1
|
Slimani C, Rais C, Mansouri F, Rais S, Benjelloun M, Ullah R, Iqbal Z, Goh KW, Lee LH, Bouyahya A, Lazraq A. Optimization of ultrasound-assisted extraction of phenols from Crocus sativus by-products using sunflower oil as a sustainable solvent alternative. Food Chem X 2024; 23:101579. [PMID: 39027683 PMCID: PMC11254944 DOI: 10.1016/j.fochx.2024.101579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/09/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
In the last decade, there's been a rising emphasis on eco-friendly solvents in industry and academia due to environmental concerns. Vegetable oils are now recognized as a practical, non-toxic option for extracting phytochemicals from herbs. This study presents a novel, green, and user-friendly method for extracting phenolic content from Crocus sativus L. waste using ultrasound. It replaces conventional organic solvents with sustainable sunflower oil, making the process eco-friendly and cost-effective. The effects of temperature (18-52 °C), ultrasonic time (5-55 min), and solid-solvent ratio (5-31 g/100 mL) were assessed by applying response surface methodology (RSM) and Central composite design. The combined impact of solid-solvent ratio, temperature, and ultrasonic time led to heightened phenolic content and antioxidant activity in the enriched oil. However, when these variables were at their maximum levels, there was a decline in these attributes. The specific conditions found to be ideal were a solid-to-liquid ratio of 26 g/100 mL, a temperature of 45 °C, and a duration of 45 min. The optimum extraction condition yielded the expected highest phenolic content (317.15 mg/ Kg), and antioxidant activity (89.34%). The enriched oil with flower saffron enabled the utilization of renewable natural ingredients, ensuring the production of a healthy extract or product. Also, enriched oils find diverse applications in areas such as food, aquaculture, and cosmetics.
Collapse
Affiliation(s)
- Chaimae Slimani
- Laboratory of Functional Ecology and Environmental Engineering, Sidi Mohamed Ben Abdellah University, Faculty of Sciences and Technologies, Department of Biology, P.O. Box 2202 - route d'Imouzzer, Fez, Morocco
- Laboratory of Botany, National Agency for Medicinal and Aromatic Plants, P.O. Box 159 Taounate, 34025, 10, Morocco
| | - Chaimae Rais
- Laboratory of Botany, National Agency for Medicinal and Aromatic Plants, P.O. Box 159 Taounate, 34025, 10, Morocco
| | - Farid Mansouri
- Laboratory of applied sciences and sciences of education and training, Higher School of Education and Training, Oujda, Mohammed Premier University, Morocco
| | - Saadia Rais
- Laboratory of Functional Ecology and Environmental Engineering, Sidi Mohamed Ben Abdellah University, Faculty of Sciences and Technologies, Department of Biology, P.O. Box 2202 - route d'Imouzzer, Fez, Morocco
| | - Meryem Benjelloun
- Laboratory of Functional Ecology and Environmental Engineering, Sidi Mohamed Ben Abdellah University, Faculty of Sciences and Technologies, Department of Biology, P.O. Box 2202 - route d'Imouzzer, Fez, Morocco
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy King Saud University, Riyadh, Saudi Arabia
| | - Zafar Iqbal
- Department of Surgery, College of Medicine, King Saud University P.O.Box 7805, Riyadh, 11472, Saudi Arabia
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai, Malaysia
- Faculty of Engineering, Shinawatra University, Samkhok, Pathum Thani, Thailand
| | - Learn-Han Lee
- Microbiome Research Group, Research Centre for Life Science and Healthcare, Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute (CBI), University of Nottingham Ningbo China, 315000, Ningbo, China
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Selangor 47500, Malaysia
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Abderrahim Lazraq
- Laboratory of Functional Ecology and Environmental Engineering, Sidi Mohamed Ben Abdellah University, Faculty of Sciences and Technologies, Department of Biology, P.O. Box 2202 - route d'Imouzzer, Fez, Morocco
| |
Collapse
|
2
|
Revelou PK, Konteles SJ, Batrinou A, Xagoraris M, Tarantilis PA, Strati IF. Origanum majorana L. as Flavoring Agent: Impact on Quality Indices, Stability, and Volatile and Phenolic Profiles of Extra Virgin Olive Oil (EVOO). Foods 2024; 13:3164. [PMID: 39410198 PMCID: PMC11475822 DOI: 10.3390/foods13193164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
The flavoring of olive oils with aromatic plants is commonly used to enrich the oils with aromatic and antioxidant compounds. Origanum majorana L. was applied as a flavoring agent for extra virgin olive oil (EVOO), at concentrations of 20 g L-1 and 40 g L-1, via ultrasound-assisted maceration. The aim of this study was to evaluate the impact of flavoring on the EVOOs' quality indices, oxidative stability, and antioxidant, antiradical and antifungal activities, as well as on the oils' volatile and phenolic profile. The flavored EVOO maintained the quality indices (free fatty acids, peroxide value, extinction coefficients) below the maximum permitted levels, whereas the addition of marjoram enhanced the oxidative stability, the levels of chlorophyll and b-carotene and the total phenolic content. The incorporation of marjoram into the EVOO did not have a significant impact on the antioxidant and antiradical activities. Concerning the antifungal activity, no Zygosaccharomyces bailli cell growth was observed for two weeks in a mayonnaise prepared with the flavored EVOO at a 40 g L-1 concentration. SPME-GC-MS analysis revealed the presence of 11 terpene compounds (hydrocarbon and oxygenated monoterpenes) that had migrated from marjoram in the flavored EVOO. Twenty-one phenolic compounds were tentatively characterized by LC-QToF-MS in the EVOO samples; however, hesperetin and p-coumaric acid, originating from marjoram, were only detected in the flavored EVOO.
Collapse
Affiliation(s)
- Panagiota Kyriaki Revelou
- Laboratory of Chemistry, Analysis & Design of Food Processes, Department of Food Science and Technology, University of West Attica, Agiou Spyridonos, 12243 Egaleo, Greece; (P.K.R.); (S.J.K.); (A.B.)
- Laboratory of Chemistry, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (M.X.); (P.A.T.)
| | - Spyridon J. Konteles
- Laboratory of Chemistry, Analysis & Design of Food Processes, Department of Food Science and Technology, University of West Attica, Agiou Spyridonos, 12243 Egaleo, Greece; (P.K.R.); (S.J.K.); (A.B.)
| | - Anthimia Batrinou
- Laboratory of Chemistry, Analysis & Design of Food Processes, Department of Food Science and Technology, University of West Attica, Agiou Spyridonos, 12243 Egaleo, Greece; (P.K.R.); (S.J.K.); (A.B.)
| | - Marinos Xagoraris
- Laboratory of Chemistry, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (M.X.); (P.A.T.)
| | - Petros A. Tarantilis
- Laboratory of Chemistry, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (M.X.); (P.A.T.)
| | - Irini F. Strati
- Laboratory of Chemistry, Analysis & Design of Food Processes, Department of Food Science and Technology, University of West Attica, Agiou Spyridonos, 12243 Egaleo, Greece; (P.K.R.); (S.J.K.); (A.B.)
| |
Collapse
|
3
|
Cardoso RV, da Silva DVT, Santos-Sodré SDJL, Pereira PR, Freitas CS, Moterle D, Kanis LA, Silva LHMD, Rodrigues AMDC, Paschoalin VMF. Green Ultrasound-Assisted Extraction of Bioactive Compounds from Cumari-Do-Pará Peppers ( Capsicum chinense Jacq.) Employing Vegetable Oils as Solvents. Foods 2024; 13:2765. [PMID: 39272529 PMCID: PMC11394977 DOI: 10.3390/foods13172765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Capsaicin, carotenoids, and phenolic compounds from cumari-do-Pará peppers (Capsicum chinense Jacq.) harvested from two different locations in Pará, Brazil, and at different ripening stages were extracted by employing green methodologies as an alternative to organic solvents. Edible vegetable oils from soybeans (Glycine max), Brazilian nuts (Bertholettia excelsa H.B.), and palm olein were used in combination with ultrasonic-assisted extraction (UAE). The proximate composition of the pepper extracts and vitamin C were determined through AOAC methods, total phenolics and carotenoids were assessed by UV/Vis spectrophotometry, and capsaicin by high-performance liquid chromatography. Antioxidant cumari-do-Pará extract activities were evaluated by the ABTS radical scavenging and β-carotene/linoleic acid assays. The vegetable oils were suitable for extracting and preserving bioactive pepper compounds, especially mature ones harvested from Igarapé-Açu. Bioactive compound content and antioxidant activity varied with harvesting location and ripening stage. Soybean oil was the most effective in extracting bioactive pepper compounds, particularly carotenoids, with 69% recovery. Soybean oil extracts enriched in capsaicin, carotenoids, and phenolics obtained from cumari-do-Pará can be used as spices in foodstuffs and/or as additives in pharmaceutical and nutraceutical formulations. Edible vegetable oils combined with UAE are promising for bioactive compound extraction, representing an environmentally friendly, safe, low-cost, versatile, and fast alternative.
