1
|
Gultekin Subasi B, Bilgin AB, Günal-Köroğlu D, Saricaoglu B, Haque S, Esatbeyoglu T, Capanoglu E. Effect of sonoprocessing on the quality of plant-based analog foods: Compatibility to sustainable development goals, drawbacks and limitations. ULTRASONICS SONOCHEMISTRY 2024; 110:107033. [PMID: 39255592 DOI: 10.1016/j.ultsonch.2024.107033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 07/30/2024] [Accepted: 08/15/2024] [Indexed: 09/12/2024]
Abstract
Sonoprocessing (US), as one of the most well-known and widely used green processing techniques, has tremendous benefits to be used in the food industry. The urgent call for global sustainable food production encourages the usage of such techniques more often and effectively. Using ultrasound as a hurdle technology synergistically with other green methods is crucial to improving the efficiency of the protein shift as well as the number of plant-based analog foods (PBAFs) against conventional products. It was revealed that the US has a significant impact when used as an assistant tool with other green technologies rather than being used alone. It increases the protein extraction efficiencies from plant biomasses, improves the techno-functional properties of food compounds, and makes them more applicable for industrial-scale alternative food production in the circular economy. The US aligns well with the objectives outlined in the UN's Sustainable Development Goals (SDGs), and Planetary Boundaries (PBs) framework, demonstrating promising outcomes in life cycle assessment. However, several challenges such as uncontrolled complex matrix effect, free radical formation, uncontrolled microbial growth/germination or off-flavor formation, removal of aromatic compounds, and Maillard reaction, are revealed in an increased number of studies, all of which need to be considered. In addition to a variety of advantages, this review also discusses the drawbacks and limitations of US focusing on PBAF production.
Collapse
Affiliation(s)
- Busra Gultekin Subasi
- Center for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, Agro Food Park 48, Aarhus N 8200, Denmark
| | - Aysenur Betul Bilgin
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Türkiye
| | - Deniz Günal-Köroğlu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Türkiye
| | - Beyza Saricaoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Türkiye
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, Jazan 45142, Saudi Arabia; Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut 1102 2801, Lebanon
| | - Tuba Esatbeyoglu
- Department of Molecular Food Chemistry and Food Development, Institute of Food and One Health, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany.
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Türkiye; Department of Molecular Food Chemistry and Food Development, Institute of Food and One Health, Gottfried Wilhelm Leibniz University Hannover, Am Kleinen Felde 30, 30167 Hannover, Germany.
| |
Collapse
|
2
|
Manyatsi TS, Mousavi Khaneghah A, Gavahian M. The effects of ultrasound on probiotic functionality: an updated review. Crit Rev Food Sci Nutr 2024; 64:11643-11660. [PMID: 37565473 DOI: 10.1080/10408398.2023.2242490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
The effects of ultrasound (US) on probiotics, as health-promoting microbes, have attracted the attention of researchers in fermentation and healthy food production. This paper aims to review recent advances in the application of the US for enhancing probiotic cells' activity, elaborate on the mechanisms involved, explain how probiotic-related industries can benefit from this emerging food processing technology, and discuss the perspective of this innovative approach. Data showed that US could enhance fermentation, which is increasingly used to enrich agri-food products with probiotics. Among the probiotics, recent studies focused on Lactiplantibacillus plantarum, Lactobacillus brevis, Lactococcus lactis, Lactobacillus casei, Leuconostoc mesenteroides, Bifidobacteria. These bacteria proliferated in the log phase when treated with US at relatively low-intensities. Also, this non-thermal technology increased extracellular enzymes, mainly β-galactosidase, and effectively extracted antioxidants and bioactive compounds such as phenolics, flavonoids, and anthocyanins. Accordingly, better functional and physicochemical properties of prebiotic-based foods (e.g., fermented dairy products) can be expected after ultrasonication at appropriate conditions. Besides, the US improved fermentation efficiency by reducing the production time, making probiotics more viable with lower lactose content, more oligosaccharide, and reduced unpleasant taste. Also, US can enhance the rheological characteristics of probiotic-based food by altering the acidity. Optimizing US settings is suggested to preserve probiotics viability to achieve high-quality food production and contribute to food nutrition improvement and sustainable food manufacturing.
Collapse
Affiliation(s)
- Thabani Sydney Manyatsi
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung, Taiwan, ROC
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| | - Mohsen Gavahian
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung, Taiwan, ROC
| |
Collapse
|
3
|
Bevilacqua A, Speranza B, Campaniello D, Racioppo A, Accettulli A, De Santis A, Sinigaglia M, Rosaria Corbo M. Effect of ultrasound-attenuation on technological and functional properties of two strains of Lactiplantibacillus plantarum isolated from table olives. ULTRASONICS SONOCHEMISTRY 2024; 110:107057. [PMID: 39236443 PMCID: PMC11404055 DOI: 10.1016/j.ultsonch.2024.107057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/28/2024] [Accepted: 08/31/2024] [Indexed: 09/07/2024]
Abstract
While probiotics have a wide range of beneficial properties, they can also negatively affect the taste or aroma of foods products by resulting in the phenomenon of post-acidification. Ultrasound (US) is a tool to modulate the metabolism of probiotic bacteria, counteracting post-acidification and improving the performance and functional properties of microorganisms without affecting their viability. The purpose of this paper was to evaluate the effect of 10 different combinations of power (20 and 40 %) and duration (2, 4, 6, 8 and 10 min) of US treatment on two functional strains of Lactiplantibacillus plantarum (c16 and c19) isolated from table olives, with the aim of understanding how, some of the main functional and technological traits (viability, acidification, growth profile under different conditions, antibiotic resistance, viability at pH 2.0 and 0.3 % bile salts), were affected. It was found that the effects were strain dependent, and the best results were obtained for strain c19 in the combinations at 20 % for 8 and 10 min and 40 % for 2 min, where an improvement in functional characteristics was found, with some effects on biofilm stability, inhibition of acidification, without adverse results on some technological properties.
Collapse
Affiliation(s)
- Antonio Bevilacqua
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Foggia, Italy
| | - Barbara Speranza
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Foggia, Italy
| | - Daniela Campaniello
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Foggia, Italy
| | - Angela Racioppo
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Foggia, Italy
| | - Alessandra Accettulli
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Foggia, Italy
| | - Alessandro De Santis
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Foggia, Italy
| | - Milena Sinigaglia
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Foggia, Italy
| | - Maria Rosaria Corbo
- Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Foggia, Italy.
| |
Collapse
|
4
|
Yaqoob S, Imtiaz A, Khalifa I, Maqsood S, Ullah R, Shahat AA, Al-Asmari F, Murtaza MS, Qian JY, Ma Y. Multi-frequency sono-fermentation with mono and co-cultures of LAB synergistically enhance mulberry juice: Evidence from metabolic, micromorphological, sensorial, and computational approaches. ULTRASONICS SONOCHEMISTRY 2024; 111:107117. [PMID: 39454510 PMCID: PMC11541811 DOI: 10.1016/j.ultsonch.2024.107117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
The effect of multi-frequency ultrasound-assisted (20/28/40 KHz) lactic acid bacteria (LAB- Lacticaseibacillus casei, Lactiplantibacillus plantarum, Lacticaseibacillus paracasei, Lactobacillus acidophilus, and Lactobacillus helveticus) fermentation (mono and co-cultures) on the metabolic, structural, micromorphological, and sensorial properties of mulberry juice were evaluated. Results indicated that multi-frequency ultrasound-assisted fermentation significantly modified the microstructure of mulberry juice powder, resulting in more porous and rougher surfaces with irregular indentations. Total phenolic content in the best-performing sample (S10) increased to 365.36 mg GAE/mL, while total flavonoid content rose to 139.20 mg RE/mL (p < 0.05). Antioxidant activity, as measured by DPPH and FRAP assays, also showed considerable improvement, with DPPH scavenging activity increasing to 87.45 % and FRAP-value to 3.27 mM TE/mL (p < 0.05). Additionally, HPLC-UV analysis revealed that the amendment in the concentrations of cyanidin-3-rutinoside (47.47 mg/L) and peonidin-3-O-glucoside (66.86 mg/L) in the S2-based sample. E-nose analysis demonstrated intense flavor profiles in fermented samples, particularly in sample S15. Sensory evaluation also highlighted that the fruity and floral aromas in co-culture fermented samples were enhanced, notably in S10, S7, and S14. Thus, combining multifrequency ultrasonication and fermentation significantly enhances the antioxidants capacity, flavor profile, micro-morphology, and overall quality of mulberry juice.
