1
|
Devos C, Bampouli A, Brozzi E, Stefanidis GD, Dusselier M, Van Gerven T, Kuhn S. Ultrasound mechanisms and their effect on solid synthesis and processing: a review. Chem Soc Rev 2024. [PMID: 39439231 PMCID: PMC11496938 DOI: 10.1039/d4cs00148f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Indexed: 10/25/2024]
Abstract
Ultrasound proves to be an effective technique for intensifying a wide range of processes involving solids and, as such, is often used to improve control over both solids formation and post-treatment stages. The intensifying capabilities of ultrasonic processing are best interpreted in the context of the chemical, transport, and mechanical effects that occur during sonication. This review presents an overview of how ultrasound influences the processing and synthesis of solids across various material classes, contextualized within an ultrasound effect framework. By describing the mechanisms underlying the different effects of ultrasound on the solid synthesis and processing, this review aims to facilitate a deeper understanding of the current literature in the field and to promote more effective utilization of ultrasound technology in solid synthesis and processing.
Collapse
Affiliation(s)
- Cedric Devos
- KU Leuven, Department of Chemical Engineering, Celestijnenlaan 200F, 3001 Leuven, Belgium.
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Ariana Bampouli
- KU Leuven, Department of Chemical Engineering, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | - Elena Brozzi
- KU Leuven, Department of Chemical Engineering, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | - Georgios D Stefanidis
- School of Chemical Engineering, Department of Process Analysis and Plant Design, National Technical University of Athens, Iroon Polytecneiou 9, Zografou 15780, Athens, Greece
| | - Michiel Dusselier
- Center for Sustainable Catalysis and Engineering (CSCE), KU Leuven, 3001 Heverlee, Belgium
| | - Tom Van Gerven
- KU Leuven, Department of Chemical Engineering, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| | - Simon Kuhn
- KU Leuven, Department of Chemical Engineering, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| |
Collapse
|
2
|
Mukhopadhyay S, Dutta R, Dhara A, Das P. Biomonitoring of polycyclic aromatic hydrocarbons (PAHs) by Murraya paniculata (L.) Jack in South Kolkata, West Bengal, India: spatial and temporal variations. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:5761-5781. [PMID: 36823386 DOI: 10.1007/s10653-023-01506-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/10/2023] [Indexed: 06/06/2023]
Abstract
Attempts have been made in the present study for ascertaining the concentrations of atmospheric polycyclic aromatic hydrocarbons (PAHs) using passive biosamplers in preference to conventional air sampling methods. Mechanical stirring, sonication, Soxhlet technique and microwave-assisted Soxhlet extraction (MASE) were employed to extract PAHs from an evergreen plant (Murraya paniculata) leaves (having long life-span) sampled from polluted places of South Kolkata, India, with dense population and heavy traffic. Effects of extraction methods and operational parameters (solvent and time) on the recovery levels of PAHs were also investigated. Purified extracts, acquired through adsorption chromatography, were subjected to GC-MS and HPLC-UV analyses for qualitative and quantitative assessment of PAHs. Spatio-temporal distribution of accumulated PAHs across the sampling sites was monitored over premonsoon, postmonsoon and winter supported by pollutant source characterization. The results displayed that the extraction yields of Soxhlet (272.07 ± 26.15 μg g-1) and MASE (280.17 ± 15.46 μg g-1) were the highest among the four techniques. Conditions of extraction with toluene for 6 h were found to be most favorable for PAHs. In spatio-temporal analysis, total concentrations of PAHs in the foliar samples varied from 200.98 ± 2.72 to 550.79 ± 10.11 μg g-1 dry weight, and the highest values being recorded in the samples of Exide More because of daylong inexorable traffic flow/crowding increasing the burden of ambient PAHs. Widespread changes in meteorology exerted influence on seasonal concentrations of PAHs in plant leaves, and extent of leaf contamination by PAHs was observed extreme in winter followed by postmonsoon and then, premonsoon. Foliar accretion of PAHs differed in the study sites with diverse sources of emission from motor vehicles, fossil fuel and biomass burning along with other human interferences.