Collapse
Affiliation(s)
- Raiane Vieira Cardoso
- Biochemistry Department, Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Avenida Athos da Silveira Ramos 149, Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Davi Vieira Teixeira da Silva
- Biochemistry Department, Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Avenida Athos da Silveira Ramos 149, Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | | | - Patricia Ribeiro Pereira
- Biochemistry Department, Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Avenida Athos da Silveira Ramos 149, Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Cyntia Silva Freitas
- Biochemistry Department, Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Avenida Athos da Silveira Ramos 149, Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| | - Diego Moterle
- Health Science Institute, South University of Santa Catarina (UNISul), Avenida Jose Acacio Moreira 787, Tubarão 88704-900, SC, Brazil
| | - Luiz Alberto Kanis
- Health Science Institute, South University of Santa Catarina (UNISul), Avenida Jose Acacio Moreira 787, Tubarão 88704-900, SC, Brazil
| | - Luiza Helena Meller da Silva
- Institute of Technology, Federal University of Para (UFPA), Augusto Corrêa 1, Guamá, Belém 66075-110, PA, Brazil
| | | | - Vania Margaret Flosi Paschoalin
- Biochemistry Department, Chemistry Institute, Federal University of Rio de Janeiro (UFRJ), Avenida Athos da Silveira Ramos 149, Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| |
Collapse
|
4
|
Wirwis A, Sadowski Z. Guide for Optimization of Olive Leaf Extraction and Silver Nanoparticles Biosynthesis as an Initial Step for Pilot Plant Design. ACS OMEGA 2024; 9:29053-29068. [PMID: 38973861 PMCID: PMC11223521 DOI: 10.1021/acsomega.4c04483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 07/09/2024]
Abstract
This account presents the results of two successful optimization processes. First, a polyphenol-rich aqueous olive extract was obtained and then silver nanoparticles (AgNPs) synthesized with high efficiency. Selected parameters for both processes were optimized based on the procedure of the Box-Behnken multifactorial design. The independent variables in the extraction process were the biomass/water ratio, temperature, and time. For AgNPs synthesis, the independent variables were the volume of olive extract, temperature, and process duration. The relationship between the process parameters was visualized graphically by using the response surface methodology. A high fit of the experimental data with the predicted models was shown. The regression coefficients were high, 0.9936 for extraction and 0.9757 for AgNPs biosynthesis. The extraction efficiency under its optimal conditions was as follows: biomass/solvent ratio 0.016, temperature 80 °C for 80 min, and yield 160.67 [μg GAE (gallic acid equivalent)/mL]. The highest yield of AgNPs synthesis, equal to 1.955, was obtained when it was carried out for 50 min at 75 °C with the application of 11 mL of extract. Studies on the AgNPs suspension's stability depending on the extract amount were demonstrated. A physicochemical analysis using dynamic light scattering, transmission electron microscopy images, and Fourier transform infrared spectroscopy for AgNPs obtained under optimal conditions was shown. Finally, a pilot-scale biosynthesis of AgNPs was designed.
Collapse
Affiliation(s)
- Anna Wirwis
- Department of Process Engineering
and Technology of Polymer and Carbon Materials, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wrocław, Poland
| | - Zygmunt Sadowski
- Department of Process Engineering
and Technology of Polymer and Carbon Materials, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
5
|
Khalil AA, Rahman MM, Rauf A, Islam MR, Manna SJ, Khan AA, Ullah S, Akhtar MN, Aljohani ASM, Abdulmonem WA, Simal-Gandara J. Oleuropein: Chemistry, extraction techniques and nutraceutical perspectives-An update. Crit Rev Food Sci Nutr 2023; 64:9933-9954. [PMID: 37272499 DOI: 10.1080/10408398.2023.2218495] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Olive family (Oleaceae) contains several species among which Olea europaea L. is mostly used for production of olive oils. Various parts of olive tree are rich source of diverse bioactive compounds such as Apigenin, elenolic acid, Hydroxytyrosol, Ligstroside, Oleoside, Oleuropein, Oleuropein aglycone, Tyrosol, etc. Among these, oleuropein, a secoiridoid is predominantly found in olive leaves and young olive fruits of different species of Oleaceae family. Scientists have adopted numerous extraction methods (conventional & latest) to increase the yield of oleuropein. Among these techniques, maceration, soxhlet, microwave-assisted, ultrasonication, and supercritical fluid methods are most commonly employed for extraction of oleuropein. Evidently, this review emphasizes on various in-vitro and in-vivo studies focusing on nutraceutical properties of oleuropein. Available literature highlights the pharmaceutical potential of oleuropein against various diseases such as obesity, diabetes, cardiovascular complications, neurodegenerative diseases, cancer, inflammation, microbial infections, and oxidation. This review will benefit the scientific community as it narrates comprehensive literature regarding absorption, metabolism, bioavailability, extraction techniques, and nutraceutical perspectives associated with oleuropein.
Collapse
Affiliation(s)
- Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, Khyber Pakhtunkhwa, Pakistan
| | - Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Sultana Juhara Manna
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Ammar Ahmed Khan
- University Institute of Food Science and Technology, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Samee Ullah
- University Institute of Food Science and Technology, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Muhammad Nadeem Akhtar
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Abdullah S M Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Jesus Simal-Gandara
- Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| |
Collapse
|
6
|
Benazzouz-Smail L, Achat S, Brahmi F, Bachir-Bey M, Arab R, Lorenzo JM, Benbouriche A, Boudiab K, Hauchard D, Boulekbache L, Madani K. Biological Properties, Phenolic Profile, and Botanical Aspect of Nigella sativa L. and Nigella damascena L. Seeds: A Comparative Study. Molecules 2023; 28:molecules28020571. [PMID: 36677629 PMCID: PMC9863492 DOI: 10.3390/molecules28020571] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/14/2022] [Accepted: 12/28/2022] [Indexed: 01/09/2023] Open
Abstract
The use of Nigella seeds in the food, pharmaceutical, and cosmetic fields is common, since the iniquity and the virtues of these plants are directly related to their characteristic phytochemical composition. This investigation focused on the comparative study of the botanical aspect, phenolic profile, and in vitro and in vivo biological activities of Nigella sativa L. (NS) and Nigella damascena L. (ND) seeds. The macro- and micro-morphological properties of these seeds were studied, and the key dissimilarities between them were clearly illustrated. The phytochemical contents and phenolic profiles were determined, and the in vitro antioxidant activity was assessed using four methods. The in vivo antioxidant and biochemical parameters of the blood of supplemented mice were determined. The results of the macro- and micro-structure analysis revealed differences between the two plants. Here, ND is characterized by higher phytochemical contents and the best antioxidant activities. The HPLC analysis indicated the presence of nine compounds, namely seven phenolic acids, particularly hydroxybenzoic and caffeic acids, and two flavonoids. The administration of ND extract to mice for 21 days at a concentration of 500 mg/kg allowed a substantial amelioration of plasma antioxidant properties. In addition, the extracts ameliorate blood parameters (cholesterol, triglycerides, glycemia, and urea). Furthermore, the antimicrobial activity of extracts demonstrated their effects on Staphylococcus and Aspergillus. Nigella seeds, in particular ND, expressed considerable in vitro antioxidant properties and demonstrated significant amelioration of mice blood properties. Consequently, these species can serve as a valuable source of compounds with various applications.
Collapse
Affiliation(s)
- Leila Benazzouz-Smail
- Laboratoire de Biomathématiques, Biochimie, Biophysique et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria
| | - Sabiha Achat
- Laboratoire de Biomathématiques, Biochimie, Biophysique et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria
| | - Fatiha Brahmi
- Laboratoire de Biomathématiques, Biochimie, Biophysique et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria
| | - Mostapha Bachir-Bey
- Laboratoire de Biochimie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria
| | - Radia Arab
- Laboratoire de Biomathématiques, Biochimie, Biophysique et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria
| | - José Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, San Cibraodas Viñas, 32900 Ourense, Spain
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
- Correspondence:
| | - Aicha Benbouriche
- Laboratoire de Biomathématiques, Biochimie, Biophysique et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria
| | - Kahina Boudiab
- Laboratoire de Biomathématiques, Biochimie, Biophysique et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria
| | - Didier Hauchard
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS UMR 6226, 13 Allée de Beaulieu, CS 50837, CEDEX 7, 35708 Rennes, France
| | - Lila Boulekbache
- Laboratoire de Biomathématiques, Biochimie, Biophysique et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria
| | - Khodir Madani
- Laboratoire de Biomathématiques, Biochimie, Biophysique et Scientométrie, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, Bejaia 06000, Algeria
- Centre de Recherche en Technologies Agro-Alimentaires, Route de Targa Ouzemour, Bejaia 06000, Algeria
| |
Collapse
|
7
|
Xie P, Deng Y, Huang L, Zhang C. Effect of olive leaf ( Olea europaea L.) extract addition to broiler diets on the growth performance, breast meat quality, antioxidant capacity and caecal bacterial populations. ITALIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1080/1828051x.2022.2105265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Pujun Xie
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
| | - Yejun Deng
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
| | - Lixin Huang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
| | - Caihong Zhang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
8
|
Gharby S, Oubannin S, Ait Bouzid H, Bijla L, Ibourki M, Gagour J, Koubachi J, Sakar EH, Majourhat K, Lee LH, Harhar H, Bouyahya A. An Overview on the Use of Extracts from Medicinal and Aromatic Plants to Improve Nutritional Value and Oxidative Stability of Vegetable Oils. Foods 2022; 11:3258. [PMID: 37431007 PMCID: PMC9601662 DOI: 10.3390/foods11203258] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/08/2022] [Accepted: 10/14/2022] [Indexed: 07/30/2023] Open
Abstract
Oil oxidation is the main factor limiting vegetable oils' quality during storage, as it leads to the deterioration of oil's nutritional quality and gives rise to disagreeable flavors. These changes make fat-containing foods less acceptable to consumers. To deal with this problem and to meet consumer demand for natural foods, vegetable oil fabricators and the food industry are looking for alternatives to synthetic antioxidants to protect oils from oxidation. In this context, natural antioxidant compounds extracted from different parts (leaves, roots, flowers, and seeds) of medicinal and aromatic plants (MAPs) could be used as a promising and sustainable solution to protect consumers' health. The objective of this review was to compile published literature regarding the extraction of bioactive compounds from MAPs as well as different methods of vegetable oils enrichment. In fact, this review uses a multidisciplinary approach and offers an updated overview of the technological, sustainability, chemical and safety aspects related to the protection of oils.