Collapse
Affiliation(s)
- Sanabil Yaqoob
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China; Department of Food Science and Technology, Faculty of Science and Technology, University of Central Punjab, Lahore, Pakistan
| | - Aysha Imtiaz
- School of Food Science and Engineering, Yangzhou University, Yangzhou, China
| | - Ibrahim Khalifa
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China; Food Technology Department, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt; Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Sajid Maqsood
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdelaaty A Shahat
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fahad Al-Asmari
- Department of Food and Nutrition Sciences, College of Agriculture and Food Sciences, King Faisal University, Saudi Arabia
| | - Mian Shamas Murtaza
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Jian-Ya Qian
- School of Food Science and Engineering, Yangzhou University, Yangzhou, China.
| | - Yongkun Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
5
|
Hao J, Xu H, Yan P, Yang M, Mintah BK, Dai C, Zhang R, Ma H, He R. Application of fixed-frequency ultrasound in the cultivation of Saccharomyces cerevisiae for rice wine fermentation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6417-6430. [PMID: 38506633 DOI: 10.1002/jsfa.13465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/20/2024] [Accepted: 03/20/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND Rice wine (RW) fermentation is limited by its long fermentation time, weak taste and unpleasant flavors such as oil and odor. In this study, a novel ultrasound technology of Saccharomyces cerevisiae was used with the aim of improving fermentation efficiency and volatile flavor quality of RW. RESULTS The results showed that fixed-frequency ultrasonic treatment (28 kHz, 45 W L-1, 20 min) of S. cerevisiae seed culture at its logarithmic metaphase significantly increased the biomass and alcohol yield by 31.58% and 26.45%, respectively, and reduced fermentation time by nearly 2 days. Flavor analysis indicated that the flavor compounds in RW, specifically the esters and alcohols, were also increased in quantity after the ultrasonic treatment of S. cerevisiae seed liquid. Isobutyl acetate, ethyl butyrate, ethyl hexanoate and phenethyl acetate contents were increased by 78.92%, 129.19%, 7.79% and 97.84%, respectively, as compared to the control. CONCLUSION Ultrasonic treatment of S. cerevisiae reduced fermentation time and enhanced the flavor profile of RW. This study could provide a theoretical and/or technological basis for the research and development of RW. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jing Hao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Haining Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Pengfei Yan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Mengyuan Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | | | - Chunhua Dai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Rong Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Ronghai He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| |
Collapse
|
6
|
Yu H, Cheng X, Li H, Du Q, Zeng X, Wu Z, Guo Y, Pan D. Effects and improvement mechanisms of ultrasonic pretreatment on the quality of fermented skim milk. ULTRASONICS SONOCHEMISTRY 2024; 108:106958. [PMID: 38889569 PMCID: PMC11231593 DOI: 10.1016/j.ultsonch.2024.106958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Fermented skim milk is an ideal food for consumers such as diabetic and obese patients, but its low-fat content affects its texture and viscosity. In this study, we developed an effective pretreatment method for fermented skim milk using low-frequency ultrasound (US), and investigated the molecular mechanism of the corresponding quality improvement. The skim milk samples were treated by optimal ultrasonication conditions (336 W power for 7 min at 3 °C), which improved the viscosity, water-holding capacity, sensory attributes, texture, and microstructure of fermented skim milk (P < 0.05). Further mechanistic analyses revealed that the US treatment enhanced the exposure of fluorescent amino acids within proteins, facilitating the cross-linking between casein and whey. The increased surface hydrophobicity of fermented milk indicates that the US treatment led to the exposure of hydrophobic amino acid residues inside proteins, contributing to the formation of a denser gel network; the average particle size of milk protein was reduced from 24.85 to 18.06 µm, which also contributed to the development of a softer curd texture. This work is the first attempt to explain the effect of a low-frequency ultrasound treatment on the quality of fermented skim milk and discuss the molecular mechanism of its improvement.
Collapse
Affiliation(s)
- Hongsen Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Insititute of Plant Virology, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Xinyue Cheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Insititute of Plant Virology, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Hang Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Insititute of Plant Virology, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Qiwei Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Insititute of Plant Virology, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China.
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Insititute of Plant Virology, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China.
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Insititute of Plant Virology, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Yuxing Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Insititute of Plant Virology, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| |
Collapse
|
7
|
Liu Y, Zhu J, Zhu C. Effect of ultrasonic pretreatment on fermentation performance and quality of fermented hawthorn pulp by lactic acid bacteria. Food Chem 2024; 446:138774. [PMID: 38401297 DOI: 10.1016/j.foodchem.2024.138774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/04/2024] [Accepted: 02/14/2024] [Indexed: 02/26/2024]
Abstract
In order to explore the effects of ultrasonic pretreatment on the fermentation performance and quality characteristics of fermented hawthorn pulp. Five types of fermented hawthorn pulp were obtained using 0 W for 5 min, 300 W for 5 min, 360 W for 5 min, 420 W for 5 min, 540 W for 5 min. The fermentation performance and quality of fermented hawthorn pulp were characterized. The results indicated Low power ultrasound (360 W) could improve the fermentation performance and quality of FHP, and high power ultrasound (540 W) could reduce the fermentation performance and quality. Under the ultrasonic condition of 360 W for 5 min; the cell membrane of lactic acid bacteria produced repairable damage and the morphology did not change significantly, the consumption of reducing sugar, total acid, soluble solids, amino nitrogen, conductivity, and sensory quality of the fermented hawthorn pulp reached the highest. The fermentation performance and quality of fermented hawthorn pulp were improved by the optimum ultrasonic treatment, which could be used as an effective and alternative method for producing FHP with good flavor, high bioactivity and good quality.
Collapse
Affiliation(s)
- Yuan Liu
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Jinxin Zhu
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Chuanhe Zhu
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
8
|
Jadhav HB, Choudhary P, Annapure U, Ramniwas S, Mugabi R, Ahmad Nayik G. The role of sonication in developing synbiotic Beverages: A review. ULTRASONICS SONOCHEMISTRY 2024; 107:106941. [PMID: 38861817 PMCID: PMC11209632 DOI: 10.1016/j.ultsonch.2024.106941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/25/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
Synbiotics are a combination of probiotic cells and prebiotic components and this harmonious association has numerous health benefits. Conventional processing technologies use high temperatures for processing which reduces the viability and the final quality of synbiotic beverages. Sonication is a rapidly growing technology in the food processing sector and can be employed for the formulation of synbiotic beverages with improved functionalities. The cavitation events generated during the sonication result in beneficial effects like increased viability of probiotic cells, enhanced bifidogenic characteristics of prebiotic components, less processing time, and high-quality products. The sonication process does not affect the sensory attributes of synbiotic beverages however, it alters the structure of prebiotics thus increasing the access by the probiotics. These positive effects are solely dependent on the type of ultrasound process and the ultrasound operating parameters. The review aims to provide information on the technological aspects of ultrasound, a brief about synbiotics, details on the ultrasound process used for the formulation of synbiotics, the influence of ultrasound operating parameters, and a focus on the research gap.
Collapse
Affiliation(s)
- Harsh B Jadhav
- Department of Food Engineering and Technology, Institute of Chemical Technology, Matunga, Mumbai 400019, India; PIHM, Unit UMET, INRAE, 369 Rue Jules Guesde 59650, Villeneuve d'Ascq -59650, France.
| | - Pintu Choudhary
- Department of Food Technology, CBL Government Polytechnic, Bhiwani, Haryana, India.
| | - Uday Annapure
- Department of Food Engineering and Technology, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| | - Seema Ramniwas
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali 140413, Punjab, India
| | - Robert Mugabi
- Department of Food Technology and Nutrition, Makerere University, Kampala, Uganda.
| | - Gulzar Ahmad Nayik
- Department of Food Science & Technology, Govt. Degree College, Shopian 192303, J&K, India.
| |
Collapse
|
9
|
Gholamhosseinpour A, Hashemi SMB, Safari F, Kerboua K. Impact of ultrasonicated Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus and Lactiplantibacillus plantarum AF1 on the safety and bioactive properties of stirred yoghurt during storage. ULTRASONICS SONOCHEMISTRY 2024; 102:106726. [PMID: 38113583 PMCID: PMC10772289 DOI: 10.1016/j.ultsonch.2023.106726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
In this study, the effects of ultrasonicated Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus and Lactiplantibacillus plantarum AF1 (100 W, 30 kHz, 3 min) on the safety and bioactive properties of stirred yoghurt during storage (4 °C for 21 days) were investigated. The results showed that sonicated cultures were more effective in reducing pathogens than untreated ones. The highest antioxidant activity (DPPH and ABTS), α-glucosidase and α-amylase inhibition capacity were found in yoghurt containing sonicated probiotic + sonicated yoghurt starter cultures (P + Y + ). The highest amount of peptides (12.4 mg/g) was found in P + Y + yoghurts at the end of the storage time. There were not significant differences between the exopolysaccharide content of P + Y+ (17.30 mg/L) and P + Y- (17.20 mg/L) yoghurts, although it was significantly (P ≤ 0.05) higher than the other samples. The use of ultrasonicated cultures could enhance the safety of stirred yoghurt and improve its functional and bioactive properties.