Collapse
Affiliation(s)
| | - Ratna Dutta
- Department of Chemical Engineering, Jadavpur University, Kolkata, 700032, India.
| | - Aparna Dhara
- Department of Chemical Engineering, Jadavpur University, Kolkata, 700032, India
| | - Papita Das
- Department of Chemical Engineering, Jadavpur University, Kolkata, 700032, India
| |
Collapse
|
3
|
Udepurkar AP, Nandiwale KY, Jensen KF, Kuhn S. Heterogeneous photochemical reaction enabled by an ultrasonic microreactor. REACT CHEM ENG 2023; 8:1930-1936. [PMID: 38013744 PMCID: PMC10388398 DOI: 10.1039/d3re00154g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/22/2023] [Indexed: 11/29/2023]
Abstract
The presence of solids as starting reagents/reactants or products in flow photochemical reactions can lead to reactor clogging and yield reduction from side reactions. We address this limitation with a new ultrasonic microreactor for continuous solid-laden photochemical reactions. The ultrasonic photochemical microreactor is characterized by the liquid and solid residence time distribution (RTD) and the absorbed photon flux in the reactor via chemical actinometry. The solid-handling capability of the ultrasonic photochemical microreactor is demonstrated with a silyl radical-mediated metallaphotoredox cross-electrophile coupling with a solid base as a reagent.
Collapse
Affiliation(s)
- Aniket P Udepurkar
- KU Leuven, Department of Chemical Engineering Celestijnenlaan 200F 3001 Leuven Belgium
| | - Kakasaheb Y Nandiwale
- Department of Chemical Engineering, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge Massachusetts 02139 USA
| | - Klavs F Jensen
- Department of Chemical Engineering, Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge Massachusetts 02139 USA
| | - Simon Kuhn
- KU Leuven, Department of Chemical Engineering Celestijnenlaan 200F 3001 Leuven Belgium
| |
Collapse
|
4
|
Ran J, Wang X, Liu Y, Yin S, Li S, Zhang L. Microreactor-based micro/nanomaterials: fabrication, advances, and outlook. MATERIALS HORIZONS 2023. [PMID: 37139613 DOI: 10.1039/d3mh00329a] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Micro/nanomaterials are widely used in optoelectronics, environmental materials, bioimaging, agricultural industries, and drug delivery owing to their marvelous features, such as quantum tunneling, size, surface and boundary, and Coulomb blockade effects. Recently, microreactor technology has opened up broad prospects for green and sustainable chemical synthesis as a powerful tool for process intensification and microscale manipulation. This review focuses on recent progress in the microreactor synthesis of micro/nanomaterials. First, the fabrication and design principles of existing microreactors for producing micro/nanomaterials are summarized and classified. Afterwards, typical examples are shown to demonstrate the fabrication of micro/nanomaterials, including metal nanoparticles, inorganic nonmetallic nanoparticles, organic nanoparticles, Janus particles, and MOFs. Finally, the future research prospects and key issues of microreactor-based micro/nanomaterials are discussed. In short, microreactors provide new ideas and methods for the synthesis of micro/nanomaterials, which have huge potential and inestimable possibilities in large-scale production and scientific research.
Collapse
Affiliation(s)
- Jianfeng Ran
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China.
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
- Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Xuxu Wang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China.
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
- Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Yuanhong Liu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China.
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
- Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Shaohua Yin
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China.
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
- Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Shiwei Li
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China.
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
- Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Libo Zhang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China.
