suggest that there is an optimal duty cycle at which the thrombolysis efficiency and cavitation activity are strongest. They further indicate that using a pulsed FUS may help control the size distribution of cavitation nuclei within an active size range, which we found to be near the linear resonance radius of the emission frequency of the FUS transducer.
Collapse
Affiliation(s)
- Shanshan Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yujin Zong
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yi Feng
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Runna Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Xiaodong Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yaxin Hu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Shimin Han
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Mingxi Wan
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China.
| |
Collapse
|
16
|
Kim JH, Kim H, Kim YJ, Lee JY, Han JK, Choi BI. Dynamic contrast-enhanced ultrasonographic (DCE-US) assessment of the early response after combined gemcitabine and HIFU with low-power treatment for the mouse xenograft model of human pancreatic cancer. Eur Radiol 2014; 24:2059-68. [PMID: 24962825 DOI: 10.1007/s00330-014-3260-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 04/20/2014] [Accepted: 05/21/2014] [Indexed: 01/06/2023]
Abstract
PURPOSE To assess therapeutic efficacy of gemcitabine and HIFU for a mouse model of pancreatic cancer, and the role of DCE-US for predicting early treatment response compared with pathology. MATERIALS AND METHODS In 48 PANC-1- nude mice (G1, HIFU_higher power [n = 14]; G2, gemcitabine [n = 12]; G3, combined gemcitabine and HIFU_low power [n = 12]; and G4, control [n = 10]), pulsed HIFU or gemcitabine therapy was used. DCE-US was performed 1 day before and after first treatment. Seven DCE-US perfusion parameters were obtained. Therapeutic efficacy was estimated using necrotic fraction and apoptosis. Correlation between tumour size and US perfusion parameters was analysed. RESULTS Pathology results showed that combined gemcitabine and HIFU using low-power treatment had a more effective response than other treatments, including in the control group, i.e. necrotic fraction: 40.5 ± 4.9 vs. 16.9 ± 8.0, p = 0.000 and apoptosis: 44.3 ± 29.4 vs. 7.9 ± 4.9, p = 0.002. In this group, US perfusion parameters, including peak intensity (22.6 ± 22.6 vs. 9.6 ± 6.3, p = 0.002), AUC (961.8 ± 96.9 vs. 884.4 ± 91.4, p = 0.000), and AUCout (799.9 ± 75.6 vs. 747.1 ± 77.9, p = 0.000), had significantly decreased 1 day following first treatment (p < 0.05). In addition, peak intensity, AUC, and AUCout showed a tendency to decrease in treated groups. Alternatively, peak intensity, AUC, and AUCout showed a tendency to increase in control group. CONCLUSION Gemcitabine and HIFU were more effective and safer than other treatments. US perfusion parameters were useful for predicting early therapeutic response 1 day following treatment. KEY POINTS Recently, treatment of pancreatic cancer has changed based on a multidisciplinary approach. Combined gemcitabine_HIFU demonstrated more effective therapeutic response than other treatments. DCE-US is useful for predicting early therapeutic response 1 day after treatment. In the combined group, PI, AUC, and AUC (out) decreased 1 day after treatment.
Collapse
Affiliation(s)
- Jung Hoon Kim
- Department of Radiology, Institute of Radiation Medicine, Seoul National University College of Medicine, 101 Daehangno, Jongno-gu, Seoul, 110-744, Republic of Korea,
| | | | | | | | | | | |
Collapse
|
17
|
Yin H, Qiao Y, Cao H, Li Z, Wan M. Cavitation mapping by sonochemiluminescence with less bubble displacement induced by acoustic radiation force in a 1.2 MHz HIFU. ULTRASONICS SONOCHEMISTRY 2014; 21:559-565. [PMID: 24409464 DOI: 10.1016/j.ultsonch.2013.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
An acoustic radiation force counterbalanced appliance was employed to map the cavitation distribution in water. The appliance was made up of a focused ultrasound transducer and an aluminum alloy reflector with the exactly same shape. They were centrosymmetry around the focus of the source transducer. Spatial-temporal dynamics of cavitation bubble clouds in the 1.2 MHz ultrasonic field within this appliance were observed in water. And they were mapped by sonochemiluminescence (SCL) recordings and high-speed photography. There were significant differences in spatial distribution and temporal evolution between normal group and counterbalanced group. The reflector could avoid bubble directional displacement induced by acoustic radiation force under certain electric power (≤50 W). As a result, the SCL intensity in the pre-focal region was larger than that of normal group. In event of high electric power (≥70 W), most of the bubbles were moving in acoustic streaming. When electric power decreased, bubbles kept stable and showed stripe structure in SCL images. Both stationary bubbles and moving bubbles have been captured, and exhibited analytical potential with respect to bubbles in therapeutic ultrasound.