Collapse
Affiliation(s)
| | | | - Fatemeh Safari
- Department of Food Science and Technology, Faculty of Agriculture, Jahrom University, Jahrom, Iran
| | - Kaouther Kerboua
- National Higher School of Technology and Engineering, Department of Process and Energy Engineering, 23005 Annaba, Algeria
| |
Collapse
|
10
|
Kabawa B, Sampers I, Raes K. Effect of ultrasonic treatment on enzymes: Decoupling the relation between the ultrasonic driven conformational change and enzyme activity. ULTRASONICS SONOCHEMISTRY 2023; 101:106720. [PMID: 38086126 PMCID: PMC10733687 DOI: 10.1016/j.ultsonch.2023.106720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/09/2023] [Accepted: 12/06/2023] [Indexed: 12/22/2023]
Abstract
Considering the growing interest in enzyme-based extraction technology as a safe and eco-friendly extraction technique, along with the relatively high cost associated with enzymatic applications, it became necessary to explore novel strategies aimed to improve enzyme activity. In this study, the impact of ultrasonic treatment on commercial cellulase and pectinase was investigated. As this effect may be influenced by various ultrasonic and enzyme-related parameters, changes in enzyme conformation were explored under optimal and non-optimal enzyme conditions. The intrinsic fluorescence spectrum was utilized as a tool for monitoring these changes. Additionally, the enzyme's catalytic potential was also assessed under the same conditions. Results indicated that the impact of ultrasonic treatment on enzyme conformation primarily depends on the total ultrasonic energy delivered to the system, rather than other ultrasonic parameters such as power, sample volume, treatment time, or duty cycle. The maximum relative decrease in intrinsic fluorescence intensity of Pectinex® Ultra Clear (PUC) and Pectinex® Ultra SPL (PUS) after ultrasonic treatment was approximately 51% and 55%, respectively, while the decrease induced by thermal denaturation was 25% and 30% respectively. Furthermore, a blue shift in the fluorescence spectrum of both pectinases was observed upon sonication for all process conditions indicating a change in enzyme conformation. However, ultrasonic treatment did not result in a significant change in enzyme activity, suggesting that these conformational adjustments may occur in regions other than the active sites. Moreover, ultrasonicated pectinases and cellulases did not exhibit any improvement in their catalytic potential under either optimal or non-optimal conditions.
Collapse
Affiliation(s)
- Bashar Kabawa
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Campus Kortrijk, Sint-Martens-Latemlaan 2B, 8500 Kortrijk, Belgium.
| | - Imca Sampers
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Campus Kortrijk, Sint-Martens-Latemlaan 2B, 8500 Kortrijk, Belgium.
| | - Katleen Raes
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Campus Kortrijk, Sint-Martens-Latemlaan 2B, 8500 Kortrijk, Belgium.
| |
Collapse
|
11
|
Orlandi V, Dondero L, Turrini F, De Negri Atanasio G, Grasso F, Grasselli E, Boggia R. Green Extraction and Preliminary Biological Activity of Hydrolyzed Collagen Peptides (HCPs) Obtained from Whole Undersized Unwanted Catches ( Mugil cephalus L.). Molecules 2023; 28:7637. [PMID: 38005359 PMCID: PMC10673473 DOI: 10.3390/molecules28227637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Considering the global increase in fish consumption, the growing side-streams coming from the fish supply chain (e.g., skin, fins, tail, heads…), also including undersized or "unwanted catches", have been recently proposed as source of high-value bioactive compounds (e.g., peptides and fatty acids). In this case study, hydrolyzed collagen peptides (HCPs) were extracted from different parts of Mugil cephalus L. using environmentally friendly techniques such as ultrasounds and enzymatic treatments. Both a mixed biomass derived from the skin, fins, and tail, and a whole fish, were considered as starting biomass, simulating the unsorted processing side-streams and an undersized/unwanted catch, respectively. The extracted HCPs were purified in fractions (<3 KDa and >3 KDa) whose yields (about 5% and 0.04-0.3%, respectively) demonstrated the efficiency of the hydrolysis process. The extraction protocol proposed allowed us to also isolate the intermediate products, namely the lipids (about 8-10%) and the non-collagenous proteins (NCs, 16-23%), whose exploitation could be considered. Each sample was characterized using Sircol, UltraViolet-Spectra, and hydroxyproline assay, and the viability of their collagen fractions was tested on human endothelial cells. Significant effects were obtained at a fraction of <3 KDa, in particular at a concentration of 0.13 µg/mL. The T-scratch test was also performed, with positive results in all fractions tested.
Collapse
Affiliation(s)
- Valentina Orlandi
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (V.O.); (F.G.)
| | - Lorenzo Dondero
- Department of Earth, Environmental and Life Sciences, University of Genova, Corso Europa, 26, 16132 Genova, Italy; (L.D.); (G.D.N.A.); (E.G.)
| | - Federica Turrini
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (V.O.); (F.G.)
- National Center for the Development of New Technologies in Agriculture (Agritech), 80121 Napoli, Italy
| | - Giulia De Negri Atanasio
- Department of Earth, Environmental and Life Sciences, University of Genova, Corso Europa, 26, 16132 Genova, Italy; (L.D.); (G.D.N.A.); (E.G.)
| | - Federica Grasso
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (V.O.); (F.G.)
| | - Elena Grasselli
- Department of Earth, Environmental and Life Sciences, University of Genova, Corso Europa, 26, 16132 Genova, Italy; (L.D.); (G.D.N.A.); (E.G.)
- National Center for the Development of New Technologies in Agriculture (Agritech), 80121 Napoli, Italy
- Interuniversity Center for the Promotion of 3R Principles in Teaching and Research (Centro 3R), 56122 Pisa, Italy
| | - Raffaella Boggia
- Department of Pharmacy, University of Genova, Viale Cembrano 4, 16148 Genova, Italy; (V.O.); (F.G.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
12
|
Dai C, Shu Z, Xu X, Yan P, Dabbour M, Kumah Mintah B, Huang L, He R, Ma H. Enhancing the growth of thermophilic Bacillus licheniformis YYC4 by low-intensity fixed-frequency continuous ultrasound. ULTRASONICS SONOCHEMISTRY 2023; 100:106611. [PMID: 37757602 PMCID: PMC10550775 DOI: 10.1016/j.ultsonch.2023.106611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/09/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Abstract
The effect of low-intensity fixed-frequency continuous ultrasound (LIFFCU) on the growth of Bacillus licheniformis YYC4 was investigated. The changes in morphology and activity of the organism, contributing to the growth were also explored. Compared with the control, a significant increase (48.95%) in the biomass of B. licheniformis YYC4 (at the logarithmic metaphase) was observed following the LIFFCU (28 kHz, 1.5 h and 120 W (equivalent to power density of 40 W/L)) treatment. SEM images showed that ultrasonication caused sonoporation, resulting in increased membrane permeability, evidenced by increase in cellular membrane potential, electrical conductivity of the culture, extracellular protein and nucleic acid, and intracellular Ca2+ content. Furthermore, LIFFCU action remarkably increased the extracellular protease activity, volatile components of the culture medium, microbial metabolic activity, and spore germination of the strain. Therefore, LIFFCU could be used to efficiently promote the growth of targeted microorganisms.
Collapse
Affiliation(s)
- Chunhua Dai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Zhenzhen Shu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xueting Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Pengfei Yan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Mokhtar Dabbour
- Department of Agricultural and Biosystems Engineering, Faculty of Agriculture, Benha University, P.O. Box 13736, Moshtohor, Qaluobia, Egypt
| | | | - Liurong Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| | - Ronghai He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China.
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Institute of Food Physical Processing, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
13
|
Zhang M, Chen X, Zhang Y, Zhang R, Liu J, Fan B, Wang F, Li L. Application progress of ultrasonication in flour product processing: A review. ULTRASONICS SONOCHEMISTRY 2023; 99:106538. [PMID: 37541126 PMCID: PMC10407950 DOI: 10.1016/j.ultsonch.2023.106538] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 08/06/2023]
Abstract
Flour products played a vital role in the global diet structure. With the increasing demand for dietary health and food standardization, the staple food of flour products made from coarse grains due to its unique flavor and rich nutrition has become a trend and is favored by consumers. However, the lack of gluten protein in the raw materials prevented the formation of a stable gluten network structure, leading to the deterioration of the quality of flour products. Ultrasonic treatment, as an innovative food processing technology, generated energy during the action of ultrasonic waves that had a positive impact on the texture, organizational structure, or flavor characteristics of food. That was of great significance for improving food production efficiency, improving food processing quality, and extending food shelf life. This article applied ultrasonic technology to the processing of flour products from the perspective of promoting fermentation and improving production efficiency of flour products. The cavitation effect of ultrasound promoted the formation of gluten network structure, improved the rheology properties of dough and the quality of flour products by promoting protein cross-linking, improving the foaming and emulsifying stability of gluten protein, and promoting the growth and reproduction of yeast. All reviewed studies indicate that ultrasound would be a promising technology for producing high-quality surface products under appropriate conditions.