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
- Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| |
Collapse
|
5
|
Devos C, Brozzi E, Van Gerven T, Kuhn S. Characterization of a Modular Microfluidic Section for Seeded Nucleation in Multiphase Flow. Org Process Res Dev 2023. [DOI: 10.1021/acs.oprd.2c00341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Cedric Devos
- Department of Chemical Engineering, KU Leuven, 3001 Leuven, Belgium
| | - Elena Brozzi
- Department of Chemical Engineering, KU Leuven, 3001 Leuven, Belgium
| | - Tom Van Gerven
- Department of Chemical Engineering, KU Leuven, 3001 Leuven, Belgium
| | - Simon Kuhn
- Department of Chemical Engineering, KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|
6
|
Cailly W, Mc Carogher K, Bolze H, Yin J, Kuhn S. Analysis of dynamic acoustic resonance effects in a sonicated gas-liquid flow microreactor. ULTRASONICS SONOCHEMISTRY 2023; 93:106300. [PMID: 36696780 PMCID: PMC9879968 DOI: 10.1016/j.ultsonch.2023.106300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
In this work, we characterize acoustic resonance phenomena occurring between gas bubbles in a segmented gas-liquid flow in a microchannel irradiated with a frequency around 500 kHz. A large acoustic amplitude can be reached, leading to gas-liquid interface deformation, atomization of micrometer sized droplets, and cavitation. A numerical approach combining an acoustic frequency-domain solver and a Lagrangian Surface-Evolver solver is introduced to predict the acoustic deformation of gas-liquid interfaces and the dynamic acoustic magnitude. The numerical approach and its assumptions were validated with experiments, for which a good agreement was observed. Therefore, this numerical approach allows to provide a description and an understanding of the acoustic nature of these phenomena. The acoustic pressure magnitude can reach hundreds of kPa to tens of MPa, and these values are consistent with the observation of atomization and cavitation in the experiments. Furthermore, volume of fluid simulations were performed to predict the atomization threshold, which was then related to acoustic resonance. It is found that dynamic acoustic resonance gives rise to atomization bursts at the gas bubble surface. The presented approach can be applied to more complex acoustic fields involving more complex channel geometries, vibration patterns, or two-phase flow patterns.
Collapse
Affiliation(s)
- William Cailly
- KU Leuven, Department of Chemical Engineering, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Keiran Mc Carogher
- KU Leuven, Department of Chemical Engineering, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Holger Bolze
- KU Leuven, Department of Chemical Engineering, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Jun Yin
- KU Leuven, Department of Chemical Engineering, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Simon Kuhn
- KU Leuven, Department of Chemical Engineering, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| |
Collapse
|
7
|
Besenhard MO, Pal S, Gkogkos G, Gavriilidis A. Non-fouling flow reactors for nanomaterial synthesis. REACT CHEM ENG 2023. [DOI: 10.1039/d2re00412g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This review provides a holistic description of flow reactor fouling for wet-chemical nanomaterial syntheses. Fouling origins and consequences are discussed together with the variety of flow reactors for its prevention.
Collapse
Affiliation(s)
| | - Sayan Pal
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Georgios Gkogkos
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Asterios Gavriilidis
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| |
Collapse
|
8
|
Suchintita Das R, Tiwari BK, Chemat F, Garcia-Vaquero M. Impact of ultrasound processing on alternative protein systems: Protein extraction, nutritional effects and associated challenges. ULTRASONICS SONOCHEMISTRY 2022; 91:106234. [PMID: 36435088 PMCID: PMC9685360 DOI: 10.1016/j.ultsonch.2022.106234] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/03/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Proteins from alternative sources including terrestrial and aquatic plants, microbes and insects are being increasingly explored to combat the dietary, environmental and ethical challenges linked primarily to conventional sources of protein, mainly meat and dairy proteins. Ultrasound (US) technologies have emerged as a clean, green and efficient methods for the extraction of proteins from alternative sources compared to conventional methods. However, the application of US can also lead to modifications of the proteins extracted from alternative sources, including changes in their nutritional quality (protein content, amino acid composition, protein digestibility, anti-nutritional factors) and allergenicity, as well as damage of the compounds associated with an increased degradation resulting from extreme US processing conditions. This work aims to summarise the main advances in US equipment currently available to date, including the main US parameters and their effects on the extraction of protein from alternative sources, as well as the studies available on the effects of US processing on the nutritional value, allergenicity and degradation damage of these alternative protein ingredients. The main research gaps identified in this work and future challenges associated to the widespread application of US and their scale-up to industry operations are also covered in detail.
