1
|
Decker BLA, Filho EDGA, E Silva LMA, Riceli Vasconcelos Ribeiro P, Sousa de Brito E, Narciso Fernandes FA, Vidal Fonteles T, Rodrigues S. Ultrasound-assisted extraction of anthocyanins from grape pomace using acidified water: Assessing total monomeric anthocyanin and specific anthocyanin contents. Food Res Int 2024; 194:114910. [PMID: 39232553 DOI: 10.1016/j.foodres.2024.114910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 08/06/2024] [Accepted: 08/10/2024] [Indexed: 09/06/2024]
Abstract
This study aimed to optimize the ultrasound-assisted extraction (UAE) of anthocyanins from oven-dried and freeze-dried Vitis labrusca grape pomace, using acidified water as the solvent. The effects of power density (8.3-16.7 W/mL), pulse interval (0-2 s), and extraction time (1-5 min) on both total and specific anthocyanins were investigated. The findings suggested that acidified water can be a viable alternative to conventional solvents and that oven drying was an effective method for drying the pomace. Using response surface methodology, the study identified power density and extraction time as key factors influencing total anthocyanin content, with extracts reaching contents up to 2.56 mg/g. The analysis using LC-MS identified 14 anthocyanins, while NMR quantified 3 and malvidin diglucoside was generally the most abundant. However, higher power and longer extraction times were found to reduce its content while increasing malvidin monoglucoside content, suggesting ultrasound-induced anthocyanin hydrolysis. In conclusion, this study presents a sustainable method for extracting anthocyanins using acidified water, contributing to the valorization of Vitis labrusca grape pomace for industrial use.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sueli Rodrigues
- Food Engineering Department, Federal University of Ceara, 60440-900, Fortaleza, CE, Brazil.
| |
Collapse
|
2
|
Luo W, Tang J, Wang B, Wu D, Wang J, Cheng L, Geng F. The potential mechanism of low-power water bath ultrasound to enhance the effectiveness of low-concentration chlorine dioxide in inhibiting Salmonella Typhimurium. Food Chem X 2023; 20:100901. [PMID: 38144795 PMCID: PMC10740011 DOI: 10.1016/j.fochx.2023.100901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/24/2023] [Accepted: 09/23/2023] [Indexed: 12/26/2023] Open
Abstract
This chapter presents a systematic study of the inhibition effect of chlorine dioxide treatment alone and in combination with ultrasound treatment of Salmonella and the physiological metabolic processes within the treated cells. The low-power ultrasound (0.03 W/mL) significantly enhanced the effectiveness (110.00 %) of low concentrations of chlorine dioxide (0.25 mg/L) in inhibiting Salmonella, which, in turn, would significantly reduce the potential environmental impact. In addition, further studies found that low-power ultrasound may enhance the structural and functional damage of chlorine dioxide on Salmonella cell membranes (significant increase in permeability of the outer and inner cell membranes) and disrupt intracellular substance metabolism (small molecule and nucleotide metabolism) and energy metabolism (significant reduction in ATP content and ATPase activity) balance to improve the bacterial inhibitory effect of chlorine dioxide. The results of the study will provide a theoretical basis and methodological guidance for the implementation of "cleaner production" in the food industry.
Collapse
Affiliation(s)
- Wei Luo
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, 2025 Chengluo Avenue, Chengdu, China
| | - Jie Tang
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, 2025 Chengluo Avenue, Chengdu, China
| | - Beibei Wang
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, 2025 Chengluo Avenue, Chengdu, China
| | - Di Wu
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, 2025 Chengluo Avenue, Chengdu, China
| | - Jinqiu Wang
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, 2025 Chengluo Avenue, Chengdu, China
| | - Lei Cheng
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Fang Geng
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, 2025 Chengluo Avenue, Chengdu, China
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| |
Collapse
|
3
|
Rowan NJ. Current decontamination challenges and potentially complementary solutions to safeguard the vulnerable seafood industry from recalcitrant human norovirus in live shellfish: Quo Vadis? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162380. [PMID: 36841407 DOI: 10.1016/j.scitotenv.2023.162380] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Safeguarding the seafood industry is important given its contribution to supporting our growing global population. However, shellfish are filter feeders that bioaccumulate microbial contaminants in their tissue from wastewater discharged into the same coastal growing environments leading to significant human disease outbreaks unless appropriately mitigated. Removal or inactivation of enteric viruses is very challenging particularly as human norovirus (hNoV) binds to specific histo-blood ligands in live oyster tissue that are consumed raw or lightly cooked. The regulatory framework that sets out use of clean seawater and UV disinfection is appropriate for bacterial decontamination at the post-harvest land-based depuration (cleaning) stage. However, additional non-thermal technologies are required to eliminate hNoV in live shellfish (particularly oysters) where published genomic studies report that low-pressure UV has limited effectiveness in inactivating hNoV. The use of the standard genomic detection method (ISO 15, 216-1:2017) is not appropriate for assessing the loss of infectious hNoV in treated live shellfish. The use of surrogate viral infectivity methods appear to offer some insight into the loss of hNoV infectiousness in live shellfish during decontamination. This paper reviews the use of existing and potentially other combinational treatment approaches to enhance the removal or inactivation of enteric viruses in live shellfish. The use of alternative and complementary novel diagnostic approaches to discern viable hNoV are discussed. The effectiveness and virological safety of new affordable hNoV intervention(s) require testing and validating at commercial shellfish production in conjunction with laboratory-based research. Appropriate risk management planning should encompass key stakeholders including local government and the wastewater industry. Gaining a mechanistic understanding of the relationship between hNoV response at molecular and structural levels in individually treated oysters as a unit will inform predictive modeling and appropriate treatment technologies. Global warming of coastal growing environments may introduce additional contaminant challenges (such as invasive species); thus, underscoring need to develop real-time ecosystem monitoring of growing environments to alert shellfish producers to appropriately mitigate these threats.