Collapse
|
18
|
Ding T, Zhang S, Fu Q, Xu Z, Wan M. Ultrasound line-by-line scanning method of spatial-temporal active cavitation mapping for high-intensity focused ultrasound. ULTRASONICS 2014; 54:147-55. [PMID: 23673346 DOI: 10.1016/j.ultras.2013.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 03/12/2013] [Accepted: 04/14/2013] [Indexed: 05/15/2023]
Abstract
This paper presented an ultrasound line-by-line scanning method of spatial-temporal active cavitation mapping applicable in a liquid or liquid filled tissue cavities exposed by high-intensity focused ultrasound (HIFU). Scattered signals from cavitation bubbles were obtained in a scan line immediately after one HIFU exposure, and then there was a waiting time of 2 s long enough to make the liquid back to the original state. As this pattern extended, an image was built up by sequentially measuring a series of such lines. The acquisition of the beamformed radiofrequency (RF) signals for a scan line was synchronized with HIFU exposure. The duration of HIFU exposure, as well as the delay of the interrogating pulse relative to the moment while HIFU was turned off, could vary from microseconds to seconds. The feasibility of this method was demonstrated in tap-water and a tap-water filled cavity in the tissue-mimicking gelatin-agar phantom as capable of observing temporal evolutions of cavitation bubble cloud with temporal resolution of several microseconds, lateral and axial resolution of 0.50 mm and 0.29 mm respectively. The dissolution process of cavitation bubble cloud and spatial distribution affected by cavitation previously generated were also investigated. Although the application is limited by the requirement for a gassy fluid (e.g. tap water, etc.) that allows replenishment of nuclei between HIFU exposures, the technique may be a useful tool in spatial-temporal cavitation mapping for HIFU with high precision and resolution, providing a reference for clinical therapy.
Collapse
Affiliation(s)
- Ting Ding
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | | | | | | | | |
Collapse
|
19
|
Cao H, Yin H, Qiao Y, Zhang S, Wan M. Sonochemiluminescence observation and acoustic detection of cavitation induced by pulsed HIFU at a tissue-fluid interface. ULTRASONICS SONOCHEMISTRY 2013; 20:1370-1375. [PMID: 23628637 DOI: 10.1016/j.ultsonch.2013.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Revised: 02/16/2013] [Accepted: 03/08/2013] [Indexed: 06/02/2023]
Abstract
The aim of this study is to investigate the mechanism of the erosion process induced by 1.2 MHz pulsed high-intensity focused ultrasound (pulsed HIFU). By using Sonochemiluminescence (SCL) photograph, the initiation and maintenance of active cavitation were observed. In order to understand the role of both inertial cavitation and stable cavitation, a passive cavitation detection (PCD) transducer was used. Since the exposure variables of HIFU are important in the controlled ultrasound tissue erosion, the influence of pulse length (PL) and duty cycle (DC, Ton:Toff) has been examined. The results of tissue hole, SCL observation and acoustic detection revealed that the erosion was highly efficient for shorter PL. For higher DCs, the area of SCL increased with increasing PL. For lower DCs, the area of SCL increased with increasing PL from 10 to 20 μs and then kept constant. For all PLs, the intensity of SCL decreased with lower DC. For all DCs, the intensity of SCL per unit area (the ratio of SCL intensity to SCL area) also decreased with increasing PL from 10 to 80 μs, which suggested that the higher the intensity of SCL is, the higher the efficiency of tissue erosion is. At DC of 1:10, the position of the maximum pixel in SCL pictures was distant from the tissue-fluid interface with the increasing PL because of shielding effect. By the comparison of inertial cavitation dose (ICD) and the stable cavitation dose (SCD), the mechanisms associated with inertial cavitation are very likely to be the key factor of the erosion process.