Collapse
Affiliation(s)
- Rahel Suchintita Das
- Section of Food and Nutrition, School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland; TEAGASC, Food Research Centre, Ashtown, Dublin 15, Ireland
| | | | - Farid Chemat
- GREEN Team Extraction, UMR408, INRA, Université D'Avignon et des Pays de Vaucluse, Avignon Cedex, France
| | - Marco Garcia-Vaquero
- Section of Food and Nutrition, School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
9
|
Ultrasound assisted continuous processing in microreactors with focus on crystallization and chemical synthesis: A critical review. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.03.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Zhang Q, Dong Z, Liu Z, Chen G. Effect of ultrasonic waveforms on gas–liquid mass transfer in microreactors. AIChE J 2022. [DOI: 10.1002/aic.17689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Qiang Zhang
- Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian China
- University of Chinese Academy of Sciences Beijing China
| | - Zhengya Dong
- Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian China
- Chemistry and Chemical Engineering Guangdong Laboratory Shantou China
| | - Zhikai Liu
- Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian China
- University of Chinese Academy of Sciences Beijing China
| | - Guangwen Chen
- Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian China
| |
Collapse
|
11
|
Meroni D, Djellabi R, Ashokkumar M, Bianchi CL, Boffito DC. Sonoprocessing: From Concepts to Large-Scale Reactors. Chem Rev 2021; 122:3219-3258. [PMID: 34818504 DOI: 10.1021/acs.chemrev.1c00438] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intensification of ultrasonic processes for diversified applications, including environmental remediation, extractions, food processes, and synthesis of materials, has received attention from the scientific community and industry. The mechanistic pathways involved in intensification of ultrasonic processes that include the ultrasonic generation of cavitation bubbles, radical formation upon their collapse, and the possibility of fine-tuning operating parameters for specific applications are all well documented in the literature. However, the scale-up of ultrasonic processes with large-scale sonochemical reactors for industrial applications remains a challenge. In this context, this review provides a complete overview of the current understanding of the role of operating parameters and reactor configuration on the sonochemical processes. Experimental and theoretical techniques to characterize the intensity and distribution of cavitation activity within sonoreactors are compared. Classes of laboratory and large-scale sonoreactors are reviewed, highlighting recent advances in batch and flow-through reactors. Finally, examples of large-scale sonoprocessing applications have been reviewed, discussing the major scale-up and sustainability challenges.