Collapse
Affiliation(s)
- Neil J Rowan
- Centre for Sustainable Disinfection and Sterilization, Bioscience Research Institute, Technological University of the Shannon Midlands Midwest, Athlone Campus, Ireland.
| |
Collapse
|
4
|
Hasan MR, Che Abdullah CA, Mustapha NA, Mohd Ghazali MS, Mohd Adzahan N. Efficacy of ultrasonic cleaning on cockle shells. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2023.111523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
5
|
Dehghani MH, Karri RR, Koduru JR, Manickam S, Tyagi I, Mubarak NM, Suhas. Recent trends in the applications of sonochemical reactors as an advanced oxidation process for the remediation of microbial hazards associated with water and wastewater: A critical review. ULTRASONICS SONOCHEMISTRY 2023; 94:106302. [PMID: 36736130 PMCID: PMC10040970 DOI: 10.1016/j.ultsonch.2023.106302] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/30/2022] [Accepted: 01/15/2023] [Indexed: 11/27/2023]
Abstract
Water is one of the major sources that spread human diseases through contamination with bacteria and other pathogenic microorganisms. This review focuses on microbial hazards as they are often present in water and wastewater and cause various human diseases. Among the currently used disinfection methods, sonochemical reactors (SCRs) that produce free radicals combined with advanced oxidation processes (AOPs) have received significant attention from the scientific community. Also, this review discussed various types of cavitation reactors, such as acoustic cavitation reactors (ACRs) utilizing ultrasonic energy (UE), which had been widely employed, involving AOPs for treating contaminated waters. Besides ACRs, hydrodynamic cavitation reactors (HCRs) also effectively destroy and deactivate microorganisms to varying degrees. Cavitation is the fundamental phenomenon responsible for initiating many sonochemical reactions in liquids. Bacterial degradation occurs mainly due to the thinning of microbial membranes, local warming, and the generation of free radicals due to cavitation. Over the years, although extensive investigations have focused on the antimicrobial effects of UE (ultrasonic energy), the primary mechanism underlying the cavitation effects in the disinfection process, inactivation of microbes, and chemical reactions involved are still poorly understood. Therefore, studies under different conditions often lead to inconsistent results. This review investigates and compares other mechanisms and performances from greener and environmentally friendly sonochemical techniques to the remediation of microbial hazards associated with water and wastewater. Finally, the energy aspects, challenges, and recommendations for future perspectives have been provided.
Collapse
Affiliation(s)
- Mohammad Hadi Dehghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Institute for Environmental Research, Center for Solid Waste Research, Tehran University of Medical Sciences, Tehran, Iran.