Collapse
Affiliation(s)
- Min Zhang
- Institute of Food Science and Technology CAAS, Beijing 100000, China; Weifang Institute of Food Science and Processing Technology, Weifang 261000, Shandong, China
| | - Xuanhong Chen
- Institute of Food Science and Technology CAAS, Beijing 100000, China; Weifang Institute of Food Science and Processing Technology, Weifang 261000, Shandong, China
| | - Yan Zhang
- Shandong Agricultural Technology Promotion Center, Jinan 250014, Shandong, China
| | - Ruoyu Zhang
- Zibo Institute for Food and Drug Control, Zibo 255000, Shandong, China
| | - Jun Liu
- Shandong Yuwang Biotechnology Co., Ltd, Dezhou 25300, Shandong, China
| | - Bei Fan
- Institute of Food Science and Technology CAAS, Beijing 100000, China
| | - Fengzhong Wang
- Institute of Food Science and Technology CAAS, Beijing 100000, China.
| | - Long Li
- Institute of Food Science and Technology CAAS, Beijing 100000, China; Weifang Institute of Food Science and Processing Technology, Weifang 261000, Shandong, China.
| |
Collapse
|
14
|
Zadeike D, Degutyte R. Recent Advances in Acoustic Technology in Food Processing. Foods 2023; 12:3365. [PMID: 37761074 PMCID: PMC10530031 DOI: 10.3390/foods12183365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The development of food industry technologies and increasing the sustainability and effectiveness of processing comprise some of the relevant objectives of EU policy. Furthermore, advances in the development of innovative non-thermal technologies can meet consumers' demand for high-quality, safe, nutritious, and minimally processed foods. Acoustic technology is characterized as environmentally friendly and is considered an alternative method due to its sustainability and economic efficiency. This technology provides advantages such as the intensification of processes, increasing the efficiency of processes and eliminating inefficient ones, improving product quality, maintaining the product's texture, organoleptic properties, and nutritional value, and ensuring the microbiological safety of the product. This review summarizes some important applications of acoustic technology in food processing, from monitoring the safety of raw materials and products, intensifying bioprocesses, increasing the effectiveness of the extraction of valuable food components, modifying food polymers' texture and technological properties, to developing biodegradable biopolymer-based composites and materials for food packaging, along with the advantages and challenges of this technology.
Collapse
Affiliation(s)
- Daiva Zadeike
- Department of Food Science and Technology, Faculty of Chemical Technology, Kaunas University of Technology, 50254 Kaunas, Lithuania;
| | | |
Collapse
|
15
|
Labrador Fernández L, Díaz-Maroto MC, Pérez Porras P, Bautista-Ortín AB, Alañón ME, Gómez-Plaza E, Pérez-Coello MS. Power ultrasound treatment of Viognier grapes as a tool to increase the aromatic potential of wines. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3613-3620. [PMID: 36208475 DOI: 10.1002/jsfa.12258] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/30/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND High-power ultrasound is a novel and non-thermal technique normally used in red vinification to increase the extraction of phenolic compounds. However, few studies have been carried out on its effect on the extraction of aroma compounds and their precursors in white grapes. This study evaluates the effect of high-power ultrasound at winery scale in the maceration of Viognier grapes on the content of varietal volatile compounds (free and glycosidically bound) in musts and wines, in comparison with wines from direct pressing and from short skin maceration. RESULTS The pre-fermentative ultrasound treatment of the grapes produced an increase in most of the varietal compounds of musts and wines, both in the free fraction and in the bound one, especially in the C6 alcohols, terpenes and norisoprenoids, some of them of sensory relevance, while the effect on esters and lactones was less evident. Ultrasound maceration allowed us to obtain wines of higher aromatic intensity, with a more pronounced varietal character. CONCLUSION The pre-fermentative ultrasound treatment of Viognier grapes increases the aromatic potential of the wines, as it favors the extraction of free and bound varietal volatile compounds. In addition, it allows the maceration time of the grapes to be reduced compared to conventional pre-fermentation techniques, thus avoiding oxidative processes that could negatively affect the aroma of the wines. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lara Labrador Fernández
- Food Technology, Faculty of Chemical Sciences and Technologies, Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, Ciudad Real, Spain
| | - M Consuelo Díaz-Maroto
- Food Technology, Faculty of Chemical Sciences and Technologies, Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, Ciudad Real, Spain
| | - Paula Pérez Porras
- Department of Food Science and Technology, Faculty of Veterinary Sciences, University of Murcia, Murcia, Spain
| | - Ana Belén Bautista-Ortín
- Department of Food Science and Technology, Faculty of Veterinary Sciences, University of Murcia, Murcia, Spain
| | - M Elena Alañón
- Food Technology, Higher Technical School of Agronomic Engineering, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Encarna Gómez-Plaza
- Department of Food Science and Technology, Faculty of Veterinary Sciences, University of Murcia, Murcia, Spain
| | - M Soledad Pérez-Coello
- Food Technology, Faculty of Chemical Sciences and Technologies, Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, Ciudad Real, Spain
| |
Collapse
|
16
|
Zhang QA, Zheng H, Lin J, Nie G, Fan X, García-Martín JF. The state-of-the-art research of the application of ultrasound to winemaking: A critical review. ULTRASONICS SONOCHEMISTRY 2023; 95:106384. [PMID: 37001419 PMCID: PMC10457577 DOI: 10.1016/j.ultsonch.2023.106384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/08/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
As a promising non-thermal physical technology, ultrasound has attracted extensive attention in recent years, and has been applied to many food processing operation units, such as involving filtration, freezing, thawing, sterilization, cutting, extraction, aging, etc. It is also widely used in the processing of meat products, fruits and vegetables, and dairy products. With regard to its application in winemaking, most of the studies available in the literature are focused on the impact of ultrasound on a certain characteristic of wine, lacking of systematic sorting of these literatures. This review systematically summarizes and explores the current achievements and problems of the application of ultrasound to the different stages of winemaking, including extraction, fermentation, aging and sterilization. Summarizing the advantages and disadvantages of ultrasound application in winemaking and its development in future development.
Collapse
Affiliation(s)
- Qing-An Zhang
- School of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Hongrong Zheng
- School of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi'an 710119, China
| | - Junyan Lin
- School of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi'an 710119, China
| | - Guangmin Nie
- School of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xuehui Fan
- School of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi'an 710119, China
| | | |
Collapse
|
17
|
Hu Y, Li K, Bai Y, Li H, Chen J. Effect of combined ultrasonic and enzymatic assisted treatment on the fermentation process of whole Lycium barbarum (goji berry) fruit. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
18
|
Xing Y, Aweya JJ, Jin R, Lin R, Weng W, Zhang Y, Deng S, Yang S. Low-intensity ultrasound combines synergistically with Lacticaseibacillus paracasei fermentation to enhance chitin extraction from crab shells. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
19
|
Effects of Fermented Food Consumption on Non-Communicable Diseases. Foods 2023; 12:foods12040687. [PMID: 36832762 PMCID: PMC9956079 DOI: 10.3390/foods12040687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
The gastrointestinal flora consists of several microbial strains in variable combinations in both healthy and sick humans. To prevent the risk of the onset of disease and perform normal metabolic and physiological functions with improved immunity, a balance between the host and gastrointestinal flora must be maintained. Disruption of the gut microbiota triggered by various factors causes several health problems, which promote the progression of diseases. Probiotics and fermented foods act as carriers of live environmental microbes and play a vital role in maintaining good health. These foods have a positive effect on the consumer by promoting gastrointestinal flora. Recent research suggests that the intestinal microbiome is important in reducing the risk of the onset of various chronic diseases, including cardiac disease, obesity, inflammatory bowel disease, several cancers, and type 2 diabetes. The review provides an updated knowledge base about the scientific literature addressing how fermented foods influence the consumer microbiome and promote good health with prevention of non-communicable diseases. In addition, the review proves that the consumption of fermented foods affects gastrointestinal flora in the short and long term and can be considered an important part of the diet.
Collapse
|
20
|
Abker AM, Wang S, Chen S, Ma M, Fu X. The effects of high-intensity ultrasound and oil types on the physicochemical properties of egg white protein emulsions. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2022.111276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
21
|
Schmaltz S, Silva MA, Ninaus RG, Guedes JVC, Zabot GL, Tres MV, Mazutti MA. Biomolecules in modern and sustainable agriculture. 3 Biotech 2023; 13:70. [PMID: 36742447 PMCID: PMC9889597 DOI: 10.1007/s13205-023-03486-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/18/2023] [Indexed: 02/03/2023] Open
Abstract
This review presents scientific findings which indicate biomolecules are excellent candidates for the development of biopesticides. Efforts are being done to find routes to increase their concentrations in the cultivation media because this concentration facilitates applications, storage, and transportation. Some of these routes are co-fermentation and ultrasound-assisted fermentation. Ultrasonication increases metabolite production and growth rates by improvement of cell permeability and nutrient uptake rates through cell membranes. For example, 24% increase in the enzymatic activity of cellulases produced by Trichoderma reesei in solid-state fermentation was achieved with ultrasonication. Also, chitinase and β-1,3-glucanase productions were stimulated by ultrasound in Beauveria bassiana cultivation, presenting positive results. The common parameters evaluated in the production of biomolecules by ultrasound-assisted fermentation are the duty cycle, time of application, power, energetic density, and how long the sonication is maintained in the fermentation media. Many successful cases are reported and discussed, which include the final formulation of bioproducts for agricultural applications. In this trend, nanotechnology is a promising tool for the development of nanoformulations. Nanoemulsification, green synthesis, biosynthesis, or biogenic synthesis are technologies used to produce such nanoformulations, allowing the controlled release of control agents, as well as the delivery of biomolecules to specific targets.