Collapse
Affiliation(s)
- Saïd Gharby
- Biotechnology, Analytical Sciences and Quality Control Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco
| | - Samira Oubannin
- Biotechnology, Analytical Sciences and Quality Control Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco
| | - Hasna Ait Bouzid
- Biotechnology, Analytical Sciences and Quality Control Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco
| | - Laila Bijla
- Biotechnology, Analytical Sciences and Quality Control Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco
| | - Mohamed Ibourki
- Biotechnology, Analytical Sciences and Quality Control Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laayoune 70000, Morocco
| | - Jamila Gagour
- Biotechnology, Analytical Sciences and Quality Control Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco
| | - Jamal Koubachi
- Biotechnology, Analytical Sciences and Quality Control Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco
| | - El Hassan Sakar
- Laboratory of Biology, Ecology and Health, FS, Abdelmalek Essaadi University, Tetouan 93002, Morocco
| | - Khalid Majourhat
- Biotechnology, Analytical Sciences and Quality Control Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
| | - Hicham Harhar
- Laboratory of Materials, Nanotechnology and Environment LMNE, Mohammed V University in Rabat, Rabat 10100, Morocco
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Genomic Center of Human Pathologies, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10100, Morocco
| |
Collapse
|
9
|
Nikou T, Sakavitsi ME, Kalampokis E, Halabalaki M. Metabolism and Bioavailability of Olive Bioactive Constituents Based on In Vitro, In Vivo and Human Studies. Nutrients 2022; 14:3773. [PMID: 36145149 PMCID: PMC9504511 DOI: 10.3390/nu14183773] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Consumption of olive products has been established as a health-promoting dietary pattern due to their high content in compounds with eminent pharmacological properties and well-described bioactivities. However, their metabolism has not yet been fully described. The present critical review aimed to gather all scientific data of the past two decades regarding the absorption and metabolism of the foremost olive compounds, specifically of the phenylalcohols hydroxytyrosol (HTyr) and tyrosol (Tyr) and the secoiridoids oleacein (Olea), oleocanthal (Oleo) and oleuropein (Oleu). A meticulous record of the in vitro assays and in vivo (animals and humans) studies of the characteristic olive compounds was cited, and a critical discussion on their bioavailability and metabolism was performed taking into account data from their gut microbial metabolism. The existing critical review summarizes the existing knowledge regarding the bioavailability and metabolism of olive-characteristic phenylalchohols and secoiridoids and spotlights the lack of data for specific chemical groups and compounds. Critical observations and conclusions were derived from correlating structure with bioavailability data, while results from in vitro, animal and human studies were compared and discussed, giving significant insight to the future design of research approaches for the total bioavailability and metabolism exploration thereof.
Collapse
Affiliation(s)
| | | | | | - Maria Halabalaki
- Division of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15771 Athens, Greece
| |
Collapse
|
10
|
Alqarni MH, Salkini MA, Alam P, Alanazi MT, Abdel-Kader MS, El Sohafy SM. Assessment of seasonal variation of the bioactive oleuropein in Olea europaea L. leaves cultivated in Saudi Arabia. ACTA CHROMATOGR 2022. [DOI: 10.1556/1326.2021.00905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Plants secondary metabolites undergoes qualitative and quantitative variation due to environmental and growth factors. It is a crucial factor to select the proper time for collection of medicinal plants to assure maximum content of active components reflected as maximum efficacy. Olive leaves (Olea europaea L.) are known traditionally for their antidiabetic effect. The secoiridoid glycoside oleuropein is the main active component of Olive leaves responsible for the biological activity. The current study was conducted to monitor the seasonal variation of oleuropein in Olives leaves collected from the same location. To achieve this goal a validated HPLC method following the ICH guidelines was established. Separation was conducted using RP18 column and a mobile phase consisted of ultrapure water containing 20% acetonitrile and 1% acetic acid. Detection was performed at 254 nm with 1 mL/min flow rate. The method was simple, linear, accurate, precise, specific and robust. The analyses revealed considerable variations in the level of oleuropein throughout the year. This variation cannot be explained by temperature variation during the year. Two points of high levels of oleuropein were detected prior to flowering stage and ripening of the fruits. The levels of growth regulators most likely is responsible for the increased production of oleuropein. It is recommended that leaves intended for medicinal use to be collected during the fruiting stage prior to fruit ripening.
Collapse
Affiliation(s)
- Mohammed Hamed Alqarni
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, 11942, Al-Kharj, Saudi Arabia
| | - Mohamad Ayman Salkini
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, 11942, Al-Kharj, Saudi Arabia
| | - Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, 11942, Al-Kharj, Saudi Arabia
| | - Mazen Talal Alanazi
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, 11942, Al-Kharj, Saudi Arabia
| | - Maged Saad Abdel-Kader
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, 11942, Al-Kharj, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, 21215, Alexandria, Egypt
| | - Samah M. El Sohafy
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, 21215, Alexandria, Egypt
| |
Collapse
|
11
|
Lamas S, Rodrigues N, Peres AM, Pereira JA. Flavoured and fortified olive oils - Pros and cons. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.04.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
12
|
LC–ESI–MS/MS analysis, biological effects of phenolic compounds extracted by microwave method from Algerian Zizyphus lotus fruits. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01437-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Subias-Gusils A, Álvarez-Monell A, Boqué N, Caimari A, Del Bas JM, Mariné-Casadó R, Solanas M, Escorihuela RM. Behavioral and Metabolic Effects of a Calorie-Restricted Cafeteria Diet and Oleuropein Supplementation in Obese Male Rats. Nutrients 2021; 13:nu13124474. [PMID: 34960026 PMCID: PMC8704884 DOI: 10.3390/nu13124474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/09/2021] [Accepted: 12/12/2021] [Indexed: 02/07/2023] Open
Abstract
Diet-induced obesity models are widely used to investigate dietary interventions for treating obesity. This study was aimed to test whether a dietary intervention based on a calorie-restricted cafeteria diet (CAF-R) and a polyphenolic compound (Oleuropein, OLE) supplementation modified sucrose intake, preference, and taste reactivity in cafeteria diet (CAF)-induced obese rats. CAF diet consists of high-energy, highly palatable human foods. Male rats fed standard chow (STD) or CAF diet were compared with obese rats fed CAF-R diet, alone or supplemented with an olive tree leaves extract (25 mg/kg*day) containing a 20.1% of OLE (CAF-RO). Biometric, food consumption, and serum parameters were measured. CAF diet increased body weight, food and energy consumption and obesity-associated metabolic parameters. CAF-R and CAF-RO diets significantly attenuated body weight gain and BMI, diminished food and energy intake and improved biochemical parameters such as triacylglycerides and insulin resistance which did not differ between CAF-RO and STD groups. The three cafeteria groups diminished sucrose intake and preference compared to STD group. CAF-RO also diminished the hedonic responses for the high sucrose concentrations compared with the other groups. These results indicate that CAF-R diet may be an efficient strategy to restore obesity-associated alterations, whilst OLE supplementation seems to have an additional beneficial effect on sweet taste function.
Collapse
Affiliation(s)
- Alex Subias-Gusils
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (A.S.-G.); (A.Á.-M.)
- Departament de Psiquiatria i Medicina Legal, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Adam Álvarez-Monell
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (A.S.-G.); (A.Á.-M.)
- Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, Universitat Autònoma de Barcelona, 08913 Bellaterra, Spain
| | - Noemí Boqué
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, 43204 Reus, Spain; (N.B.); (A.C.); (J.M.D.B.); (R.M.-C.)
| | - Antoni Caimari
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, 43204 Reus, Spain; (N.B.); (A.C.); (J.M.D.B.); (R.M.-C.)
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology Area and Technological Unit of Nutrition and Health, 43204 Reus, Spain
| | - Josep M. Del Bas
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, 43204 Reus, Spain; (N.B.); (A.C.); (J.M.D.B.); (R.M.-C.)
| | - Roger Mariné-Casadó
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, 43204 Reus, Spain; (N.B.); (A.C.); (J.M.D.B.); (R.M.-C.)
| | - Montserrat Solanas
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (A.S.-G.); (A.Á.-M.)
- Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, Universitat Autònoma de Barcelona, 08913 Bellaterra, Spain
- Correspondence: (M.S.); (R.M.E.); Tel.: +34-93-5811373 (M.S.); +34-93-5813296 (R.M.E.)
| | - Rosa M. Escorihuela
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (A.S.-G.); (A.Á.-M.)
- Departament de Psiquiatria i Medicina Legal, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Correspondence: (M.S.); (R.M.E.); Tel.: +34-93-5811373 (M.S.); +34-93-5813296 (R.M.E.)
| |
Collapse
|
14
|
Yang D, Li J, Liang C, Tian L, Shi C, Hui N, Liu Y, Ling M, Xin L, Wan M, Li H, Zhao Q, Ren X, Liu H, Cao W. Syringa microphylla Diels: A comprehensive review of its phytochemical, pharmacological, pharmacokinetic, and toxicological characteristics and an investigation into its potential health benefits. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 93:153770. [PMID: 34678528 DOI: 10.1016/j.phymed.2021.153770] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/31/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Syringa microphylla Diels is a plant in the family Syringa Linn. For hundreds of years, its flowers and leaves have been used as a folk medicine for the treatment of cough, inflammation, colds, sore throat, acute hepatitis, chronic hepatitis, early liver cirrhosis, fatty liver, and oesophageal cancer. PURPOSE For the first time, we have comprehensively reviewed information on Syringa microphylla Diels that is not included in the Pharmacopoeia, clarified the pharmacological mechanisms of Syringa microphylla Diels and its active ingredients from a molecular biology perspective, compiled in vivo and in vitro animal experimental data and clinical data, and summarized the toxicology and pharmacokinetics of Syringa microphylla Diels. The progress in toxicology research is expected to provide a theoretical basis for the development of new drugs from Syringa microphylla Diels, a natural source of compounds that are potentially beneficial to human health. METHODS The PubMed, Google Scholar, China National Knowledge Infrastructure, Web of Science, SciFinder Scholar and Thomson Reuters databases were utilized to conduct a comprehensive search of published literature as of July 2021 to find original literature related to Syringa microphylla Diels and its active ingredients. RESULTS To date, 72 compounds have been isolated and identified from Syringa microphylla Diels, and oleuropein, verbascoside, isoacteoside, echinacoside, forsythoside B, and eleutheroside B are the main active components. These compounds have antioxidant, antibacterial, anti-inflammatory, and neuroprotective effects, and their safety and effectiveness have been demonstrated in long-term traditional applications. Molecular pharmacology experiments have indicated that the active ingredients of Syringa microphylla Diels exert their pharmacological effects in various ways, primarily by reducing oxidative stress damage via Nrf2/ARE pathway regulation, regulating inflammatory factors and inducing apoptosis through the MAPK and NF-κB pathways. CONCLUSION This comprehensive review of Syringa microphylla Diels provides new insights into the correlations among molecular mechanisms, the importance of toxicology and pharmacokinetics, and potential ways to address the limitations of current research. As Syringa microphylla Diels is a natural low-toxicity botanical medicine, it is worthy of development and utilization and is an excellent choice for treating various diseases.