| | - Rama Rao Karri
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei Darussalam
| | - Janardhan Reddy Koduru
- Department of Environmental Engineering, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei Darussalam
| | - Inderjeet Tyagi
- Centre for DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India, M-Block, New Alipore, Kolkata 700053, West Bengal, India
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei Darussalam
| | - Suhas
- Department of Chemistry, Gurukula Kangri, Haridwar 249404, India
| |
Collapse
|
6
|
Hashemi SMB, Roohi R. Continuous and pulsed ultrasound treatment of barberry juice: Microbial inactivation and kinetics models. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Reza Roohi
- Department of Mechanical Engineering Fasa University Fasa Iran
| |
Collapse
|
7
|
Aguilar C, Serna-Jiménez J, Benitez E, Valencia V, Ochoa O, Sotelo LI. Influence of high power ultrasound on natural microflora, pathogen and lactic acid bacteria in a raw meat emulsion. ULTRASONICS SONOCHEMISTRY 2021; 72:105415. [PMID: 33333392 PMCID: PMC7803822 DOI: 10.1016/j.ultsonch.2020.105415] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
Raw meat emulsions may have natural, spoilage and pathogenic microorganisms due to the origin and characteristics of this food matrix. All of these microorganisms must be minimized during industrial processing to make food consumption safe and meet quality regulations. Therefore, in this research, the effect of probe ultrasound on the inactivation of three kinds of microorganisms in a raw meat emulsion is evaluated. The microorganisms are: natural microflora NAM, Listeria monocytogenes LIS, and Lactobacillus delbrueckii LAC. A high-intensity probe ultrasound system was used, during 1.0, 2.5, 5.0, 7.5 and 10 min, with pulsed waves of 0.0, 10, 20 and 30 seg, and 200, 250, 300, 350 and 400 W of power. The interrelation between time, wave pulse cycle, and power factors was assessed. The results showed a positive linear independence effect in the treatments without wave pulse for each microorganism, and a quadratic interaction with the time and the ultrasound power for the inactivation of the three kinds of microorganisms. Besides, the desirability function for the inactivation reached up to 60% of the microbial population with the probe ultrasound treatment, with 10 min, a 7.56 s wave pulse and 400 W of power. Thus, these results could be useful to decide the incorporation of mild and emerging technologies in a meat industry line process.
Collapse
Affiliation(s)
- C Aguilar
- Agroindustrial Process Research Group, Universidad de La Sabana, Campus Puente del Común, Autopista Norte Km 7, Chía, Cundinamarca, Colombia
| | - J Serna-Jiménez
- Agricultural and Agro-Business Sciences Faculty, Universidad Tecnológica de Pereira, Carrera 27 #10-02 Pereira, Risaralda, Colombia
| | - E Benitez
- Institute of Data Science and Artificial Intelligence, Universidad de Navarra, Campus Universitario, Pamplona, Navarra, Spain
| | - V Valencia
- Centro de Investigación y Desarrollo Cárnico, Industria de Alimentos Zenú S.A.S., Carrera 64C # 104 - 03, Medellín, Colombia
| | - O Ochoa
- Centro de Investigación y Desarrollo Cárnico, Industria de Alimentos Zenú S.A.S., Carrera 64C # 104 - 03, Medellín, Colombia
| | - L I Sotelo
- EICEA, Food, Process Management and Service Group Universidad de La Sabana, Campus Puente del Común, Autopista Norte Km 7, Chía, Cundinamarca, Colombia.
| |
Collapse
|
8
|
Zupanc M, Pandur Ž, Stepišnik Perdih T, Stopar D, Petkovšek M, Dular M. Effects of cavitation on different microorganisms: The current understanding of the mechanisms taking place behind the phenomenon. A review and proposals for further research. ULTRASONICS SONOCHEMISTRY 2019; 57:147-165. [PMID: 31208610 DOI: 10.1016/j.ultsonch.2019.05.009] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/26/2019] [Accepted: 05/08/2019] [Indexed: 05/05/2023]
Abstract
A sudden decrease in pressure triggers the formation of vapour and gas bubbles inside a liquid medium (also called cavitation). This leads to many (key) engineering problems: material loss, noise, and vibration of hydraulic machinery. On the other hand, cavitation is a potentially useful phenomenon: the extreme conditions are increasingly used for a wide variety of applications such as surface cleaning, enhanced chemistry, and wastewater treatment (bacteria eradication and virus inactivation). Despite this significant progress, a large gap persists between the understanding of the mechanisms that contribute to the effects of cavitation and its application. Although engineers are already commercializing devices that employ cavitation, we are still not able to answer the fundamental question: What precisely are the mechanisms how bubbles can clean, disinfect, kill bacteria and enhance chemical activity? The present paper is a thorough review of the recent (from 2005 onward) work done in the fields of cavitation-assisted microorganism's destruction and aims to serve as a foundation to build on in the next years.