Collapse
Affiliation(s)
- Silvana Schmaltz
- Department of Chemical Engineering, Federal University of Santa Maria, 1000, Roraima Avenue, Santa Maria, RS 97105-900 Brazil
| | - Marco Antônio Silva
- São Carlos School of Engineering, University of São Paulo, 400, Trabalhador São-Carlense Avenue, São Carlos, SP 13566-590 Brazil
| | - Renata Gulart Ninaus
- Department of Chemical Engineering, Federal University of Santa Maria, 1000, Roraima Avenue, Santa Maria, RS 97105-900 Brazil
| | - Jerson Vanderlei Carus Guedes
- Department of Plant Protection, Federal University of Santa Maria, 1000, Roraima Avenue, Santa Maria, RS 97105-900 Brazil
| | - Giovani Leone Zabot
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria, 1040, Sete de Setembro St., Center DC, Cachoeira Do Sul, RS 96508-010 Brazil
| | - Marcus Vinícius Tres
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria, 1040, Sete de Setembro St., Center DC, Cachoeira Do Sul, RS 96508-010 Brazil
| | - Marcio Antonio Mazutti
- Department of Chemical Engineering, Federal University of Santa Maria, 1000, Roraima Avenue, Santa Maria, RS 97105-900 Brazil
| |
Collapse
|
22
|
Jadhav HB, Raina I, Gogate PR, Annapure US, Casanova F. Sonication as a Promising Technology for the Extraction of Triacylglycerols from Fruit Seeds—A Review. FOOD BIOPROCESS TECH 2023. [DOI: 10.1007/s11947-022-02987-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
23
|
Culture Age, Growth Medium, Ultrasound Amplitude, and Time of Exposure Influence the Kinetic Growth of Lactobacillus acidophilus. FERMENTATION 2023. [DOI: 10.3390/fermentation9010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The growth pattern of probiotics can be modified by changing their nutritional factors and their physiological stage. Meanwhile, high intensity ultrasound (HIUS) can be employed to increase probiotics’ biomass. The one-factor-at-a-time (OFAT) approach was employed to investigate the influence of the growth medium (MRS broth, whole milk, and skim milk), culture age (1 day and 7 days old) and ultrasound parameters (time and amplitude) on the kinetic parameters of L. acidophilus. The oldest culture (7 days) had a greater lag phase and time to reach the end of the sigmoidal curve (Tmax) (p < 0.05) as well as a lower rate (maximum growth potential μmax) compared to the youngest culture (1 day). Regarding the growth medium, skim milk presented the greatest L. acidophilus counts (p < 0.05). Meanwhile, sonication times (60 and 90 s) change µmax and Tmax. When 30% amplitude was applied, a greater μmax and a smaller Tmax were observed (p < 0.05). It can be concluded that the growth medium, culture age, and ultrasound parameters (time and amplitude) influence the kinetic parameters of L. acidophilus. Results from this study could be used in the design and optimization of processes to improve the growth of the probiotic L. acidophilus at industrial scale.
Collapse
|
24
|
Taha A, Mehany T, Pandiselvam R, Anusha Siddiqui S, Mir NA, Malik MA, Sujayasree OJ, Alamuru KC, Khanashyam AC, Casanova F, Xu X, Pan S, Hu H. Sonoprocessing: mechanisms and recent applications of power ultrasound in food. Crit Rev Food Sci Nutr 2023; 64:6016-6054. [PMID: 36591874 DOI: 10.1080/10408398.2022.2161464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
There is a growing interest in using green technologies in the food industry. As a green processing technique, ultrasound has a great potential to be applied in many food applications. In this review, the basic mechanism of ultrasound processing technology has been discussed. Then, ultrasound technology was reviewed from the application of assisted food processing methods, such as assisted gelation, assisted freezing and thawing, assisted crystallization, and other assisted applications. Moreover, ultrasound was reviewed from the aspect of structure and property modification technology, such as modification of polysaccharides and fats. Furthermore, ultrasound was reviewed to facilitate beneficial food reactions, such as glycosylation, enzymatic cross-linking, protein hydrolyzation, fermentation, and marination. After that, ultrasound applications in the food safety sector were reviewed from the aspect of the inactivation of microbes, degradation of pesticides, and toxins, as well inactivation of some enzymes. Finally, the applications of ultrasound technology in food waste disposal and environmental protection were reviewed. Thus, some sonoprocessing technologies can be recommended for the use in the food industry on a large scale. However, there is still a need for funding research and development projects to develop more efficient ultrasound devices.
Collapse
Affiliation(s)
- Ahmed Taha
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, PR China
- Department of Functional Materials and Electronics, State Research Institute Center for Physical Sciences and Technology (FTMC), State Research Institute, Vilnius, Lithuania
- Department of Food Science, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Taha Mehany
- Food Technology Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt
- Department of Chemistry, University of La Rioja, Logroño, Spain
| | - Ravi Pandiselvam
- Physiology, Biochemistry, and Post-Harvest Technology Division, ICAR -Central Plantation Crops Research Institute, Kasaragod, India
| | - Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- DIL e.V.-German Institute of Food Technologies, Quakenbrück, Germany
| | - Nisar A Mir
- Department of Biotechnology Engineering and Food Technology, University Institute of Engineering (UIE), Chandigarh University, Mohali, India
| | - Mudasir Ahmad Malik
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda, India
| | - O J Sujayasree
- Division of Post-Harvest Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | | | - Federico Casanova
- Food Production Engineering, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Xiaoyun Xu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, PR China
| | - Siyi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, PR China
| | - Hao Hu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
- Key Laboratory of Environment Correlative Dietology, Huazhong Agricultural University, Ministry of Education, PR China
| |
Collapse
|
25
|
Racioppo A, Speranza B, Altieri C, Sinigaglia M, Corbo MR, Bevilacqua A. Ultrasound can increase biofilm formation by Lactiplantibacillus plantarum and Bifidobacterium spp. Front Microbiol 2023; 14:1094671. [PMID: 36950165 PMCID: PMC10025361 DOI: 10.3389/fmicb.2023.1094671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
The main goal of this research was to study the effect of an Ultrasound (US) treatment on biofilm formation of Lactiplantibacillus plantarum (strains c19 and DSM 1055), Bifidobacterium animalis subsp. lactis DSM 10140, Bifidobacterium longum subsp. longum DSM 20219, and Bifidobacterium longum subsp. infantis DSM 20088. From a methodological point of view, each microorganism was treated through six US treatments, different for the power (10, 30, or 50% of the net power, 130 W), the duration (2, 6, or 10 min) and the application of pulses (0 or 10 s). After the treatment, a biofilm of the strains was let to form on glass slides and the concentration of sessile cells was analyzed for 16 days. Biofilms formed by untreated microorganisms were used as controls. As a first result, it was found that US significantly increased the concentration of sessile cells of B. longum subsp. infantis, while for some other strains US treatment could not affect the formation of biofilm while improving its stability, as found for L. plantarum DSM1055 after 16 days. The variable mainly involved in this positive effect of US was the duration of the treatment, as biofilm formation and stability were improved only for 2 min-treatments; on the other hand, the effect of power and pulses were strain-dependent. In conclusion, the results suggest practical implication of a US pre-treatment for various fields (improvement of adhesion of microorganisms useful in food or in the gut, biomedical and environmental industries), although further investigations are required to elucidate the mode of action.
Collapse
|
26
|
Ultrasound-Assisted Lactic Acid Fermentation of Bakraei (Citrus reticulata cv. Bakraei) Juice: Physicochemical and Bioactive Properties. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation9010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In this study, ultrasonication (US) (50 W, 30 kHz, 1–6 min) was used to increase the efficiency of Limosilactobacillus reuteri PTCC 1655 fermentation process (37 °C; 30 h) of Bakraei juice. Total sugars, pH, Brix, organic acids, vitamin C, polyphenols, antioxidant activity, α-amylase inhibition and anti-inflammatory properties were measured during the fermentation period. The results showed that by increasing the ultrasound time up to 5 min, pH, vitamin C, citric acid, and polyphenolic compounds decreased, while lactic acid, antioxidant capacity, α-amylase inhibition and anti-inflammatory properties were increased. When the ultrasound time was increased up to 6 min, compared to the non-ultrasound-treated sample, the efficiency of the fermentation process decreased and promoted a decrease in the microbial population, lactic acid levels, antioxidant activity, α-amylase inhibition, and anti-inflammatory properties of the juices. The initial anti-inflammatory activity (11.3%) of juice reached values of 33.4% and 19.5%, after US treatments of 5 and 6 min, respectively, compared to the non-sonicated juice (21.7%), after 30 h of fermentation. As a result, the use of ultrasound in the controlled fermentation process can increase the efficiency of fermentation process.