Collapse
Affiliation(s)
- Dan Yang
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Jingyi Li
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Chengyuan Liang
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
| | - Lei Tian
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China; College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Chunyang Shi
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Nan Hui
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Yuan Liu
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Mei Ling
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Liang Xin
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Minge Wan
- School of Medicine and Pharmacy, Shaanxi University of Business & Commerce, Xi'an 712046, PR China
| | - Han Li
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Qianqian Zhao
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Xiaodong Ren
- Medical College, Guizhou University, Guiyang 550025, PR China.
| | - Hong Liu
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd., Hengqin New Area, Zhuhai 519030, PR China.
| | - Wenqiang Cao
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd., Hengqin New Area, Zhuhai 519030, PR China
| |
Collapse
|
15
|
Mouhoubi K, Boulekbache‐Makhlouf L, Mehaba W, Himed‐Idir H, Madani K. Convective and microwave drying of coriander leaves: Kinetics characteristics and modeling, phenolic contents, antioxidant activity, and principal component analysis. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13932] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Khokha Mouhoubi
- Laboratoire de Biomathématiques, Biophysique, Biochimie et Scientométrie, Faculté des Sciences de la Nature et de la Vie Université de Bejaia Bejaia Algeria
| | - Lila Boulekbache‐Makhlouf
- Laboratoire de Biomathématiques, Biophysique, Biochimie et Scientométrie, Faculté des Sciences de la Nature et de la Vie Université de Bejaia Bejaia Algeria
| | - Wafa Mehaba
- Mediterranean Agronomic Institute of Zaragoza (IAMZ) Zaragoza Spain
| | - Hayat Himed‐Idir
- Laboratoire de Biomathématiques, Biophysique, Biochimie et Scientométrie, Faculté des Sciences de la Nature et de la Vie Université de Bejaia Bejaia Algeria
- Centre de Recherche Scientifique et Technique sur les Régions Aride (CRSTRA) Division: Phœniciculture, Biotechnologie et Valorisation des Produits et Sous‐produits du Palmier Dattier Biskra Algeria
| | - Khodir Madani
- Laboratoire de Biomathématiques, Biophysique, Biochimie et Scientométrie, Faculté des Sciences de la Nature et de la Vie Université de Bejaia Bejaia Algeria
- Centre de recherche en technologie agro‐alimentaire Route de targua‐ouzemour Bejaia Algeria
| |
Collapse
|
16
|
Progress in the Valorization of Fruit and Vegetable Wastes: Active Packaging, Biocomposites, By-Products, and Innovative Technologies Used for Bioactive Compound Extraction. Polymers (Basel) 2021; 13:polym13203503. [PMID: 34685262 PMCID: PMC8539143 DOI: 10.3390/polym13203503] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/16/2022] Open
Abstract
According to the Food Wastage Footprint and Climate Change Report, about 15% of all fruits and 25% of all vegetables are wasted at the base of the food production chain. The significant losses and wastes in the fresh and processing industries is becoming a serious environmental issue, mainly due to the microbial degradation impacts. There has been a recent surge in research and innovation related to food, packaging, and pharmaceutical applications to address these problems. The underutilized wastes (seed, skin, rind, and pomace) potentially present good sources of valuable bioactive compounds, including functional nutrients, amylopectin, phytochemicals, vitamins, enzymes, dietary fibers, and oils. Fruit and vegetable wastes (FVW) are rich in nutrients and extra nutritional compounds that contribute to the development of animal feed, bioactive ingredients, and ethanol production. In the development of active packaging films, pectin and other biopolymers are commonly used. In addition, the most recent research studies dealing with FVW have enhanced the physical, mechanical, antioxidant, and antimicrobial properties of packaging and biocomposite systems. Innovative technologies that can be used for sensitive bioactive compound extraction and fortification will be crucial in valorizing FVW completely; thus, this article aims to report the progress made in terms of the valorization of FVW and to emphasize the applications of FVW in active packaging and biocomposites, their by-products, and the innovative technologies (both thermal and non-thermal) that can be used for bioactive compounds extraction.
Collapse
|
17
|
Khadhraoui B, Ummat V, Tiwari BK, Fabiano-Tixier AS, Chemat F. Review of ultrasound combinations with hybrid and innovative techniques for extraction and processing of food and natural products. ULTRASONICS SONOCHEMISTRY 2021; 76:105625. [PMID: 34147916 PMCID: PMC8225985 DOI: 10.1016/j.ultsonch.2021.105625] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 05/23/2021] [Accepted: 06/07/2021] [Indexed: 05/20/2023]
Abstract
Ultrasound has a significant effect on the rate of various processes in food, perfume, cosmetic, pharmaceutical, bio-fuel, materials, or fine chemical industries, despite some shortcomings. Combination with other conventional or innovative techniques can overcome these limitations, enhance energy, momentum and mass transfer, and has been successfully demonstrated in many recent studies. Various ultrasound combined hybrid and innovative techniques are systematically summarized in this review for the first time. Ultrasound can be combined with diverse conventional techniques including Soxhlet, Clevenger, enzyme, hydrotropes, ionic liquids, Deep Eutectic Solvents (DES) or Natural Deep Eutectic Solvents (NADES), to enhance mixing and micro-mixing, reduced thermal and concentration gradients, and selective extraction. Moreover, combinations of ultrasound with other innovative techniques such as microwave, extrusion, supercritical fluid, subcritical and pressure liquids, Instant controlled pressure drop (DIC), Pulsed Electric Field (PEF), Ultra-Violet (UV) or Infra-Red (IR) radiations, Counter-current chromatography (CCC), or centrifugal partition chromatographs (CPC) can enable reduced equipment size, faster response to process control, faster start-up, increased production, and elimination of process steps. The theories and applications of these ultrasound combined hybrid and innovative techniques as well as their advantages and limitations are compared, and further perspectives are proposed. This review provides new insights into advances in ultrasound combined techniques and their application at research, educational, and industrial level in modern food and plant-based chemistry.
Collapse
Affiliation(s)
- B Khadhraoui
- Avignon University, INRAE, UMR408, GREEN Extraction Team, 84000 Avignon, France
| | - V Ummat
- Teagasc Food Research Centre, Dublin D15 KN3K, Ireland
| | - B K Tiwari
- Teagasc Food Research Centre, Dublin D15 KN3K, Ireland.
| | - A S Fabiano-Tixier
- Avignon University, INRAE, UMR408, GREEN Extraction Team, 84000 Avignon, France
| | - F Chemat
- Avignon University, INRAE, UMR408, GREEN Extraction Team, 84000 Avignon, France.
| |
Collapse
|
18
|
Palma A, Díaz MJ, Ruiz-Montoya M, Morales E, Giráldez I. Ultrasound extraction optimization for bioactive molecules from Eucalyptus globulus leaves through antioxidant activity. ULTRASONICS SONOCHEMISTRY 2021; 76:105654. [PMID: 34198128 PMCID: PMC8254034 DOI: 10.1016/j.ultsonch.2021.105654] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 05/02/2023]
Abstract
Antioxidant products present a very high added value and are demanded in the market. The optimization of their extraction is a high-stakes matter for both economic and environmental points of view. Ultrasound extraction has been considered one of the most promising methods, so the relative importance of key parameters may have decisive economic significance. For this reason, different parameters that have influence on the extraction capacity such as ultrasound power, time, temperature, pH and % ethanol in water have been studied to know the relationships between the independent parameters and their influence on the extraction from Eucalyptus globulus leaves. An experimental Box-Behnken factorial design and subsequent analysis by neural networks have been used. The relative influence of each parameter varies according to the nature of the extracted compound. In this regard, the higher capacity of extraction of the selected antioxidant compounds by means of the variation of the operation conditions can be facilitated. For all the studied compounds, temperature has been the most important parameter for their extraction. The relative content (%) of bioactive compounds (terpenes) in the optimized Eucalyptus globulus extract has been performed by GC-MS analysis.