Collapse
Affiliation(s)
- Mojca Zupanc
- University of Ljubljana, Faculty of Mechanical Engineering, Askerceva 6, 1000 Ljubljana, Slovenia
| | - Žiga Pandur
- University of Ljubljana, Faculty of Mechanical Engineering, Askerceva 6, 1000 Ljubljana, Slovenia; University of Ljubljana, Biotechnical Faculty, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Tadej Stepišnik Perdih
- University of Ljubljana, Faculty of Mechanical Engineering, Askerceva 6, 1000 Ljubljana, Slovenia
| | - David Stopar
- University of Ljubljana, Biotechnical Faculty, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Martin Petkovšek
- University of Ljubljana, Faculty of Mechanical Engineering, Askerceva 6, 1000 Ljubljana, Slovenia
| | - Matevž Dular
- University of Ljubljana, Faculty of Mechanical Engineering, Askerceva 6, 1000 Ljubljana, Slovenia.
| |
Collapse
|
9
|
Sonocatalytic degradation of methyl orange in aqueous solution using Fe-doped TiO2 nanoparticles under mechanical agitation. OPEN CHEM 2018. [DOI: 10.1515/chem-2018-0137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractIn the present study, the Fe-doped TiO2 modified nanoparticles was successfully synthesized by the combination of the sol-gel method and heat treatment, and the degradation of methyl orange was tested by the combination method of ultrasonic radiation and mechanical agitation. The effects of different factors on the degradation of methyl orange (MO) solution were studied, such as ultrasonic irradiation time, the ultrasonic frequency, the added amount of catalyst, the initial pH value, the initial concentration of methyl orange, and revolutions per minute. The optimal experimental conditions for sonocatalytic degradation of the MO obtained were: ultrasonic irradiation time = 60 min, pH value = 3.0 and revolutions per minute = 500 rpm. By means of response surface analysis, the best fitting conditions were as follows: ultrasonic frequency = 36.02 kHz, added amount of catalyst = 490.50 mg/L, the initial concentration of methyl orange = 9.22 mg/L, and the optimum condition was close to the experimental data by response surface method. Under optimal conditions, the sonocatalytic degradation of MO was 99%. The degradation of MO showed that the combination of Fe-doped modified TiO2 nanoparticles, mechanical agitation and ultrasonic irradiation was discovered that can degrade methyl orange effectively in aqueous solution.
Collapse
|
10
|
Zhou Z, Yang Y, Li X, Li P, Zhang T, Lv X, Liu L, Dong J, Zheng D. Optimized removal of natural organic matter by ultrasound-assisted coagulation of recycling drinking water treatment sludge. ULTRASONICS SONOCHEMISTRY 2018; 48:171-180. [PMID: 30080539 DOI: 10.1016/j.ultsonch.2018.05.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/14/2018] [Accepted: 05/17/2018] [Indexed: 06/08/2023]
Abstract
In previous work we have shown that recycling pre-sonicated drinking water treatment sludge (DWTS) could improve coagulated water quality. Here, the removal of naturally occurring organic matter of source water was further optimized using response surface methodology (RSM) with Box-Behnken Design (BBD). The four variables, i.e., volumetric recycling ratio of DWTS, energy density, ultra-sonication time and duty cycle in an experimental jar test of ultrasound assisted flocculation-coagulation were optimized. All the variables showed a significant effect on dissolved organic carbon (DOC) removal of source water (p < .05), of which the duty cycle had a stronger effect on the removal performance compared to the other independent variables. The predicted optimal DOC removal rate was 36.94%, and this matched well the observed performance of 36.54 ± 0.56%, obtained by ultra-sonicating the sludge prior to recycling using a power input of 1.015 W/mL, an ultra-sonication time of 9 min 50 s, and a duty cycle of 80%, while the volumetric recycling ratio of DWTS was 5.8%. The natural organic matter fractions in the coagulated water samples indicated that recycling sonicated DWTS that had been washed prior to recycling in order to remove solubilized extracellular polymers could enhance removal of hydrophobic acids and 3-30 kDa fractions, but this treatment increased the presence of substances with molecular weight <3 kDa. Humic-like substances were effectively removed while tyrosine-like substances could be enriched. Sludge samples (raw DWTS, sonicated DWTS, sludge formed by recycling raw DWTS, and sludge formed by recycling sonicated DWTS without solubilized extracellular organics) were characterized by XRF, X-ray diffraction patterns and FE-SEM-EDS to reveal possible physical characteristics that could be related to the DOC removal performance.