Collapse
|
27
|
Liu J, Huang T, Hong W, Peng F, Lu Z, Peng G, Fu X, Liu G, Wang Z, Peng Q, Gong X, Zhou L, Li L, Li B, Xu Z, Lan H. A comprehensive study on ultrasonic deactivation of opportunistic pathogen Saccharomyces cerevisiae in food processing: From transcriptome to phenotype. Lebensm Wiss Technol 2022; 170:114069. [DOI: 10.1016/j.lwt.2022.114069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Junyan Liu
- College of Light Industry and Food Sciences, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, 510225, China
| | - Tengyi Huang
- Department of Laboratory Medicine, the Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Wei Hong
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Fang Peng
- Department of Critical Care Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zerong Lu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, 510640, China
| | - Gongyong Peng
- State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xin Fu
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Gongliang Liu
- College of Light Industry and Food Sciences, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou, 510225, China
| | - Zhi Wang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Qingmei Peng
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Xiangjun Gong
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Lizhen Zhou
- School of Applied Chemistry and Biological Technology, Shenzhen Polytechnic, Shenzhen, 518055, China
| | - Lin Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, 510640, China
- Research Institute for Food Nutrition and Human Health, Guangzhou, China
| | - Bing Li
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, 510640, China
- Research Institute for Food Nutrition and Human Health, Guangzhou, China
| | - Zhenbo Xu
- Department of Laboratory Medicine, the Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, 510640, China
| | - Haifeng Lan
- Department of Orthopaedic Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
28
|
Fu J, Wang L, Sun J, Ju N, Jin G. Malolactic Fermentation: New Approaches to Old Problems. Microorganisms 2022; 10:microorganisms10122363. [PMID: 36557616 PMCID: PMC9781322 DOI: 10.3390/microorganisms10122363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/24/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
Malolactic fermentation (MLF) is the decarboxylation of L-malic acid to L-lactic acid by lactic acid bacteria (LAB). For the majority of wine production, secondary fermentation is crucial. MLF significantly impacts the quality of most red and some white wine. The outcomes of the spontaneously initiated and finished MLF are frequently unpredictable and can even cause the wine to deteriorate. As a result, individuals typically favour inoculating superior starter cultures when performing MLF. The MLF method for wine has, however, faced new difficulties because of the altered wine fermentation substrate environment brought on by global climate change, the growing demands of winemakers for production efficiency, and the rising demand for high-quality wine. To serve as a reference for the study of wine production and MLF in the current situation, this review primarily updates and summarises the research findings on increasing the effectiveness and dependability of MLF in recent years.
Collapse
Affiliation(s)
- Junwei Fu
- School of Food and Wine, Ningxia University, Yinchuan 750021, China
| | - Ling Wang
- School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Jingxian Sun
- School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Ning Ju
- School of Food and Wine, Ningxia University, Yinchuan 750021, China
- Correspondence: (N.J.); (G.J.)
| | - Gang Jin
- School of Food and Wine, Ningxia University, Yinchuan 750021, China
- Engineering Research Center of Grape and Wine, Ministry of Education, Yinchuan 750021, China
- Correspondence: (N.J.); (G.J.)
| |
Collapse
|
29
|
Influence of Low-Intensity Ultrasound on ε-Polylysine Production: Intracellular ATP and Key Biosynthesis Enzymes during Streptomyces albulus Fermentation. Foods 2022; 11:foods11213525. [DOI: 10.3390/foods11213525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
Abstract
The effect of low-intensity sonication treatment on cell growth, ε-polylysine (ε-PL) yield and its biological mechanism were investigated, using a 3-L-jar fermenter coupled with an in situ ultrasonic slot with a Streptomyces albulus strain SAR 14-116. Under ultrasonic conditions (28 kHz, 0.37 W cm−2, 60 min), a high biomass of SAR 14-116 and concentration of ε-PL were realized (i.e., they increased by 14.92% and 28.45%, respectively) when compared with a control. Besides this, ultrasonication increased the mycelia viability and intracellular ATP as well as activities of key enzymes involved in the ε-PL biosynthesis pathway, resulting in an improvement in the production of ε-PL. Data on qRT-PCR revealed that ultrasonication also affected the gene expression of key enzymes in the ε-PL biosynthesis pathway, including ε-PL synthetase (PLS). These outcomes provided the basis for understanding the effects of ultrasound-assisted fermentation on the stimulation of metabolite production and fermentation procedure in a fermenter.
Collapse
|
30
|
Impact of ultrasound and electric fields on microalgae growth: a comprehensive review. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1007/s43153-022-00281-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
31
|
Yuan S, Yang F, Yu H, Xie Y, Guo Y, Yao W. Ultrasonic stimulation of milk fermentation: effects on degradation of pesticides and physiochemical, antioxidant, and flavor properties of yogurt. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6612-6622. [PMID: 35596658 DOI: 10.1002/jsfa.12028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/16/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Ultrasound has the potential to increase microbial metabolic activity, so this study explored the stimulatory effect of ultrasound pre-treatment on the degradation of four common pesticides (fenitrothion, chlorpyrifos, profenofos, and dimethoate) during milk fermentation by Lactobacillus plantarum and its effect on yogurt quality. RESULTS Appropriate ultrasound pretreatment significantly enhanced the growth of L. plantarum. The degradation percentages of pesticides increased by 19-38% under ultrasound treatment. Ultrasonic intensity, pulse duty cycle, and duration time were key factors affecting microbial growth and pesticide degradation. Under optimal ultrasonic pre-treatment conditions, the degradation rate constants of four pesticides were at least 3.4 times higher than those without sonication. In addition, such ultrasound pretreatment significantly shortened yogurt fermentation time, increased the water holding capacity, hardness and antioxidant activity of the yogurt, and improved the flavor quality of the yogurt. CONCLUSION Ultrasonic pretreatment significantly accelerated the degradation of the four pesticides during yogurt fermentation. In addition, such ultrasound pretreatment increased the efficiency of yogurt making and improved the quality of yogurt in terms of water holding capacity, firmness, antioxidant activity, and flavor. These findings provide a basis for the application of ultrasound to the removal of pesticide residues and quality improvement of yogurt. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shaofeng Yuan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Fangwei Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| |
Collapse
|
32
|
Shen D, Zhang M, Mujumdar AS, Li J. Advances and application of efficient physical fields in extrusion based 3D food printing technology. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Current Technologies to Accelerate the Aging Process of Alcoholic Beverages: A Review. BEVERAGES 2022. [DOI: 10.3390/beverages8040065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aging process contributes to the sensory evolution of alcoholic beverages, producing changes in the color and flavor of the final product. Traditionally, aging has occurred by storing beverages in wooden barrels for several months or years. To meet the demand for aged beverages, there is a need for large storage areas, a large number of wooden barrels, and, consequently, large volumes of stored product. Evaporation losses can also occur. In addition to the reactions of the beverage itself, there is also a transfer of wood compounds to the drink, which is later modified by successive oxidation reactions. This study addresses the alternative methods for accelerating the aging stage of beverages. These include the use of wood fragments, ultrasound, micro-oxygenation, pulsed electric field, high hydrostatic pressure, and microwave and gamma irradiation. These methods can be applied to optimize the process of extracting wood compounds, promote free radical formation, reduce oxidation reaction time, and accelerate yeast autolysis time. This study provides examples of some of the aforementioned methods. These technologies add value to the aging process, since they contribute to the reduction of production costs and, consequently, can increase commercial competitiveness.
Collapse
|
34
|
Silva M, Kadam MR, Munasinghe D, Shanmugam A, Chandrapala J. Encapsulation of Nutraceuticals in Yoghurt and Beverage Products Using the Ultrasound and High-Pressure Processing Technologies. Foods 2022; 11:2999. [PMID: 36230075 PMCID: PMC9564056 DOI: 10.3390/foods11192999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/09/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Dairy and beverage products are considered highly nutritious. The increase demand for added nutritional benefits within the food systems consumed by the consumers paves the pathway towards fortifying nutraceuticals into these products. However, nutraceuticals are highly unstable towards harsh processing conditions. In addition, the safety of dairy and beverage products plays a very important role. Therefore, various heat treatments are in practice. As the heat-treated dairy and beverage products tends to illustrate several alterations in their organoleptic characteristics and nutritional properties, the demand for alternative non-thermal processing technologies has increased extensively within the food industry. Ultrasound and high-pressure processing technologies are desirable for this purpose as well as a safe and non-destructive technology towards encapsulation of nutraceuticals into food systems. There are benefits in implementing these two technologies in the production of dairy and beverage products with encapsulants, such as manufacturing high-quality products with improved nutritional value while simultaneously enhancing the sensory characteristics such as flavour, taste, texture, and colour and attaining the microbial quality. The primary objective of this review is to provide detailed information on the encapsulation of nutraceuticals and mechanisms involved with using US and HPP technologies on producing encapsulated yoghurt and beverage products.
Collapse
Affiliation(s)
- Mayumi Silva
- School of Science, RMIT University, Bundoora, VIC 3083, Australia
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Pitipana 10206, Sri Lanka
| | - Mayur Raghunath Kadam
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management, Thanjavur 613005, India
| | - Dilusha Munasinghe
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Akalya Shanmugam
- Food Processing Business Incubation Centre, National Institute of Food Technology, Entrepreneurship and Management, Thanjavur 613005, India
- Centre for Excellence in Non-Thermal Processing, National Institute of Food Technology, Entrepreneurship and Management, Thanjavur 613005, India
| | | |
Collapse
|
35
|
Wu Z, Li X, Zeng Y, Cai D, Teng Z, Wu Q, Sun J, Bai W. Color Stability Enhancement and Antioxidation Improvement of Sanhua Plum Wine under Circulating Ultrasound. Foods 2022; 11:foods11162435. [PMID: 36010435 PMCID: PMC9407089 DOI: 10.3390/foods11162435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/23/2022] [Accepted: 08/11/2022] [Indexed: 11/30/2022] Open
Abstract
Anthocyanins contribute to the attractive color of fruit wine, and their excessive degradation is deleterious to quality, especially for wine with an inherently low anthocyanin content, such as Sanhua plum wine. Ultrasonic treatment is well recognized for wine color maintenance. In the present study, fresh Sanhua plum wine was ultrasonic-treated and aged in barrels for three months. Our results demonstrate that ultrasonic treatment at 28 and 40 kHz improves color performance, as expressed by an increase in a*, b*, and C* values and color intensity, which is highly related to copigmentation. This successful conservation was attributed to the inactivation of polyphenol oxidase and the corresponding reduction in anthocyanin degradation. Finally, the increased antioxidative ability was verified due to the hydrogen donating ability of the surviving anthocyanins. This study indicates the reliability of ultrasonic treatment for providing superior colorfastness during Sanhua plum wine aging, which is also of great potential in processing different fruit wines.