Collapse
Affiliation(s)
- Hua Cao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | | | | | | | | |
Collapse
|
20
|
Qiao Y, Cao H, Zhang S, Yin H, Wan M. Sonochemiluminescence observation of lipid- and polymer-shelled ultrasound contrast agents in 1.2 MHz focused ultrasound field. ULTRASONICS SONOCHEMISTRY 2013; 20:162-170. [PMID: 22819330 DOI: 10.1016/j.ultsonch.2012.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Revised: 03/26/2012] [Accepted: 06/25/2012] [Indexed: 06/01/2023]
Abstract
Ultrasound contrast agents (UCAs) are frequently added into the focused ultrasound field as cavitation nuclei to enhance the therapeutic efficiency. Since their presence will distort the pressure field and make the process unpredictable, comprehension of their behaviors especially the active zone spatial distribution is an important part of better monitoring and using of UCAs. As shell materials can strongly alter the acoustic behavior of UCAs, two different shells coated UCAs, lipid-shelled and polymer-shelled UCAs, in a 1.2 MHz focused ultrasound field were studied by the Sonochemiluminescence (SCL) method and compared. The SCL spatial distribution of lipid-shelled group differed from that of polymer-shelled group. The shell material and the character of focused ultrasound field work together to the SCL distribution, causing the lipid-shelled group to have a maximum SCL intensity in pre-focal region at lower input power than that of polymer-shelled group, and a brighter SCL intensity in post-focal region at high input power. The SCL inactive area of these two groups both increased with the input power. The general behavior of the UCAs can be studied by both the average SCL intensity and the backscatter signals. As polymer-shelled UCAs are more resistant to acoustic pressure, they had a higher destruction power and showed less reactivation than lipid-shelled ones.
Collapse
Affiliation(s)
- Yangzi Qiao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | | | | | | | | |
Collapse
|
21
|
Cao H, Wan M, Qiao Y, Zhang S, Li R. Spatial distribution of sonoluminescence and sonochemiluminescence generated by cavitation bubbles in 1.2 MHz focused ultrasound field. ULTRASONICS SONOCHEMISTRY 2012; 19:257-263. [PMID: 21862375 DOI: 10.1016/j.ultsonch.2011.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Revised: 07/05/2011] [Accepted: 07/21/2011] [Indexed: 05/31/2023]
Abstract
An intensified charge coupled device (ICCD) camera was used to observe the spatial distribution of sonoluminescence (SL) and sonochemiluminescence (SCL) generated by cavitation bubbles in a 1.2 MHz focused ultrasound (FU) field in order to investigate the mechanisms of acoustic cavitation under different sonication conditions for FU therapeutic applications. It was found that SL emissions were located in the post-focal region. When the intensity of SL and SCL increased as the power rose, the growth of SCL was much higher than that of SL. In the post-focal region, the SCL emissions moved along specific paths and formed branch-like streamers. At the beginning of the ultrasound irradiation, cavitation bubbles generated SCL in both the pre-focal and the post-focal region. When the electrical power or the sonication time increased, the SCL in the post-focal region increased and became higher than that in the pre-focal region. The intensity of SCL in the focal region is usually the weakest because of "oversaturation". The spatial distribution of SCL near a tissue boundary differed from that obtained in free fields. It organized into special structures under different acoustic amplitudes. When the electrical power was relatively low, the SCL emission was conical shape which suggested a standing wave formation at the tissue-fluid boundary. When the electrical power exceeded a certain threshold, only a bright spot could be captured in the focus. The cavitation bubbles which centralized in the focus concentrated energy and hindered the formation of standing waves. With rising electrical power at high levels, besides a bright spot in the focus, there were some irregular light spots in pre-focal region, which indicated some cavitation bubbles or small bubble clusters achieved the threshold of SCL and induced the reaction with the luminol solution.