Collapse
Affiliation(s)
- Zhiwei Zhou
- School of Environmental and Biological Engineering, Wuhan Technology and Business University, Wuhan 430065, PR China; College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, PR China; Engineering and Technology Research Center of Hubei Province for Wastewater Reclamation, Wuhan, 430065, PR China
| | - Yanling Yang
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, PR China.
| | - Xing Li
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Pangyi Li
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Luoyu Road, Wuhan 430074, PR China
| | - Tingting Zhang
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Xuquan Lv
- School of Environmental and Biological Engineering, Wuhan Technology and Business University, Wuhan 430065, PR China
| | - Lujian Liu
- Engineering and Technology Research Center of Hubei Province for Wastewater Reclamation, Wuhan, 430065, PR China
| | - Jun Dong
- Engineering and Technology Research Center of Hubei Province for Wastewater Reclamation, Wuhan, 430065, PR China
| | - Dan Zheng
- School of Environmental and Biological Engineering, Wuhan Technology and Business University, Wuhan 430065, PR China; Engineering and Technology Research Center of Hubei Province for Wastewater Reclamation, Wuhan, 430065, PR China.
| |
Collapse
|
11
|
Srivalli H, Nagarajan R. Mechanistic study of ultrasound-assisted solvent leaching of sodium and potassium from an Indian coal using continuous and pulsed modes of operation. CHEM ENG COMMUN 2018. [DOI: 10.1080/00986445.2018.1481833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- H. Srivalli
- Department of Chemical Engineering, Ultrasonic Laboratory, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - R. Nagarajan
- Department of Chemical Engineering, Ultrasonic Laboratory, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| |
Collapse
|
12
|
Ohrdes H, Ille I, Twiefel J, Wallaschek J, Nogueira R, Rosenwinkel KH. A control system for ultrasound devices utilized for inactivating E. coli in wastewater. ULTRASONICS SONOCHEMISTRY 2018; 40:158-162. [PMID: 28438401 DOI: 10.1016/j.ultsonch.2017.04.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/29/2017] [Accepted: 04/13/2017] [Indexed: 06/07/2023]
Abstract
Sonochemical processes applied to wastewater treatment have an influence on the behavior of ultrasonic systems. This is especially due to the load characteristic of the sonochemical process itself and the temperature increase caused by internal damping within the converter. Hence, a controlling device is needed to guarantee the operation in resonance and to keep the vibration amplitude constant. This paper presents a digital control system for the operation of weak to strong damped ultrasonic devices and its application for inactivating Escherichia coli in wastewater. In an experimental investigation, the electric data during a sonochemical process to inactivate E. coli in wastewater is taken into account to analyze the efficacy of the treatment process and the reaction of the vibration system to the process. Frequency response measurements depict that the resonance frequency changes with the sonicated medium and the vibration amplitude decreases with driving current. In addition to a common continuous operation of the system, different pulsed modes are investigated. The experiments prove the common dependencies between inactivation and power level or treatment time. Additionally, it is pointed out that the control of the sonochemical device is of utmost importance to guarantee an efficient treatment of water, because fast process changes, especially in pulsed operation modes, need to be controlled to a steady state as fast as possible. Although a water treatment efficiency increase using pulsed modes was not proved, it is shown, that the performance of the control unit is capable of using different driving modes in water treatment.
Collapse
Affiliation(s)
- H Ohrdes
- Institute of Dynamics and Vibration Research, Leibniz Universität Hannover, Appelstr. 11, 30167 Hannover, Germany.
| | - I Ille
- Institute of Dynamics and Vibration Research, Leibniz Universität Hannover, Appelstr. 11, 30167 Hannover, Germany
| | - J Twiefel
- Institute of Dynamics and Vibration Research, Leibniz Universität Hannover, Appelstr. 11, 30167 Hannover, Germany
| | - J Wallaschek
- Institute of Dynamics and Vibration Research, Leibniz Universität Hannover, Appelstr. 11, 30167 Hannover, Germany
| | - R Nogueira
- Institute for Sanitary Engineering and Waste Management, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany
| | - K-H Rosenwinkel
- Institute for Sanitary Engineering and Waste Management, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany
| |
Collapse
|
13
|
Zhang N, Zhang G, Chong S, Zhao H, Huang T, Zhu J. Ultrasonic impregnation of MnO 2/CeO 2 and its application in catalytic sono-degradation of methyl orange. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 205:134-141. [PMID: 28982062 DOI: 10.1016/j.jenvman.2017.09.073] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 06/07/2023]
Abstract
MnO2/CeO2 catalyst was prepared by ultrasonic impregnation method. The traditional and stirring impregnation methods were used as control. Results showed that ultrasonic impregnation was the best synthesis method. The impregnation time was shortened from 120 min (traditional method) to 20 min, the specific surface area of catalyst was three times larger, and the catalytic activity of catalyst was also the highest. Furthermore, MnO2 had crystalline structure and distributed uniformly on the support, CeO2. The preparing conditions were further examined and the optimal conditions were found to be: 20 min of ultrasonic impregnation, 4.3 mol/L of manganese nitrate concentration and 450 °C of calcination temperature. The so prepared catalyst removed 94% of methyl orange in 30 min with a dosage of 0.5 g/L. The efficiency was 77.7% and 85.9% for traditional and stirring impregnation method under the same experimental conditions. The reaction process involved two stages: adsorption-dominated and degradation-dominated stages. The reaction rate constant of adsorption-dominated stage had little difference. However, compared with traditional impregnation, the reaction rate constant of degradation-dominated stage improved from 0.01 to 0.14 min-1 by ultrasonic impregnation. Mechanism analysis showed that the activity of ultrasonic impregnation MnO2/CeO2 was improved by the effects of acoustic cavitation and ultrasound oscillation on solid-liquid transport and distribution status.