Collapse
Affiliation(s)
- Zhiqian Wu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, China
| | - Xusheng Li
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, China
| | - Yingyu Zeng
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, China
| | - Dongbao Cai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, China
| | - Zhaojun Teng
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, China
| | - Qixia Wu
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, China
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Guangdong Engineering Technology Center of Food Safety Molecular Rapid Detection, Jinan University, Guangzhou 510632, China
- Correspondence: ; Tel.: +86-138-2228-3521 or +86-20-8522630
| |
Collapse
|
36
|
Abesinghe A, Vidanarachchi J, Islam N, Karim M. Effects of ultrasound on the fermentation profile and metabolic activity of lactic acid bacteria in buffalo's (Bubalus bubalis) milk. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
37
|
Abdolmaleki K, Javanmardi F, Gavahian M, Phimolsiripol Y, Ruksiriwanich W, Mir SA, Mousavi Khaneghah A. Emerging technologies in combination with probiotics for aflatoxins removal: An updated review. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Khadije Abdolmaleki
- Research Center of Oils and Fats Kermanshah University of Medical Sciences Kermanshah Iran
| | - Fardin Javanmardi
- Department of Food Science and Technology Faculty of Nutrition Sciences and Food Technology National Nutrition and Food Technology Research Institute Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Mohsen Gavahian
- Department of Food Science College of Agriculture National Pingtung University of Science and Technology 1, Shuefu Road Neipu Pingtung 91201 Taiwan, ROC
| | | | | | - Shabir Ahmad Mir
- Department of Food Science and Technology Government College for Women MA Road Srinagar, Jammu, and Kashmir India
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology Warsaw Poland
- Department of Food Science and Nutrition Faculty of Food Engineering University of Campinas Campinas, São Paulo Brazil
| |
Collapse
|
38
|
Prestes Fallavena L, Poerner Rodrigues N, Damasceno Ferreira Marczak L, Domeneghini Mercali G. Formation of advanced glycation end products by novel food processing technologies: A review. Food Chem 2022; 393:133338. [PMID: 35661466 DOI: 10.1016/j.foodchem.2022.133338] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 01/18/2023]
Abstract
Advanced glycation end products (AGEs) are a diverse group of compounds formed endogenously and exogenously due to non-enzymatic glycation of proteins and lipids. Although the effects of heating on AGE concentrations in foods are known, few studies have been published addressing the effects of new processing technologies on AGE formation. This work focuses on the current scientific knowledge about the impacts of novel technologies on AGE formation in food products. Most studies do not measure AGE content directly, evaluating only products of the Maillard reaction. Moreover, these studies do not compare distinct operational conditions associated with novel technologies. This lack of information impacts negatively the establishment of process-composition relationships for foods with safe AGE dietary intakes. Overall, the outcomes of this review suggest that the use of novel technologies is a promising alternative to produce food products with a lower AGE content.
Collapse
Affiliation(s)
- Lucas Prestes Fallavena
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Agronomia, 91501-970, Porto Alegre, Rio Grande do Sul, Brazil
| | - Naira Poerner Rodrigues
- Department of Chemical Engineering, Federal University of Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2777, Santana, 90035-007, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ligia Damasceno Ferreira Marczak
- Department of Chemical Engineering, Federal University of Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2777, Santana, 90035-007, Porto Alegre, Rio Grande do Sul, Brazil
| | - Giovana Domeneghini Mercali
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Agronomia, 91501-970, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
39
|
Soltani Firouz M, Sardari H, Alikhani Chamgordani P, Behjati M. Power ultrasound in the meat industry (freezing, cooking and fermentation): Mechanisms, advances and challenges. ULTRASONICS SONOCHEMISTRY 2022; 86:106027. [PMID: 35569440 PMCID: PMC9112027 DOI: 10.1016/j.ultsonch.2022.106027] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 04/21/2022] [Accepted: 05/03/2022] [Indexed: 06/01/2023]
Abstract
High intensity ultrasound (HIUS) has a wide range of applications in different sectors of food processing. It is a promising and emerging technology demonstrating the potential to promote food processes without or at least damage to the quality of products. Among the processes of the meat industry, freezing, thawing, cooking and fermentation are very sensitive and important, because they have significant effects on product quality and are also very energy and time consuming. This review paper provides an interpretation of high intensity ultrasound (HIUS) applications, a summary of recent outstanding published research and an overview of the freezing/thawing, cooking/frying and fermentation processes in meat and its products assisted by HIUS. The effects, benefits and drawbacks as well as the challenges ahead in the commercialization of this technology in the meat industry are studied. The research results confirmed that the use of HIUS in the meat freezing/thawing, cooking/frying and fermentation in combination with the corresponding processing methods demonstrates a great potential to promote the process, improve the general quality of the final product and reduce the time and energy required. However, many issues remain that require further research to address these challenges. These challenges and subsequent research that is useful for developing and increasing the efficiency of this technology have been reviewed. After the literature review, it is concluded that HIUS may be a useful technology for meat processing because of its significant effects on the quality factors and related process variables that leads to the preservation of the initial nutritional and sensory properties of meat and its products. Of course, research must be continued to eliminate the disadvantages or minimize the undesirable effects of this technology on the final product and to remove barriers to commercialization and optimization of this method.
Collapse
Affiliation(s)
- Mahmoud Soltani Firouz
- Department of Agricultural Machinery Engineering, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj, Iran.
| | - Hamed Sardari
- Department of Agricultural Machinery Engineering, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj, Iran
| | - Peyman Alikhani Chamgordani
- Department of Agricultural Machinery Engineering, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj, Iran
| | - Maryam Behjati
- Department of Agricultural Machinery Engineering, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj, Iran
| |
Collapse
|
40
|
Gavahian M, Ratchaneesiripap P. Power ultrasound to enhance the fermentation process of traditional Taiwanese rice wine. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Mohsen Gavahian
- Department of Food Science National Pingtung University of Science and Technology Pingtung Taiwan, ROC
| | - Paphawarin Ratchaneesiripap
- International Master's Degree Program in Food Science, International College National Pingtung University of Science and Technology Pingtung Taiwan, ROC
| |
Collapse
|
41
|
Chen J, Zhai W, Li Y, Guo Y, Zhu Y, Lei G, Li J. Enhancing the biomass and riboflavin production of Ashbya gossypii by using low-intensity ultrasound stimulation: A mechanistic investigation. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
42
|
Can ultrasound treatment replace conventional high temperature short time pasteurization of milk? A critical review. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2022.105375] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
43
|
Nehring P, Lorenzo JM, Santos SP, Wagner R, de Menezes CR, dos Santos BA, Barin JS, Campagnol PCB, Cichoski AJ. Effect of ultrasound application on the growth of S. xylosus inoculated in by-products from the poultry industry. Curr Res Food Sci 2022; 5:345-350. [PMID: 35198993 PMCID: PMC8841956 DOI: 10.1016/j.crfs.2022.01.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 11/06/2022] Open
Abstract
A wide variety of by-products are produced by the industry when animals are slaughtered. However, the proteins present in these by-products, are not being fully useable, in the elaboration of value-added products. Staphylococcus xylosus is commonly used as a starter culture in meat products subjected to ripening for a long period, as it produces proteolytic and lipolytic enzymes that improve the sensory quality of the products. Ultrasound (US) has been arousing interest in the meat industry, as it reduces processing time and also improves the technological and sensory quality of meat products. However, the stimulate effect of US on the growth of S. xylosus in by-products from the poultry industry is still unknown. Thus, this study aimed to evaluate the stimulate effect of US on the growth of S. xylosus inoculated in by-products from the poultry industry. S. xylosus was inoculated (5.63 log CFU/g) in sterilized by-products from the poultry, which were then sonicated at 37 °C for 0, 15, 30, and 45 min according to the following parameters: frequencies of 130 and 35 kHz, amplitudes of 50% and 80% and normal and degas operating modes. The sonicated samples were incubated at 37 °C for 0, 24, 48, and 72 h. Soon after sonication, no stimulate effect of US was observed on the growth of S. xylosus. However, after 24 h of incubation, the samples sonicated for 15 and 30 min in normal mode, at 35 and 130 kHz, and amplitudes of 50 and 80% exhibited better stimulate effect at the growth S. xylosus counts (p < 0.01) when compared to the Control, with values of 8.23 and 7.77 log CFU/g, respectively. These results can be exploited to obtain new added-value products, having as raw material by-products from the poultry industry. We studied the effect of US on the growth of S. xylosus in poultry waste. Frequency, amplitude and US time had a great impact on the growth of S. xylosus. Constant ultrasonic waves stimulated the growth of S. xylosus. This study found a promising new field of application for US in the meat industry.