Collapse
Affiliation(s)
- Hua Cao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | | | | | | | | |
Collapse
|
22
|
Hihn JY, Doche ML, Mandroyan A, Hallez L, Pollet BG. Respective contribution of cavitation and convective flow to local stirring in sonoreactors. ULTRASONICS SONOCHEMISTRY 2011; 18:881-7. [PMID: 21382572 DOI: 10.1016/j.ultsonch.2011.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The knowledge of respective parts of convection and cavitation to the stirring induced by ultrasound at one exact position into a sonoreactor is useful for all processes implementing surfaces exposed to sonication. PIV measurement allows real fluid motion determination, whereas the electrochemical technique gives an equivalent flow velocity considered as the sum of all stirring contributions to the electrode. Thus, by a simple subtraction between real fluid velocity and equivalent flow velocity, it is possible to identify the contribution of each phenomenon. Applied to low frequency reactors, it had been observed that cavitation is the preponderant phenomenon, with a contribution of stirring close to the electrode always more than 90%. High frequency reactors, frequently known to produce less cavitation, have shown that at the focal zone, if it concerns HIFU, cavitation becomes preponderant and reaches similar values to those close to the ultrasonic horn in low frequency sonoreactors.
Collapse
Affiliation(s)
- J-Y Hihn
- UTINAM UMR-Université de Franche-Comté/CNRS-6213, équipe SRS, IUT Département chimie, 30 avenue de l'Observatoire, 25 009 Besançon, France.
| | | | | | | | | |
Collapse
|
23
|
Ferreri SL, Talish R, Trandafir T, Qin YX. Mitigation of bone loss with ultrasound induced dynamic mechanical signals in an OVX induced rat model of osteopenia. Bone 2011; 48:1095-102. [PMID: 21241838 PMCID: PMC3078942 DOI: 10.1016/j.bone.2011.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 12/18/2010] [Accepted: 01/04/2011] [Indexed: 10/18/2022]
Abstract
This study tests the hypothesis that an ultrasound generated dynamic mechanical signal can attenuate bone loss in an estrogen deficient model of osteopenia. Eighty-four 16-week-old Sprague-Dawley rats were divided into six groups: baseline control, age-matched control, ovariectomy (OVX) control, OVX+5mW/cm(2) ultrasound (US), OVX+30mW/cm(2) US and OVX+100mW/cm(2) US. Low intensity pulsed ultrasound (LIPUS) was delivered transdermally at the L4/L5 vertebrae, using gel-coupled plane wave US transducers. The signal, characterized by 200μs pulses of 1.5MHz sine waves repeating at 1kHz with spatial-averaged temporal-averaged (SATA) intensities of 5, 30 or 100mW/cm(2), was applied 20 min/day, 5 days/week for 4 weeks. OVX treatment reduced bone volume fraction 40% and compromised microstructure at 4 weeks. LIPUS treatment, however, significantly increased BV/TV (+33%) compared to OVX controls for the 100mW/cm(2) treated group. SMI and Tb.N showed significant improvements compared with OVX for the 100mW/cm(2) treated group and Tb.Th was significantly improved in the 30 and 100mW/cm(2) treated groups. Improvements in bone's microstructural characteristics with 100mW/cm(2) US treatment translated into improved load bearing characteristics, including a significant 42% increase in apparent level elastic modulus compared to OVX controls. Significant improvement of trabecular mechanical strength was also observed in the treated animals, e.g., principal compressive stress (represent bone's ability to resist loads) was significantly higher compared to OVX controls. Histomorphometric analysis also showed that treatment with 100mW/cm(2) US resulted in a 76% improvement in MS/BS. In addition, measures of bone quantity and quality at the femoral metaphysis suggest that LIPUS is site specific. This study indicates that localized ultrasound treatment, delivered at specific intensities, has beneficial effects on intact bone and may represent a novel intervention for bone loss.