Collapse
Affiliation(s)
- Nan Zhang
- School of Environment & Natural Resource, Renmin University of China, Beijing, 100872, PR China
| | - Guangming Zhang
- School of Environment & Natural Resource, Renmin University of China, Beijing, 100872, PR China.
| | - Shan Chong
- School of Environment & Natural Resource, Renmin University of China, Beijing, 100872, PR China
| | - He Zhao
- School of Environment & Natural Resource, Renmin University of China, Beijing, 100872, PR China
| | - Ting Huang
- School of Environment & Natural Resource, Renmin University of China, Beijing, 100872, PR China
| | - Jia Zhu
- School of Construction and Environment Engineering, Shenzhen Polytechnic, Shenzhen, 518055, PR China
| |
Collapse
|
14
|
Rahmani F, Haghighi M, Mahboob S. CO2-enhanced dehydrogenation of ethane over sonochemically synthesized Cr/clinoptilolite-ZrO2 nanocatalyst: Effects of ultrasound irradiation and ZrO2 loading on catalytic activity and stability. ULTRASONICS SONOCHEMISTRY 2016; 33:150-163. [PMID: 27245966 DOI: 10.1016/j.ultsonch.2016.04.034] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/28/2016] [Accepted: 04/29/2016] [Indexed: 06/05/2023]
Abstract
CO2-enhanced oxidative dehydrogenation of ethane was investigated over sonochemically synthesized Cr/clinoptilolite-ZrO2 nanocatalyst with the aim of assessing the effect of composite support and ultrasonic irradiation on the nanocatalyst reactivity and stability. To this aim, ZrO2 promoted clinoptilolite supports varying in zirconia content (0, 25, 50wt%) were synthesized by hydrothermally precipitation method and impregnated with chromium nitrate under ultrasound irradiation. The samples were characterized by XRD, FESEM, EDX, TEM, ICP, BET, FTIR, TPR-H2 and TPD-NH3 techniques. The characterization results indicated that ultrasound irradiation could not only reduce the formation of Cr2O3 and decrease submicron particle size of chromium oxide to nanometer scale, but also promote the distribution of metallic particles and strengthen the chromium-support interaction. As a result, utilizing ultrasound irradiation in the synthesis of Cr/Clinoptilolite helped to maintain a high and stable catalytic activity. These features were more prominent in the presence of zirconia. It was found that the metal oxide nanoparticles with about 4-8nm are dispersed uniformly on the surface of composite support containing 25wt% ZrO2 (CLT-Z25). Moreover, the addition of ZrO2 resulted in the formation of new strong acid sites and a significant modification in the reducibility of chromium species, which alongside homogenous and small Cr nanoparticles account for the superior catalytic performance of ZrO2 containing samples. However, excessive loading of ZrO2 (50wt%) severely covered the surface of clinoptilolite, afforded the aggregations of metallic particles and thereupon, weakened the contact between clinoptilolite and ZrO2, which together with more acid strength seriously resulted in the deactivation of catalyst. In spite of superior initial activity of ZrO2-rich sample among the catalysts tested, ultrasonic synthesized Cr/CLT-Z25 nanocatalyst showed the best catalytic performance after 5h-catalytic reaction.
Collapse
Affiliation(s)
- Farhad Rahmani
- Chemical Engineering Faculty, Sahand University of Technology, P.O. Box 51335-1996, Sahand New Town, Tabriz, Iran; Reactor and Catalysis Research Center (RCRC), Sahand University of Technology, P.O. Box 51335-1996, Sahand New Town, Tabriz, Iran
| | - Mohammad Haghighi
- Chemical Engineering Faculty, Sahand University of Technology, P.O. Box 51335-1996, Sahand New Town, Tabriz, Iran; Reactor and Catalysis Research Center (RCRC), Sahand University of Technology, P.O. Box 51335-1996, Sahand New Town, Tabriz, Iran.