Collapse
Affiliation(s)
- Alberto Palma
- Pro2TecS-Product Technology and Chemical Processes Research Centre, University of Huelva, Campus "El Carmen", 21071 Huelva, Spain.
| | - Manuel Jesús Díaz
- Pro2TecS-Product Technology and Chemical Processes Research Centre, University of Huelva, Campus "El Carmen", 21071 Huelva, Spain
| | - Mercedes Ruiz-Montoya
- Pro2TecS-Product Technology and Chemical Processes Research Centre, University of Huelva, Campus "El Carmen", 21071 Huelva, Spain
| | - Emilio Morales
- Pro2TecS-Product Technology and Chemical Processes Research Centre, University of Huelva, Campus "El Carmen", 21071 Huelva, Spain
| | - Inmaculada Giráldez
- Pro2TecS-Product Technology and Chemical Processes Research Centre, University of Huelva, Campus "El Carmen", 21071 Huelva, Spain
| |
Collapse
|
19
|
Difonzo G, Squeo G, Pasqualone A, Summo C, Paradiso VM, Caponio F. The challenge of exploiting polyphenols from olive leaves: addition to foods to improve their shelf-life and nutritional value. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:3099-3116. [PMID: 33275783 DOI: 10.1002/jsfa.10986] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/18/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
Olive leaves represent a waste from the olive oil industry which can be reused as source of polyphenols. The most representative phenolic compound of olive leaves is the secoiridoid oleuropein, followed by verbascoside, apigenin-7-O-glucoside, luteolin-7-O-glucoside, and simple phenols. The attention towards these compounds derives above all from the large number of studies demonstrating their beneficial effect on health, in fact olive leaves have been widely used in folk medicine in the Mediterranean regions. Moreover, the growing demand from consumers to replace the synthetic antioxidants, led researchers to conduct studies on the addition of plant bioactives in foods to improve their shelf-life and/or to obtain functional products. The current study overviews the findings on the addition of polyphenol-rich olive leaf extract (OLE) to foods. In particular, the effect of OLE addition on the antioxidant, microbiological and nutritional properties of different foods is examined. Most studies have highlighted the antioxidant effect of OLE in different food matrices, such as oils, meat, baked goods, vegetables, and dairy products. Furthermore, the antimicrobial activity of OLE has been observed in meat and vegetable foods, highlighting the potential of OLE as a replacer of synthetic preservatives. Finally, several authors studied the effect of OLE addition with the aim of improving the nutritional properties of vegetable products, tea, milk, meat and biscuits. Advantages and drawbacks of the different use of OLE were reported and discussed. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Graziana Difonzo
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Bari, Italy
| | - Giacomo Squeo
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Bari, Italy
| | - Antonella Pasqualone
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Bari, Italy
| | - Carmine Summo
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Bari, Italy
| | - Vito M Paradiso
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Francesco Caponio
- Department of Soil, Plant and Food Science (DISSPA), University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
20
|
Thamapan K, Laohakunjit N, Kerdchoechuen O, Vongsawasdi P, Mingvanish W. Ultrasound-assisted extraction for simultaneous quantitation of potential sweetening compounds from Derris reticulata aqueous extracts: a response surface methodology approach. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-020-00805-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
21
|
Ferreira LMDMC, Pereira RR, de Carvalho FB, Silva Santos A, Ribeiro-Costa RM, Carréra Silva Júnior JO. Green Extraction by Ultrasound, Microencapsulation by Spray Drying and Antioxidant Activity of the Tucuma Coproduct ( Astrocaryum vulgare Mart.) Almonds. Biomolecules 2021; 11:biom11040545. [PMID: 33917892 PMCID: PMC8068271 DOI: 10.3390/biom11040545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/26/2021] [Accepted: 04/06/2021] [Indexed: 02/07/2023] Open
Abstract
The industrial processing amazon fruits, like tucuma, generates a large amount of coproducts with large nutritional potential. Thus, this work obtained the oily extract of the tucuma almonds coproducts by green extraction using palm oil by the ultrasound method and then microencapsulated by atomization and verification of its antioxidant activity. Thermogravimetric techniques, infrared spectroscopy, scanning electron microscopy, moisture content, water activity were applied to characterize the microparticles. Total carotenoids were determined by UV spectroscopy and antioxidant activity was measured by 2,2′-azino-di-(3-ethylbenzthiazoline sulfonic acid and co-oxidation in the system β-carotene/linoleic acid. The oily extract and microparticle had total carotenoid contents of 3.305 mg/100 g ± 0.01 and 2.559 mg/100 g ± 0.01, respectively. The antioxidant activity assessed through the 2,2′-azino-di-(3-ethylbenzthiazoline sulfonic acid value was 584.75 μM/trolox ± 0.01 (oily extract) and 537.12 μM/trolox ± 0.01 (microparticle) were determined. In the system β-carotene/linoleic acid showed oxidation of 49.9% ± 1.8 lipophilic extract and 43.3% ± 2.3 microparticle. The results showed that the oily extract of the tucuma almond coproduct can be used as a carotenoid-rich source and microencapsuled with possible application for functional foods production.
Collapse
Affiliation(s)
| | - Rayanne Rocha Pereira
- Laboratory of Pharmaceutical and Cosmetic R&D, College of Pharmacy, Federal University of Pará, Belém 66075-110, Brazil; (L.M.d.M.C.F.); (R.R.P.)
| | - Fernanda Brito de Carvalho
- Laboratory of Innovation and Development of Pharmaceutical Technology, Federal University of Amazonas, Manaus 69067-005, Brazil;
| | - Alberdan Silva Santos
- Laboratory of Systematic Investigation in Biotechnology and Molecular Biodiversity, Federal University of Pará, Belém 66075-110, Brazil;
| | | | - José Otávio Carréra Silva Júnior
- Laboratory of Pharmaceutical and Cosmetic R&D, College of Pharmacy, Federal University of Pará, Belém 66075-110, Brazil; (L.M.d.M.C.F.); (R.R.P.)
- Correspondence: ; Tel.: +55-(91)-3201-8345
| |
Collapse
|
22
|
Berkani F, Dahmoune F, Serralheiro ML, Ressaissi A, Dairi S, Kadri N, Remini H, Abbou A, Madani K. New bioactive constituents characterized by LC–MS/MS in optimized microwave extract of jujube seeds (Zizyphus lotus L.). JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-00903-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Modification of Olive Leaves’ Surface by Ultrasound Cavitation. Correlation with Polyphenol Extraction Enhancement. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app11010232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We investigated the impact of ultrasound at 20 kHz on olive leaves to understand how acoustic cavitation could increase polyphenol extraction. Application of ultrasound to whole leaf from 5 to 60 min enabled us to increase extraction from 6.96 to 48.75 µg eq. oleuropein/mL of extract. These results were correlated with Environmental Scanning Electron Microscopy, allowing for leaf surface observation and optical microscopy of treated leaf cross sections to understand histochemical modifications. Our observations suggest that the effectiveness of ultrasound applied to extraction is highly dependent on plant structure and on how this material will react when subjected to acoustic cavitation. Ultrasound seems to impact the leaves by two mechanisms: cuticle erosion, and fragmentation of olive leaf surface protrusions (hairs), which are both polyphenol-rich structures.
Collapse
|
24
|
Jabalbarezi Hukerdi Y, Fathi Nasri M, Rashidi L, Ganjkhanlou M, Emami A. Supplementing kids diet with olive leaves: Effect on meat quality. Small Rumin Res 2020. [DOI: 10.1016/j.smallrumres.2020.106258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
Uğurlu S, Okumuş E, Bakkalbaşı E. Reduction of bitterness in green walnuts by conventional and ultrasound-assisted maceration. ULTRASONICS SONOCHEMISTRY 2020; 66:105094. [PMID: 32234675 DOI: 10.1016/j.ultsonch.2020.105094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/17/2020] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
The efficiency of conventional and ultrasound-assisted maceration was investigated in comparison to reduce the bitterness of green walnuts. Conventional maceration was studied at room temperature for 6, 8 and 10 days while ultrasound-assisted maceration (20 kHz, %100 of amplitude) was performed at 36 °C for 6, 8, 10, 12, and 14 h. Phenolic content and antioxidant activity of green walnuts were decreased by reduction of bitterness. Phenolic content and antioxidant activity of green walnut jams prepared from debittered green walnuts by ultrasound-assisted maceration were higher than those of conventional maceration excluding ellagic acid only. Based on findings of sensory analyses, bitterness level was similar in green walnut jams prepared by ultrasound-assisted maceration for 12 h and conventional maceration for 6 days. On the other hand, green walnut jams processed by ultrasound-assisted maceration for 12 h led to the highest general acceptance. It was concluded that ultrasound-assisted maceration may provide better nutritional and sensory quality in green walnut jam. In addition, the time required for reduction of bitterness may be shortened from days to hours by ultrasound-assisted maceration.
Collapse
Affiliation(s)
- Serdar Uğurlu
- Van Yüzüncü Yıl University, Faculty of Engineering, Department of Food Engineering, Zeve Campus, 65080 Van, Turkey
| | - Emine Okumuş
- Van Yüzüncü Yıl University, Faculty of Engineering, Department of Food Engineering, Zeve Campus, 65080 Van, Turkey.
| | - Emre Bakkalbaşı
- Van Yüzüncü Yıl University, Faculty of Engineering, Department of Food Engineering, Zeve Campus, 65080 Van, Turkey.
| |
Collapse
|
26
|
Response Surface Methodology Optimization of Microwave-Assisted Polysaccharide Extraction from Algerian Jujube (Zizyphus lotus L.) Pulp and Peel. J Pharm Innov 2020. [DOI: 10.1007/s12247-020-09475-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Li X, Zhang L, Peng Z, Zhao Y, Wu K, Zhou N, Yan Y, Ramaswamy HS, Sun J, Bai W. The impact of ultrasonic treatment on blueberry wine anthocyanin color and its In-vitro anti-oxidant capacity. Food Chem 2020; 333:127455. [PMID: 32653683 DOI: 10.1016/j.foodchem.2020.127455] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/09/2020] [Accepted: 06/28/2020] [Indexed: 01/31/2023]
Abstract
Ultrasound (US) has been recognized as a non-thermal technology for accelerating blueberry wine aging for flavor development. However, influence of US on anthocyanin and color characteristics is uncertain. In this study, US was applied to new blueberry wine, and changes in color characteristics, anthocyanin content and anti-oxidant capacity were evaluated at early stage of aging period. Low-frequency power US resulted in an improvement in color characteristics and lower chromatic aberration as compared to untreated samples, specially at condition of 180 W, 20 min and 2 cycles. Furthermore, this contribution was attributed to unattenuated anthocyanins protected from US stress. Importantly, the structural polarity dependence was mediated by the impact of US on anthocyanins. Additionally, anti-oxidant activity of blueberry wine was not adversely affected under a moderate US condition. US treatment of blueberry wine was therefore considered to significantly enhance the color presentation, hinting at the possibility of promoting blueberry wine aging.