Collapse
Affiliation(s)
- Suzanne L. Ferreri
- Orthopaedic Bioengineering Research Lab, Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794
| | | | | | - Yi-Xian Qin
- Orthopaedic Bioengineering Research Lab, Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794
- Corresponding author: Yi-Xian Qin, Ph.D., Department of Biomedical Engineering, Stony Brook University, Bioengineering Building, Rm 215, Stony Brook, NY 11794-5281,
| |
Collapse
|
24
|
Gerold B, Kotopoulis S, McDougall C, McGloin D, Postema M, Prentice P. Laser-nucleated acoustic cavitation in focused ultrasound. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2011; 82:044902. [PMID: 21529030 DOI: 10.1063/1.3579499] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Acoustic cavitation can occur in therapeutic applications of high-amplitude focused ultrasound. Studying acoustic cavitation has been challenging, because the onset of nucleation is unpredictable. We hypothesized that acoustic cavitation can be forced to occur at a specific location using a laser to nucleate a microcavity in a pre-established ultrasound field. In this paper we describe a scientific instrument that is dedicated to this outcome, combining a focused ultrasound transducer with a pulsed laser. We present high-speed photographic observations of laser-induced cavitation and laser-nucleated acoustic cavitation, at frame rates of 0.5×10(6) frames per second, from laser pulses of energy above and below the optical breakdown threshold, respectively. Acoustic recordings demonstrated inertial cavitation can be controllably introduced to the ultrasound focus. This technique will contribute to the understanding of cavitation evolution in focused ultrasound including for potential therapeutic applications.
Collapse
Affiliation(s)
- Bjoern Gerold
- Institute for Medical Science and Technology, The University of Dundee, Dundee DD2 1FD, United Kingdom
| | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Hallez L, Touyeras F, Hihn JY, Klima J, Guey JL, Spajer M, Bailly Y. Characterization of HIFU transducers designed for sonochemistry application: cavitation distribution and quantification. ULTRASONICS 2010; 50:310-317. [PMID: 19833369 DOI: 10.1016/j.ultras.2009.09.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 08/28/2009] [Accepted: 09/17/2009] [Indexed: 05/28/2023]
Abstract
Acoustic field distribution was determined in HIFU sonoreactors as well as localization of cavitation activity by crossing different techniques: modeling, hydrophone measurements, laser tomography and SCL measurements. Particular care was taken with quantification of this last technique by pixels or photon counting. Cavitation bubbles generated by HIFU are mainly located on the outer layer of the propagation cone in the post-focal zone. Greatest acoustic activity is not located at the geometrical focal, but corresponds to a high concentration of bubbles zone. On the contrary, the main sonochemical activity shifts slightly toward the transducer, whereas quenching of inertial cavitation is observed directly at the focal. Finally, SCL thresholds have been determined.
Collapse
Affiliation(s)
- L Hallez
- Institut UTINAM/SRS, University of Franche-Comté UMR CNRS 6213, Besançon, France
| | | | | | | | | | | | | |
Collapse
|
27
|
Zhang S, Wan M, Zhong H, Xu C, Liao Z, Liu H, Wang S. Dynamic changes of integrated backscatter, attenuation coefficient and bubble activities during high-intensity focused ultrasound (HIFU) treatment. ULTRASOUND IN MEDICINE & BIOLOGY 2009; 35:1828-44. [PMID: 19716225 DOI: 10.1016/j.ultrasmedbio.2009.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 05/04/2009] [Accepted: 05/11/2009] [Indexed: 05/09/2023]
Abstract
This paper simultaneously investigated the transient characteristics of integrated backscatter (IBS), attenuation coefficient and bubble activities as time traces before, during and after HIFU treatment, with different HIFU parameters (acoustic power and duty cycle) in both transparent tissue-mimicking phantoms and freshly excised bovine livers. These dynamic changes of acoustic parameters and bubble activities were correlated with the visualization of lesion development selected from photos, conventional B-mode ultrasound images and differential IBS images over the whole procedure of HIFU treatment. Two-dimensional radiofrequency (RF) data were acquired by a modified diagnostic ultrasound scanner to estimate the changes of mean IBS and attenuation coefficient averaged in the lesion region, and to construct the differential IBS images and B-mode ultrasound images simultaneously. Bubble activities over the whole procedure of HIFU treatment were investigated by the passive cavitation detection (PCD) method and the changes in subharmonic