| | - Salar Mahboob
- Chemical Engineering Faculty, Sahand University of Technology, P.O. Box 51335-1996, Sahand New Town, Tabriz, Iran; Reactor and Catalysis Research Center (RCRC), Sahand University of Technology, P.O. Box 51335-1996, Sahand New Town, Tabriz, Iran
| |
Collapse
|
15
|
Al-Juboori RA, Aravinthan V, Yusaf T, Bowtell L. Assessing the application and downstream effects of pulsed mode ultrasound as a pre-treatment for alum coagulation. ULTRASONICS SONOCHEMISTRY 2016; 31:7-19. [PMID: 26964919 DOI: 10.1016/j.ultsonch.2015.11.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/30/2015] [Indexed: 06/05/2023]
Abstract
The application of pulsed mode ultrasound (PMU) as a pre-treatment for alum coagulation was investigated at various alum dosages and pH levels. The effects of the treatments on turbidity and dissolved organic carbon (DOC) removal and residual Al were evaluated. Response surface methodology (RSM) was utilized to optimize the operating conditions of the applied treatments. The results showed that PMU pre-treatment increased turbidity and DOC removal percentages from maximum of 96.6% and 43% to 98.8% and 52%, respectively. It also helped decrease the minimum residual Al from 0.100 to 0.094 ppm. The multiple response optimization was carried out using the desirability function. A desirability value of >0.97 estimated respective turbidity removal, DOC removal and Al residual of 89.24%, 45.66% and ∼ 0.1 ppm for coagulation (control) and 90.61%, >55% and ∼ 0 for coagulation preceded by PMU. These figures were validated via confirmatory experiments. PMU pre-treatment increased total coliform removal from 80% to >98% and decreased trihalomethane formation potential (THMFP) from 250 to 200 ppb CH3Cl. Additionally, PMU application prior to coagulation improved the settleability of sludge due to the degassing effects. The results of this study confirms that PMU pre-treatment can significantly improve coagulation performance.
Collapse
Affiliation(s)
- Raed A Al-Juboori
- School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, Toowoomba, 4350 QLD, Australia.
| | - Vasantha Aravinthan
- School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, Toowoomba, 4350 QLD, Australia
| | - Talal Yusaf
- School of Mechanical and Electrical Engineering, Faculty of Health, Engineering and Sciences, University of Southern Queensland, Toowoomba, 4350 QLD, Australia
| | - Leslie Bowtell
- School of Mechanical and Electrical Engineering, Faculty of Health, Engineering and Sciences, University of Southern Queensland, Toowoomba, 4350 QLD, Australia
| |
Collapse
|
16
|
Al-Juboori RA, Yusaf T, Aravinthan V, Bowtell L. Tracking ultrasonically structural changes of natural aquatic organic carbon: Chemical fractionation and spectroscopic approaches. CHEMOSPHERE 2016; 145:231-248. [PMID: 26688260 DOI: 10.1016/j.chemosphere.2015.11.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 11/21/2015] [Accepted: 11/21/2015] [Indexed: 06/05/2023]
Abstract
In this study, the structural alteration to DOC for a range of ultrasound treatments was investigated with chemical fractionation and UV-vis spectroscopic measurement. Ultrasound treatments were applied in continuous and pulsed modes at power levels of 48 and 84 W for effective treatment times of 5 and 15 min. Overall results show that the ultrasound treatments tended to degrade the hydrophobic aromatic fraction, while increasing the hydrophilic fraction to a lesser extent. The highest recorded reduction of hydrophobic DOC (17.8%) was achieved with pulse treatment of 84 W for15 min, while the highest increase in the hydrophilic DOC (10.5%) was obtained with continuous treatment at 84 W and 5 min. The optimal ultrasound treatment conditions were found to be pulse mode at high power and short treatment time, causing a minimal increase in the hydrophilic fraction of 1.3% with moderate removal of the hydrophobic fraction of 15.52%. The same treatment conditions, with longer treatment time, resulted in the highest removal of SUVA254 and SUVA280 of 17.09% and 16.93, respectively. These results indicate the potential for ultrasound treatments in DOC structural alteration. The hydrophobic fraction showed strong and significant correlations with UV absorbance at 254 and 280 nm. A254/A204 also exhibited strong and significant correlations with the hydrophobic/hydrophilic ratio. The other UV ratios (A250/A365 (E2/E3) and A254/A436) had weak and insignificant correlations with the hydrophobic/hydrophilic ratio. This confirms the applicability of UV indices as a suitable surrogate method for estimating the hydrophobic/hydrophilic structure.