Collapse
Affiliation(s)
- Xusheng Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, PR China
| | - Lei Zhang
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, PR China
| | - Ziyao Peng
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, PR China
| | - Yaqi Zhao
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, PR China
| | - Kaiyun Wu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, PR China
| | - Nan Zhou
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, PR China
| | - Yin Yan
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, PR China
| | | | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
28
|
Virgin Olive Oil Quality Is Affected by the Microbiota that Comprise the Biotic Fraction of the Oil. Microorganisms 2020; 8:microorganisms8050663. [PMID: 32370070 PMCID: PMC7284754 DOI: 10.3390/microorganisms8050663] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/16/2020] [Accepted: 04/27/2020] [Indexed: 11/29/2022] Open
Abstract
This review summarizes the current knowledge on the effects of oil-borne yeasts on the physicochemical, sensorial, and health-related characteristics of virgin olive oil (VOO) during storage. Bacteria, yeasts, and molds constitute the biotic fraction of freshly produced VOO. During storage, the bacteria and molds often die after a short period, while the yeasts survive and condition the quality of VOO. To date, approximately twenty-four yeast species have been isolated from different types of olive oil and its by-products, and seven of these species have been identified as new species. The activity of some yeasts of the biotic fraction of olive oil improves the sensorial characteristics of VOO. Some yeasts can also worsen the quality of the product by allowing the appearance of defects, oxidation of polar phenols, and triacylglycerol hydrolysis. Some yeast species of VOO show in vitro beneficial health effects, such as probiotic and antioxidant activities.
Collapse
|
29
|
AlShaal S, Daghestani M, Karabet F. Determination of the isolated Rutin And Quercetin Contents In Syrian Ficus Carica L. Leaves Extracts. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2019. [DOI: 10.18596/jotcsa.622442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
30
|
Lukić K, Brnčić M, Ćurko N, Tomašević M, Valinger D, Denoya GI, Barba FJ, Ganić KK. Effects of high power ultrasound treatments on the phenolic, chromatic and aroma composition of young and aged red wine. ULTRASONICS SONOCHEMISTRY 2019; 59:104725. [PMID: 31442771 DOI: 10.1016/j.ultsonch.2019.104725] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/16/2019] [Accepted: 08/04/2019] [Indexed: 06/10/2023]
Abstract
In this study, the effects of both ultrasonic bath and probe treatments on the phenolic, chromatic and aroma composition of young red wine Cabernet Sauvignon were studied and modeled by artificial neural networks (ANNs). Moreover, the effect of high power ultrasound (HPU) along with antioxidants addition (sulfur dioxide and glutathione) was investigated during 6 months of aging in bottles. Lower amplitude and temperature, shorter treatment duration and particularly lower frequency showed a more favorable and milder effect on the chemical composition of wine. In the case of the ultrasonic probe treatment, similar effect was achieved primarily by a larger probe diameter as well as lower amplitude and treatment duration. Selected ANN models showed the best predictions for the chromatic characteristics followed by total phenolics and anthocyanins. The changes induced by HPU treatment after 6 months of aging were mainly detected in the composition of phenolic compounds (both total and individual), where higher concentration of antioxidants (sulfur dioxide and glutathione) slowed down the decrease rate of these compounds during aging. However, HPU treatment did not influence most of the chromatic characteristics and aroma compounds, except lightness and fatty acids. The obtained results indicated that suitable ultrasound treatment might accelerate some aging reactions and shorten the period of wine aging.
Collapse
Affiliation(s)
- Katarina Lukić
- University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Mladen Brnčić
- University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia.
| | - Natka Ćurko
- University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Marina Tomašević
- University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Davor Valinger
- University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia
| | - Gabriela I Denoya
- Instituto Tecnología de Alimentos, Instituto Nacional de Tecnología Agropecuaria (INTA), Hurlingham, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n Burjassot, València 46100, Spain.
| | - Karin Kovačević Ganić
- University of Zagreb, Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia
| |
Collapse
|
31
|
Gogoi P, Chutia P, Singh P, Mahanta CL. Effect of optimized ultrasound‐assisted aqueous and ethanolic extraction of
Pleurotus citrinopileatus
mushroom on total phenol, flavonoids and antioxidant properties. J FOOD PROCESS ENG 2019. [DOI: 10.1111/jfpe.13172] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Parmita Gogoi
- Department of Food Engineering and Technology, School of EngineeringTezpur University Tezpur Assam India
| | - Papori Chutia
- Department of Food Engineering and Technology, School of EngineeringTezpur University Tezpur Assam India
| | - Parvinder Singh
- Department of Food Engineering and Technology, School of EngineeringTezpur University Tezpur Assam India
| | - Charu L. Mahanta
- Department of Food Engineering and Technology, School of EngineeringTezpur University Tezpur Assam India
| |
Collapse
|
32
|
Žuntar I, Putnik P, Bursać Kovačević D, Nutrizio M, Šupljika F, Poljanec A, Dubrović I, Barba FJ, Režek Jambrak A. Phenolic and Antioxidant Analysis of Olive Leaves Extracts ( Olea europaea L.) Obtained by High Voltage Electrical Discharges (HVED). Foods 2019; 8:foods8070248. [PMID: 31288471 PMCID: PMC6678916 DOI: 10.3390/foods8070248] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 02/08/2023] Open
Abstract
Background: The aim of this study was to evaluate high voltage electrical discharges (HVED) as a green technology, in order to establish the effectiveness of phenolic extraction from olive leaves against conventional extraction (CE). HVED parameters included different green solvents (water, ethanol), treatment times (3 and 9 min), gases (nitrogen, argon), and voltages (15, 20, 25 kV). Methods: Phenolic compounds were characterized by ultra-performance liquid chromatography-tandem mass spectrometer (UPLC-MS/MS), while antioxidant potency (total phenolic content and antioxidant capacity) were monitored spectrophotometrically. Data for Near infrared spectroscopy (NIR) spectroscopy, colorimetry, zeta potential, particle size, and conductivity were also reported. Results: The highest yield of phenolic compounds was obtained for the sample treated with argon/9 min/20 kV/50% (3.2 times higher as compared to CE). Obtained results suggested the usage of HVED technology in simultaneous extraction and nanoformulation, and production of stable emulsion systems. Antioxidant capacity (AOC) of obtained extracts showed no significant difference upon the HVED treatment. Conclusions: Ethanol with HVED destroys the linkage between phenolic compounds and components of the plant material to which they are bound. All extracts were compliant with legal requirements regarding content of contaminants, pesticide residues and toxic metals. In conclusion, HVED presents an excellent potential for phenolic compounds extraction for further use in functional food manufacturing.
Collapse
Affiliation(s)
- Irena Žuntar
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| | - Predrag Putnik
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia
| | | | - Marinela Nutrizio
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia
| | - Filip Šupljika
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia
| | - Andreja Poljanec
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia
| | - Igor Dubrović
- Teaching Institute for Public health of Primorje-Gorski Kotar County, 51000 Rijeka, Croatia
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, Burjassot, 46100 València, Spain
| | - Anet Režek Jambrak
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia.
| |
Collapse
|
33
|
Li Y, Bundeesomchok K, Rakotomanomana N, Fabiano-Tixier AS, Bott R, Wang Y, Chemat F. Towards a Zero-Waste Biorefinery Using Edible Oils as Solvents for the Green Extraction of Volatile and Non-Volatile Bioactive Compounds from Rosemary. Antioxidants (Basel) 2019; 8:antiox8050140. [PMID: 31117251 PMCID: PMC6562763 DOI: 10.3390/antiox8050140] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 05/16/2019] [Accepted: 05/18/2019] [Indexed: 12/20/2022] Open
Abstract
The zero-waste biorefinery concept inspired a green oleo-extraction of both natural volatile (e.g., borneol, camphor, o-cymene, eucalyptol, limonene, α-pinene, and terpinen-4-ol) and non-volatile (e.g., carnosol, carnosic, and rosmarinic acid) bioactive compounds from rosemary leaves with vegetable oils and their amphiphilic derivatives as simple food-grade solvents. It is noteworthy that soybean oil could obtain the highest total phenolic compounds (TPCs) among 12 refined oils including grapeseed, rapeseed, peanut, sunflower, olive, avocado, almond, apricot, corn, wheat germ, and hazelnut oils. Furthermore, the addition of oil derivatives to soybean oils, such as glyceryl monooleate (GMO), glyceryl monostearate (GMS), diglycerides, and soy lecithin in particular, could not only significantly enhance the oleo-extraction of non-volatile antioxidants by 66.7% approximately, but also help to remarkably improve the solvation of volatile aroma compounds (VACs) by 16% in refined soybean oils. These experimental results were in good consistency with their relative solubilities predicted by the more sophisticated COSMO-RS (COnductor like Screening MOdel for Real Solvents) simulation. This simple procedure of using vegetable oils and their derivatives as bio-based solvents for simultaneously improving the extraction yield of natural antioxidants and flavors from rosemary showed its great potential in up-scaling with the integration of green techniques (ultrasound, microwave, etc.) for zero-waste biorefinery from biomass waste to high value-added extracts in future functional food and cosmetic applications.
Collapse
Affiliation(s)
- Ying Li
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China.
- GREEN Extraction Team, Université d'Avignon et des Pays de Vaucluse, INRA, UMR408, F-84000 Avignon, France.
| | - Kunnitee Bundeesomchok
- GREEN Extraction Team, Université d'Avignon et des Pays de Vaucluse, INRA, UMR408, F-84000 Avignon, France.