and broadband noise were correlated with the transient characteristics of IBS and attenuation coefficient. When HIFU was switched on, IBS and attenuation coefficient increased with the appearance of bubble clouds in the B-mode and differential IBS image. At the same time, the level of subharmonic and broadband noise rose abruptly. Then, there was an initial decrease in the attenuation coefficient, followed by an increase when at lower HIFU power. As the lesion appeared, IBS and attenuation coefficient both increased rapidly to a value twice that of normal. Then the changes in IBS and attenuation coefficient showed more complex patterns, but still showed a slower trend of increases with lesion development. Violent bubble activities were visible in the gel and were evident as strongly echogenic regions in the differential IBS images and B-mode images simultaneously. This was detected by a dramatic high level of subharmonic and broadband noise at the same time. These bubble activities caused fluctuations in IBS and attenuation coefficient during HIFU treatment. After HIFU, IBS and attenuation coefficient decreased gradually accompanied by the fadeout of bright hyperechoic spot in the B-mode and differential IBS image, but were still higher than normal when they were stable. The increases of IBS and attenuation coefficient were greater when using higher acoustic power or a higher duty cycle of the therapeutic emission. These experiments indicated that the bubble activities had the dominant effects on the transient characteristics of IBS and attenuation. This should be taken into consideration when using the dynamic acoustic-property changes for the potentially real-time monitoring imaging of HIFU treatment.
Collapse
Affiliation(s)
- Siyuan Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | | | | | | | | | | | | |
Collapse
|
28
|
Chen H, Li X, Wan M, Wang S. High-speed observation of cavitation bubble clouds near a tissue boundary in high-intensity focused ultrasound fields. ULTRASONICS 2009; 49:289-92. [PMID: 19041998 DOI: 10.1016/j.ultras.2008.09.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Revised: 08/13/2008] [Accepted: 09/01/2008] [Indexed: 05/08/2023]
Abstract
Cavitation bubble clouds generated near a tissue boundary by high-intensity focused ultrasound (HIFU) were studied using high-speed photography. In all, 171 image series were captured during the initial 100 ms of continuous HIFU exposure, which showed that cavitation bubble clouds at the tissue boundary organized into two structures - "cone-shape bubble cloud structure" recorded in 146 image series and "crown-shape bubble cloud structure" recorded in 18 image series. The remaining 7 image series showed the interchanging of these two structures. It was found that when cavitation bubbles first appeared at the tissue boundary, they developed to cone-shape bubble cloud. The cone-shape bubble cloud structure was characterized by a nearly fixed tip in front of the tissue boundary. When the cavitation bubbles initially appeared away from the tissue boundary they evolved into a crown-shape bubble cloud. Deformation of tissue boundary was shown in all the recorded image series.
Collapse
Affiliation(s)
- Hong Chen
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China
| | | | | | | |
Collapse
|
29
|
Chen H, Li X, Wan M, Wang S. High-speed observation of cavitation bubble cloud structures in the focal region of a 1.2 MHz high-intensity focused ultrasound transducer. ULTRASONICS SONOCHEMISTRY 2007; 14:291-7. [PMID: 17071124 DOI: 10.1016/j.ultsonch.2006.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Accepted: 08/27/2006] [Indexed: 05/12/2023]
Abstract
Cavitation bubble clouds in the focal region of HIFU play important roles in therapeutic applications of HIFU. Temporal evolution and spatial distribution of cavitation bubble clouds generated in the focal region of a 1.2 MHz single element concave HIFU transducer in water are investigated by high-speed photography. It is found that during the initial 600 micro s insonation cavitation bubble clouds organize to the "screw-like structure" or "cap-like structure". The screw-like structure is characterized by a nearly fixed tip at the geometrical focus of the HIFU transducer, and the cap-like structure is marked by a dent formed in the direction of ultrasound transmission. After 600 micro s, another two structures are recorded - "streamer structure" and "cluster structure". The streamer structure is also featured by a nearly fixed bottom position at the focus, while the cluster structure is distinguished by agglomerations of bubbles around the focus.
Collapse
Affiliation(s)
- Hong Chen
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, PR China
| | | | | | | |
Collapse
|