Collapse
Affiliation(s)
- Raed A Al-Juboori
- School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, Toowoomba, 4350, QLD, Australia.
| | - Talal Yusaf
- School of Mechanical and Electrical Engineering, Faculty of Health, Engineering and Sciences, University of Southern Queensland, Toowoomba, 4350, QLD, Australia
| | - Vasantha Aravinthan
- School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, Toowoomba, 4350, QLD, Australia
| | - Leslie Bowtell
- School of Mechanical and Electrical Engineering, Faculty of Health, Engineering and Sciences, University of Southern Queensland, Toowoomba, 4350, QLD, Australia
| |
Collapse
|
17
|
Al-Juboori RA, Yusaf T, Aravinthan V, Bowtell L. Investigating natural organic carbon removal and structural alteration induced by pulsed ultrasound. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 541:1019-1030. [PMID: 26473704 DOI: 10.1016/j.scitotenv.2015.09.143] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 09/27/2015] [Accepted: 09/27/2015] [Indexed: 06/05/2023]
Abstract
The application of pulsed ultrasound for DOC removal from natural water samples has been thoroughly investigated in this work. Natural water samples were treated with ultrasound at power levels of 48 and 84 W with treatment times of 5 and 15 min. Chemical fractionation was conducted for both untreated and treated samples to clearly identify the change in DOC structure caused by ultrasonic treatments. Statistical analyses applying 2(3) factorial design were performed to study the behaviour of the response (i.e. DOC removal) under different operating conditions. Overall, ultrasonic treatments resulted in DOC removal of 7-15% depending on the applied operating conditions. The treated water had high microbial loading that interfered with DOC removal due primarily to the release of microbial products when exposed to ultrasound. Pulse ultrasound was found to be more effective than the continuous mode for DOC removal at the same effective power level. A regression model was developed and tested for DOC removal prediction. The model was adequate in predicting DOC removal with a maximum deviation from the experimental data of <11%. Pulsed ultrasound at low power levels and short treatment times was found to be the most energy efficient treatment for DOC removal.
Collapse
Affiliation(s)
- Raed A Al-Juboori
- School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, Toowoomba, 4350 QLD, Australia.
| | - Talal Yusaf
- School of Mechanical and Electrical Engineering, Faculty of Health, Engineering and Sciences, University of Southern Queensland, Toowoomba, 4350 QLD, Australia
| | - Vasantha Aravinthan
- School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, Toowoomba, 4350 QLD, Australia
| | - Leslie Bowtell
- School of Mechanical and Electrical Engineering, Faculty of Health, Engineering and Sciences, University of Southern Queensland, Toowoomba, 4350 QLD, Australia
| |
Collapse
|
18
|
Al-Juboori RA, Bowtell LA, Yusaf T, Aravinthan V. Insights into the scalability of magnetostrictive ultrasound technology for water treatment applications. ULTRASONICS SONOCHEMISTRY 2016; 28:357-366. [PMID: 26384919 DOI: 10.1016/j.ultsonch.2015.08.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 08/21/2015] [Indexed: 06/05/2023]
Abstract
To date, the successful application of large scale ultrasound in water treatment has been a challenge. Magnetostrictive ultrasound technologies for constructing a large-scale water treatment system are proposed in this study. Comprehensive energy evaluation of the proposed system was conducted. The effects of chosen waveform, scalability and reactor design on the performance of the system were explored using chemical dosimetry. Of the fundamental waveforms tested; sine, triangle and square, the highest chemical yield resulted from the square wave source. Scaling up from the 0.5L bench-scale system to the 15 L large-scale unit resulted in a gain of approximately 50% in sonochemical efficiency (SE) for the system. The use of a reactor tank with 45° inclined sides further increased SE of the system by 70%. The ability of the large scale system in removing contaminants from natural water samples was also investigated. The results revealed that the large-scale unit was capable of achieving a maximum removal of microbes and dissolved organic carbon (DOC) of 35% and 5.7% respectively at a power density approximately 3.9 W/L. The results of this study suggest that magnetostrictive ultrasound technology excited with square wave has the potential to be competitive in the water treatment industry.
Collapse
Affiliation(s)
- Raed A Al-Juboori
- School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, Toowoomba, 4350 QLD, Australia.
| | - Leslie A Bowtell
- School of Mechanical and Electrical Engineering, Faculty of Health, Engineering and Sciences, University of Southern Queensland, Toowoomba, 4350 QLD, Australia
| | - Talal Yusaf
- School of Mechanical and Electrical Engineering, Faculty of Health, Engineering and Sciences, University of Southern Queensland, Toowoomba, 4350 QLD, Australia
| | - Vasantha Aravinthan
- School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, Toowoomba, 4350 QLD, Australia
| |
Collapse
|