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand.
| | - Njara Rakotomanomana
- GREEN Extraction Team, Université d'Avignon et des Pays de Vaucluse, INRA, UMR408, F-84000 Avignon, France.
| | - Anne-Sylvie Fabiano-Tixier
- GREEN Extraction Team, Université d'Avignon et des Pays de Vaucluse, INRA, UMR408, F-84000 Avignon, France.
| | - Romain Bott
- INRA, UMR408, Securité et Qualité des Produits d'Origine Végétale, F-84000 Avignon, France.
| | - Yong Wang
- JNU-UPM International Joint Laboratory on Plant Oil Processing and Safety, Guangdong Engineering Technology Research Center for Cereal and Oil Byproduct Biorefinery, Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China.
| | - Farid Chemat
- GREEN Extraction Team, Université d'Avignon et des Pays de Vaucluse, INRA, UMR408, F-84000 Avignon, France.
| |
Collapse
|
34
|
Rahimi S, Mikani M. Lycopene green ultrasound-assisted extraction using edible oil accompany with response surface methodology (RSM) optimization performance: Application in tomato processing wastes. Microchem J 2019. [DOI: 10.1016/j.microc.2019.02.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
35
|
Indrawati R, Kurniawan JM, Wibowo AA, Juliana, Gunawan IA, Heriyanto, Brotosudarmo THP. Integrated solvent-free extraction and encapsulation of lutein from marigold petals and its application. CYTA - JOURNAL OF FOOD 2019. [DOI: 10.1080/19476337.2018.1544591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Renny Indrawati
- Chemistry Study Program, Universitas Ma Chung, Malang, Indonesia
- Ma Chung Research Center for Photosynthetic Pigments, Universitas Ma Chung, Malang, Indonesia
| | | | | | - Juliana
- Chemistry Study Program, Universitas Ma Chung, Malang, Indonesia
| | | | - Heriyanto
- Chemistry Study Program, Universitas Ma Chung, Malang, Indonesia
- Ma Chung Research Center for Photosynthetic Pigments, Universitas Ma Chung, Malang, Indonesia
| | - Tatas Hardo Panintingjati Brotosudarmo
- Chemistry Study Program, Universitas Ma Chung, Malang, Indonesia
- Ma Chung Research Center for Photosynthetic Pigments, Universitas Ma Chung, Malang, Indonesia
| |
Collapse
|
36
|
Clodoveo ML. Industrial Ultrasound Applications in The Extra-Virgin Olive Oil Extraction Process: History, Approaches, and Key Questions. Foods 2019; 8:E121. [PMID: 31013821 PMCID: PMC6518282 DOI: 10.3390/foods8040121] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 11/17/2022] Open
Abstract
Taking an idea from a basic concept to a commercially available product is highly rewarding, but it can be a very long, complex, and difficult journey. Recognizing and understanding the stages of the process and using the right support to help you navigate through it can mean all the difference between success and failure. The road from concept to market is marred with obstacles, and many businesses fail to pass beyond the development stage. A better understanding of the innovation process is essential from the outset if the pioneers of innovation are to overcome the dangers that they are likely to face along the way and maximize their opportunities for success. In the olive oil sector, the most recent radical innovation is the introduction of ultrasound into the industrial extraction process. Many efforts have been made in order to overcome the Valley of Death. The strategy of designing, implementing, and testing an innovative system that combines the mechanical energy of ultrasound with the possibility of modulating the thermal exchange of olive paste (heating or cooling) has enabled the following: (1) Eliminating malaxation by realizing a real continuous process; (2) raising extraction yields by recovering a further quota of extra-virgin olive oil that is usually lost in the pomace; (3) improving the content of antioxidant molecules simultaneously with yields; and (4) offering a sustainable plant solution that can guarantee the right income for producers.
Collapse
Affiliation(s)
- Maria Lisa Clodoveo
- Interdisciplinary Department of Medicine University of Bari-Piazza Giulio Cesare, 11-70124 Bari, Italy.
| |
Collapse
|
37
|
Martínez-Patiño JC, Gullón B, Romero I, Ruiz E, Brnčić M, Žlabur JŠ, Castro E. Optimization of ultrasound-assisted extraction of biomass from olive trees using response surface methodology. ULTRASONICS SONOCHEMISTRY 2019; 51:487-495. [PMID: 29880395 DOI: 10.1016/j.ultsonch.2018.05.031] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/24/2018] [Accepted: 05/25/2018] [Indexed: 05/14/2023]
Abstract
Olive tree pruning biomass (OTP) and olive mill leaves (OML) are the main residual lignocellulosic biomasses that are generated from olive trees. They have been proposed as a source of value-added compounds and biofuels within the biorefinery concept. In this work, the optimization of an ultrasound-assisted extraction (UAE) process was performed to extract antioxidant compounds present in OTP and OML. The effect of the three parameters, ethanol/water ratio (20, 50, 80% of ethanol concentration), amplitude percentage (30, 50, 70%) and ultrasonication time (5, 10, 15 min), on the responses of total phenolic content (TPC), total flavonoid content (TFC) and antioxidant activities (DPPH, ABTS and FRAP) were evaluated following a Box-Behnken experimental design. The optimal conditions obtained from the model, taking into account simultaneously the five responses, were quite similar for OTP and OML, with 70% amplitude and 15 min for both biomasses and a slight difference in the optimum concentration of ethanol. (54.5% versus 51.3% for OTP and OML, respectively). When comparing the antioxidant activities obtained with OTP and OML, higher values were obtained for OML (around 40% more than for OTP). The antioxidant activities reached experimentally under the optimized conditions were 31.6 mg of TE/g of OTP and 42.5 mg of TE/g of OML with the DPPH method, 66.5 mg of TE/g of OTP and 95.9 mg of TE/g of OML with the ABTS method, and 36.4 mg of TE/g of OTP and 49.7 mg of TE/g of OML with the FRAP method. Both OTP and OML could be a potential source of natural antioxidants.
Collapse
Affiliation(s)
- José Carlos Martínez-Patiño
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Beatriz Gullón
- Department of Chemical Engineering, Institute of Technology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Inmaculada Romero
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Encarnación Ruiz
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain.
| | - Mladen Brnčić
- Department of Process Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, HR-10000 Zagreb, Croatia
| | - Jana Šic Žlabur
- Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, Zagreb, Croatia
| | - Eulogio Castro
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| |
Collapse
|
38
|
Estimation of quality parameters in virgin olive oil treated with olive leaf extract: application of artificial neural networks. CHEMICAL PAPERS 2018. [DOI: 10.1007/s11696-018-0669-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Patil MD, Shinde AS, Dev MJ, Patel G, Bhilare KD, Banerjee UC. Combined effect of attrition and ultrasound on the disruption ofPseudomonas putidafor the efficient release of arginine deiminase. Biotechnol Prog 2018; 34:1185-1194. [DOI: 10.1002/btpr.2664] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 05/05/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Mahesh D. Patil
- Department of Pharmaceutical Technology (Biotechnology)National Institute of Pharmaceutical Education and Research Punjab 160062 India
| | - Ashok S. Shinde
- Department of Pharmaceutical Technology (Biotechnology)National Institute of Pharmaceutical Education and Research Punjab 160062 India
| | - Manoj J. Dev
- Department of Pharmaceutical Technology (Biotechnology)National Institute of Pharmaceutical Education and Research Punjab 160062 India
| | - Gopal Patel
- Department of Pharmaceutical Technology (Biotechnology)National Institute of Pharmaceutical Education and Research Punjab 160062 India
| | - Kiran D. Bhilare
- Department of Pharmaceutical Technology (Biotechnology)National Institute of Pharmaceutical Education and Research Punjab 160062 India
| | - Uttam Chand Banerjee
- Department of Pharmaceutical Technology (Biotechnology)National Institute of Pharmaceutical Education and Research Punjab 160062 India
| |
Collapse
|
40
|
Režek Jambrak A, Šimunek M, Grbeš F, Mandura A, Djekic I. Analysis of apple beverages treated with high-power ultrasound: a quality function deployment approach. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:2258-2266. [PMID: 28981162 DOI: 10.1002/jsfa.8714] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/21/2017] [Accepted: 09/26/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND The objective of this paper was to demonstrate application of quality function deployment in analysing effects of high power ultrasound on quality properties of apple juices and nectars. In order to develop a quality function deployment model, joint with instrumental analysis of treated samples, a field survey was performed to identify consumer preferences towards quality characteristics of juices/nectar. RESULTS Based on field research, the three most important characteristics were 'taste' and 'aroma' with 28.5% of relative absolute weight importance, followed by 'odour' (16.9%). The quality function deployment model showed that the top three 'quality scores' for apple juice were treatments with amplitude 90 µm, 9 min treatment time and sample temperature 40 °C; 60 µm, 9 min, 60 °C; and 90 µm, 6 min, 40 °C. For nectars, the top three were treatments 120 µm, 9 min, 20 °C; 60 µm, 9 min, 60 °C; and A2.16 60 µm, 9 min, 20 °C. CONCLUSION This type of quality model enables a more complex measure of large scale of different quality parameters. Its simplicity should be understood as its practical advantage and, as such, this tool can be a part of design quality when using novel preservation technologies. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Anet Režek Jambrak
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, Zagreb, Croatia
| | - Marina Šimunek
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, Zagreb, Croatia
| | - Franjo Grbeš
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, Zagreb, Croatia
| | - Ana Mandura
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, Zagreb, Croatia
| | - Ilija Djekic
- Department of Food Safety and Quality Management, University of Belgrade - Faculty of Agriculture, Belgrade, Republic of Serbia
| |
Collapse
|
41
|