Collapse
|
44
|
Abedi E, Mousavifard M, Hashemi SMB. Ultrasound-Assisted Detoxification of Ochratoxin A: Comparative Study of Cell Wall Structure, Hydrophobicity, and Toxin Binding Capacity of Single and Co-culture Lactic Acid Bacteria. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02767-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
45
|
Bao G, Niu J, Li S, Zhang L, Luo Y. Effects of ultrasound pretreatment on the quality, nutrients and volatile compounds of dry-cured yak meat. ULTRASONICS SONOCHEMISTRY 2022; 82:105864. [PMID: 34915254 PMCID: PMC8683766 DOI: 10.1016/j.ultsonch.2021.105864] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 05/25/2023]
Abstract
The objective of the present study was to assess the effects of ultrasound pretreatment on the quality of dry-cured yak meat. The ultrasonic power with 0, 200, 300 and 400 W (ultrasonic frequency of 20 kHz) were used to assist processing of dry-cured yak meat. The meat quality, nutrient substances, sensory quality, electronic nose, electronic tongue and volatile compounds of dry-cured yak meat were determined. The results indicated that the moisture content and hardness value of ultrasonic treatment group was significantly lower compared to the control group (P < 0.05). Ultrasonic treatment increased the value of b*, and decreased the value of L*, a*, pH, chewiness, melting temperature and enthalpy. Springiness value significantly increased from control group to 300 W of ultrasonic power group. Shear force significantly decreased with the increase of ultrasonic power (P < 0.05). Ultrasonic treatment had no effect on the TVB-N content, but it could increase the TBARS content. Ultrasonic treatment could significantly increase the essential FAA (EFAA) and total FAA (P < 0.05). In addition, the saturated fatty acid (SFA) content significantly increased with the increase of ultrasonic power (P < 0.05). Ultrasound treatment negatively affected the meat's color, smell, and taste but increased its tenderness and the overall acceptability. It also significantly increased alcohols and aldehydes contents (P < 0.05), which were consistent with the measurement of electronic nose and electronic tongue. The results demonstrated that the the appropriate ultrasonic power assisted in the processing improves quality of dry-cured yak meat, particularly for the power of 300 W.
Collapse
Affiliation(s)
- Gaoliang Bao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China; College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Jun Niu
- Gansu Center for Disease Control and Prevention, Lanzhou, China
| | - Shaobin Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Li Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China.
| | - Yuzhu Luo
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China.
| |
Collapse
|
46
|
Aguilar K. Evaluating ultrasound pre-treatment as a tool for improving the process of a fermented beverage made from pineapple by-products. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2022. [DOI: 10.1590/1981-6723.11621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract Fermentation has the potential of converting fruit by-products into value-added products via an efficient, sustainable, and low-cost process. Traditionally, Mexicans use pineapple residues to produce a fermented beverage called tepache. As this soft drink is increasingly consumed in restaurants, it is necessary to develop an effective and reliable process to yield a final product with desirable physicochemical properties. In this work, tepache was prepared using an ultrasound pre-treatment to enhance the fermentation process and improve the end-product quality. The ultrasound was provided by a probe (25 kHz, 400 W) submerged in pineapple preparations before fermentation. Characterization of physicochemical properties was performed on samples processed under different types of amplitude (20 and 100%) and sonication time (5 and 10 min). In all samples, the pH, acidity, and ºBrix values were similar to those in commercial tepaches. On the other hand, microscopy revealed that 5 min of sonication induced positive changes in the suspended matter responsible for the physical stability of fruit beverages. The tepaches obtained with this method had color uniformity. Indeed, 5 min of sonication at the highest amplitude (16.34 kJ・cm-2) augmented the soluble solids during the initial phases of fermentation. Moreover, the results from IR spectroscopy proved that ultrasound helped the ethanol release from yeasts. The maximum ethanol yield, calculated by model fitting, had a positive variation of 35%. These findings prove that ultrasound is capable to induce physicochemical changes useful for the industrial production of tepache.
Collapse
Affiliation(s)
- Karla Aguilar
- Universidad Autónoma Metropolitana, México; Universidad Nacional Autónoma de México, México
| |
Collapse
|
47
|
Zhang M, Suo W, Deng Y, Jiang L, Qi M, Liu Y, Li L, Wang C, Zheng H, Li H. Effect of ultrasound-assisted dough fermentation on the quality of dough and steamed bread with 50% sweet potato pulp. ULTRASONICS SONOCHEMISTRY 2022; 82:105912. [PMID: 35033979 PMCID: PMC8760544 DOI: 10.1016/j.ultsonch.2022.105912] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 05/24/2023]
Abstract
Ultrasound at an intensity of 17.5, 20.0, 22.5, 25.0 and 27.5 W/L was used to assist dough fermentation to prepare steamed bread with 50% sweet potato pulp (SB-50% SPP), which was compared with SB-50% SPP without ultrasonic treatment. The dough rheology, starch-gluten network, texture characteristics and sensory quality of steamed bread with different ultrasonic power densities (UPDs) were investigated. Dough samples at UPD of 22.5 W/L showed optimal viscoelasticity. The microstructure images exhibited that the content of starch particles wrapped in the gluten network increased significantly after sonication. In addition, the reduction in free sulfhydryl (SH) content and increase in wet gluten content after ultrasonic treatment led to significantly improved dough extensibility (p < 0.05). Results exhibited that the specific volume of SB-50% SPP increased by 13.93% and the hardness decreased by 21.96% compared with the control under UPD of 22.5 W/L. This study suggested that the application of ultrasound as a green technology to dough fermentation could lead to SB-50% SPP with good quality and sensory characteristics.
Collapse
Affiliation(s)
- Min Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, China
| | - Wenjing Suo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, China
| | - Yuxin Deng
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, China
| | - Lijun Jiang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, China
| | - Mingming Qi
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, China
| | - Yao Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, China
| | - Luxia Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, China
| | - Chenjie Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, China
| | - Hui Zheng
- Gaoqing Inspection and Testing Center, Gaoqing 256300, Shandong, China
| | - Hongjun Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, Shandong, China.
| |
Collapse
|
48
|
Comparison between surface hydrophobicity of heated and thermosonicated cells to detoxify aflatoxin B1 by co-culture Lactobacillus plantarum and Lactobacillus rhamnosus in sourdough: Modeling studies. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112616] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
49
|
Zhao F, Zhai X, Liu X, Lian M, Liang G, Cui J, Dong H, Wang W. Effects of High-Intensity Ultrasound Pretreatment on Structure, Properties, and Enzymolysis of Walnut Protein Isolate. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010208. [PMID: 35011440 PMCID: PMC8746484 DOI: 10.3390/molecules27010208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022]
Abstract
The purpose of this paper was to investigate the effect of high-intensity ultrasonication (HIU) pretreatment before enzymolysis on structural conformations of walnut protein isolate (WPI) and antioxidant activity of its hydrolysates. Aqueous WPI suspensions were subjected to ultrasonic processing at different power levels (600-2000 W) and times (5-30 min), and then changes in the particle size, zeta (ζ) potential, and structure of WPI were investigated, and antioxidant activity of its hydrolysates was determined. The particle size of the particles of aqueous WPI suspensions was decreased after ultrasound, indicating that sonication destroyed protein aggregates. The ζ-potential values of a protein solution significantly changed after sonication, demonstrating that the original dense structure of the protein was destroyed. Fourier transform infrared spectroscopy indicated a change in the secondary structure of WPI after sonication, with a decrease in β-turn and an increase in α-helix, β-sheet, and random coil content. Two absorption peaks of WPI were generated, and the fluorescence emission intensity of the proteins decreased after ultrasonic treatment, indicating that the changes in protein tertiary structure occurred. Moreover, the degree of hydrolysis and the antioxidant activity of the WPI hydrolysates increased after sonication. These results suggest that HIU pretreatment is a potential tool for improving the functional properties of walnut proteins.
Collapse
Affiliation(s)
- Fei Zhao
- College of Agronomy and Environment, Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Weifang 262700, China; (M.L.); (G.L.); (J.C.)
- Correspondence: (F.Z.); (W.W.); Tel.: +86-538-824-2850 (W.W.)
| | - Xiaosong Zhai
- College of Food Science and Engineering, Engineering and Technology Center for Grain Processing of Shandong Province, Shandong Agricultural University, Taian 271018, China; (X.Z.); (H.D.)
| | - Xuemei Liu
- Jinan Fruit Research Institute, All-China Federation of Supply and Marketing Co-Operatives, Jinan 250014, China;
| | - Meng Lian
- College of Agronomy and Environment, Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Weifang 262700, China; (M.L.); (G.L.); (J.C.)
| | - Guoting Liang
- College of Agronomy and Environment, Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Weifang 262700, China; (M.L.); (G.L.); (J.C.)
| | - Jingxiang Cui
- College of Agronomy and Environment, Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Weifang 262700, China; (M.L.); (G.L.); (J.C.)
| | - Haizhou Dong
- College of Food Science and Engineering, Engineering and Technology Center for Grain Processing of Shandong Province, Shandong Agricultural University, Taian 271018, China; (X.Z.); (H.D.)
| | - Wentao Wang
- College of Food Science and Engineering, Engineering and Technology Center for Grain Processing of Shandong Province, Shandong Agricultural University, Taian 271018, China; (X.Z.); (H.D.)
- Correspondence: (F.Z.); (W.W.); Tel.: +86-538-824-2850 (W.W.)
| |
Collapse
|
50
|
Current applications of high-intensity ultrasound with microbial inactivation or stimulation purposes in dairy products. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|