Şahin S, İlbay Z, Kırbaşlar Şİ. Pulsed ultrasound-assisted extraction of natural antioxidants from mandarin (Citrus deliciosaTenore) leaves: Experimental and modeling study. CHEM ENG COMMUN 2018. [DOI: 10.1080/00986445.2017.1328414] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Selin Şahin
- Department of Chemical Engineering, Istanbul University, Istanbul, Turkey
| | - Zeynep İlbay
- Department of Chemical Engineering, Uşak University, Uşak, Turkey
| | | |
Collapse
|
42
|
Jabalbarezi Hukerdi Y, Fathi MH, Rashidi L, Ganjkhanlou M. The Study of Physicochemical Properties and Nutrient Composition of Mari Olive Leaf Cultivated in Iran. NUTRITION AND FOOD SCIENCES RESEARCH 2018. [DOI: 10.29252/nfsr.5.2.39] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
43
|
Marcet I, Salvadores M, Rendueles M, Díaz M. The effect of ultrasound on the alkali extraction of proteins from eggshell membranes. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:1765-1772. [PMID: 28862333 DOI: 10.1002/jsfa.8651] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 07/25/2017] [Accepted: 08/27/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Eggshell contains two layers formed by a dense network of fibrous proteins. These proteins are highly insoluble in a broad variety of solvents, but their composition makes them suitable for a broad range of applications. In this study, in order to extract and solubilise these proteins, the eggshell membranes were treated in an alkali solution. A Box-Behnken design was employed to determine the influence of the treatment variables on the amount of protein solubilised. Furthermore, the effect of ultrasound on the protein recovery yield was also evaluated and compared with the unmodified process. RESULTS A solubilised protein yield close to 100% of the total eggshell membrane protein was obtained. The optimal conditions could be set at 70 °C in a 1.0 mol L-1 NaOH solution for 60 min. However, when ultrasound was applied, it was possible to decrease the time of reaction by half. In the two processes, the temperature was found to be the most important independent variable evaluated. Finally, the antioxidant properties of the proteins obtained in each case were similar. CONCLUSIONS Ultrasound favours the detachment of big clumps of proteins from the eggshell membrane, facilitating the solubilisation of its compounds. The ultrasound had no effect on the protein properties tested in this study. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ismael Marcet
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería 8, Oviedo, Spain
| | - Marina Salvadores
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería 8, Oviedo, Spain
| | - Manuel Rendueles
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería 8, Oviedo, Spain
| | - Mario Díaz
- Department of Chemical and Environmental Engineering, University of Oviedo, C/ Julián Clavería 8, Oviedo, Spain
| |
Collapse
|
44
|
Impact of ultrasonication on the physicochemical properties of sorghum kafirin and in vitro pepsin-pancreatin digestibility of sorghum gluten-like flour. Food Chem 2018; 240:1121-1130. [DOI: 10.1016/j.foodchem.2017.08.046] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/03/2017] [Accepted: 08/15/2017] [Indexed: 10/19/2022]
|
45
|
Deng Y, Bi H, Yin H, Yu J, Dong J, Yang M, Ma Y. Influence of ultrasound assisted thermal processing on the physicochemical and sensorial properties of beer. ULTRASONICS SONOCHEMISTRY 2018; 40:166-173. [PMID: 28946410 DOI: 10.1016/j.ultsonch.2017.07.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 07/09/2017] [Accepted: 07/09/2017] [Indexed: 06/07/2023]
Abstract
The aim of this study was to investigate the effect of ultrasound assisted thermal processing also known as thermosonication (TS) on selected physicochemical and sensorial properties of beer. A typical Chinese lager beer was treated by TS (24kHz frequency and 2.7W/mL volumetric power) for 2min at 40, 50, and 60°C, respectively. The main quality attributes of the beer, such as ethanol content, original extract, pH, and bitterness, were scarcely affected by three TS treatments. However, a significant increase in color value was observed after TS treatment at 60°C during storage. The protein sensitivity and colloidal haze of three TS-treated beers increased slightly. The results also revealed that the development of both yeast and spoilage bacteria (including lactic acid bacteria and aerobic bacteria) was inhibited for 12months of storage for the TS-treated samples except for the TS-treated beer at 40°C. Additionally, the TS-treated beer at 60°C resulted in a higher thermal load relative to other two TS samples (at 40 and 50°C) based on the results of oxidative stability. TS treatment at 60°C also had a minor negative effect on the volatile profile by increasing staling compounds compared with other two TS treatments. These results obtained therefore may serve as a reference of the potential application of the ultrasound assisted thermal treatment for the beer processing.
Collapse
Affiliation(s)
- Yang Deng
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, PR China.
| | - Hua Bi
- Qingdao Entry-Exit Inspection and Quarantine Bureau, Qingdao 266001, PR China
| | - Hua Yin
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co. Ltd., Qingdao 266061, PR China
| | - Junhong Yu
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co. Ltd., Qingdao 266061, PR China
| | - Jianjun Dong
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co. Ltd., Qingdao 266061, PR China
| | - Mei Yang
- State Key Laboratory of Biological Fermentation Engineering of Beer, Tsingtao Brewery Co. Ltd., Qingdao 266061, PR China
| | - Yanlin Ma
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, PR China
| |
Collapse
|
46
|
Sun M, Xu X, Zhang Q, Rui X, Wu J, Dong M. Ultrasonic-assisted Aqueous Extraction and Physicochemical Characterization of Oil from Clanis bilineata. J Oleo Sci 2018; 67:151-165. [DOI: 10.5650/jos.ess17108] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Mingmei Sun
- College of Food Science and Technology, Nanjing Agricultural University
| | - Xiao Xu
- College of Food Science and Technology, Nanjing Agricultural University
| | - Qiuqin Zhang
- College of Food Science and Technology, Nanjing Agricultural University
| | - Xin Rui
- College of Food Science and Technology, Nanjing Agricultural University
| | - Junjun Wu
- College of Food Science and Technology, Nanjing Agricultural University
| | - Mingsheng Dong
- College of Food Science and Technology, Nanjing Agricultural University
| |
Collapse
|
47
|
Bonacci S, Paonessa R, Costanzo P, Salerno R, Maiuolo J, Nardi M, Procopio A, Manuela O. Peracetylation as a strategy to improve oleuropein stability and its affinity to fatty foods. Food Funct 2018; 9:5759-5767. [DOI: 10.1039/c8fo01874j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Acetylated oleuropein, a safe, biologically active semi-synthetic stable derivative of oleuropein, is proposed as an easy alternative to make oleuropein more bioavailable and suitable to be added to fatty foods.
Collapse
Affiliation(s)
- Sonia Bonacci
- Department of Health Sciences
- University Magna Graecia of Catanzaro
- 88100 Catanzaro
- Italy
| | - Rosina Paonessa
- Dipartimento di Medicina Sperimentale e Clinica
- Università “Magna Græcia” di Catanzaro
- 88100 (CZ)
- Italy
| | - Paola Costanzo
- Department of Health Sciences
- University Magna Graecia of Catanzaro
- 88100 Catanzaro
- Italy
| | - Raffaele Salerno
- InterRegional Center for Food Safety and Health
- University Magna Graecia of Catanzaro
- 88100 Catanzaro
- Italy
| | - Jessica Maiuolo
- InterRegional Center for Food Safety and Health
- University Magna Graecia of Catanzaro
- 88100 Catanzaro
- Italy
| | - Monica Nardi
- Telematic University San Raffaele
- Roma
- Italy
- Department of Chemistry
- University of Calabria
| | - Antonio Procopio
- Department of Health Sciences
- University Magna Graecia of Catanzaro
- 88100 Catanzaro
- Italy
| | - Oliverio Manuela
- Department of Health Sciences
- University Magna Graecia of Catanzaro
- 88100 Catanzaro
- Italy
| |
Collapse
|
48
|
Shikha Ojha K, Granato D, Rajuria G, Barba FJ, Kerry JP, Tiwari BK. Application of chemometrics to assess the influence of ultrasound frequency, Lactobacillus sakei culture and drying on beef jerky manufacture: Impact on amino acid profile, organic acids, texture and colour. Food Chem 2018; 239:544-550. [DOI: 10.1016/j.foodchem.2017.06.124] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/13/2017] [Accepted: 06/20/2017] [Indexed: 10/19/2022]
|
49
|
Wang J, Ma H, Pan Z, Qu W. Sonochemical effect of flat sweep frequency and pulsed ultrasound (FSFP) treatment on stability of phenolic acids in a model system. ULTRASONICS SONOCHEMISTRY 2017; 39:707-715. [PMID: 28732997 DOI: 10.1016/j.ultsonch.2017.05.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/17/2017] [Accepted: 05/22/2017] [Indexed: 05/17/2023]
Abstract
To obtain greater knowledge on the stability of phenolic acids for the application of FSFP ultrasound technique in the extraction, the sonochemical effects of ultrasonic factors were investigated. The kinetic model and mechanism of degradation reaction were developed and identified by FT-IR and HPLC-ESIMS. The results showed that caffeic and sinapic acids were degraded under FSFP ultrasound treatment. The ultrasonic temperature, frequency, sweep range, sweep cycle, and pulse ratio were proved to be important factors in affecting the degradation rates of caffeic and sinapic acids. Relatively high temperature, frequency away from the resonance frequency, narrow sweep range, moderate sweep cycle, and relatively low or high pulse ratio were recommended to maintain high stability of caffeic and sinapic acids. The degradation kinetics of these two phenolic acids under FSFP ultrasound treatment were conformed to zeroth-order reaction at 10-50°C. Moreover, FSFP ultrasound had a stronger sonochemical effect on sinapic acid than caffeic acid. The FT-IR and HPLC-ESIMS proved that decomposition and polymerization reactions occurred when caffeic and sinapic acids were subjected to FSFP ultrasound. Degradation products, such as the corresponding decarboxylation products and their dimers, were tentatively identified.
Collapse
Affiliation(s)
- Juan Wang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road Zhenjiang, Jiangsu 212013, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road Zhenjiang, Jiangsu 212013, China
| | - Zhongli Pan
- Department of Biological and Agricultural Engineering, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Wenjuan Qu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
50
|
|