Collapse
Affiliation(s)
- Daniela Meroni
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Ridha Djellabi
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | | | - Claudia L Bianchi
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Daria C Boffito
- Département de Génie Chimique, C.P. 6079, Polytechnique Montréal, Montréal H3C 3A7, Canada.,Canada Research Chair in Intensified Mechanochemical Processes for Sustainable Biomass Conversion, Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. CV, H3C 3A7 Montréal, Québec Canada
| |
Collapse
|
12
|
Yu F, Mao Y, Zhao H, Zhang X, Wang T, Yuan M, Ding S, Wang N, Huang X, Hao H. Enhancement of Continuous Crystallization of Lysozyme through Ultrasound. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Fei Yu
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yafei Mao
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Hongtu Zhao
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiunan Zhang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Ting Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Mingpu Yuan
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Suping Ding
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Na Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xin Huang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Hongxun Hao
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- School of Chemical Engineering and Technology, Hainan University, Haikou 570208, China
| |
Collapse
|
13
|
Wardhono EY, Pinem MP, Kustiningsih I, Effendy M, Clausse D, Saleh K, Guénin E. Heterogeneous deacetylation reaction of chitin under low-frequency ultrasonic irradiation. Carbohydr Polym 2021; 267:118180. [PMID: 34119148 DOI: 10.1016/j.carbpol.2021.118180] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 03/11/2021] [Accepted: 05/06/2021] [Indexed: 11/27/2022]
Abstract
Low-frequency ultrasonic irradiation was employed as a low cost technique for chitin's deacetylation at a relatively low-temperature range (below 70 °C) and a short reaction times (up to 120 min). Eley-Rideal mechanism and the power-law model were carried out to describe the mechanism of the reaction. The results indicated that the produced chitosan deacetylation degree (DD) was up to 87.73% under the optimum conditions compared to 66.82% using the conventional one (thermo-alkaline process). The Fourier Transform Infrared (FTIR) observations of the produced chitosan presented the same fingerprint as the commercial chitosan, X-Ray Diffraction (XRD), and Differential Scanning Calorimetry (DSC) studies show that the DD induced a lousy impact on the chitosan's thermal degradation and crystallinity index. This work effectively demonstrates that chitin's deacetylation under low-frequency ultrasonic irradiation provides a green process to produce chitosan, and the power-law model, rDD = k1(CR1-NH2)α; k1=Aexp-EaRT, is an excellent model to describe the complex reaction.
Collapse
Affiliation(s)
- Endarto Yudo Wardhono
- Chemical Engineering Department, University of Sultan Ageng Tirtayasa, Jl. Jendral Sudirman Km 3, Cilegon 42435, Indonesia.
| | - Mekro Permana Pinem
- Chemical Engineering Department, University of Sultan Ageng Tirtayasa, Jl. Jendral Sudirman Km 3, Cilegon 42435, Indonesia; Integrated Transformations of Renewable Matter Laboratory, Sorbonne Universités, Université de Technologie de Compiègne, rue du Dr Schweitzer, 60200 Compiègne, France
| | - Indar Kustiningsih
- Chemical Engineering Department, University of Sultan Ageng Tirtayasa, Jl. Jendral Sudirman Km 3, Cilegon 42435, Indonesia
| | - Mohammad Effendy
- Mechanical Engineering Department, Universitas Negeri Surabaya, Surabaya, Indonesia
| | - Danièle Clausse
- Integrated Transformations of Renewable Matter Laboratory, Sorbonne Universités, Université de Technologie de Compiègne, rue du Dr Schweitzer, 60200 Compiègne, France
| | - Khashayar Saleh
- Integrated Transformations of Renewable Matter Laboratory, Sorbonne Universités, Université de Technologie de Compiègne, rue du Dr Schweitzer, 60200 Compiègne, France
| | - Erwann Guénin
- Integrated Transformations of Renewable Matter Laboratory, Sorbonne Universités, Université de Technologie de Compiègne, rue du Dr Schweitzer, 60200 Compiègne, France
| |
Collapse
|
14
|
Scale-up of micro- and milli-reactors: An overview of strategies, design principles and applications. CHEMICAL ENGINEERING SCIENCE: X 2021. [DOI: 10.1016/j.cesx.2021.100097] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
15
|
Yang M, Gao Y, Liu Y, Yang G, Zhao CX, Wu KJ. Integration of microfluidic systems with external fields for multiphase process intensification. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116450] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
Aguilar C, Serna-Jiménez J, Benitez E, Valencia V, Ochoa O, Sotelo LI. Influence of high power ultrasound on natural microflora, pathogen and lactic acid bacteria in a raw meat emulsion. ULTRASONICS SONOCHEMISTRY 2021; 72:105415. [PMID: 33333392 PMCID: PMC7803822 DOI: 10.1016/j.ultsonch.2020.105415] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
Raw meat emulsions may have natural, spoilage and pathogenic microorganisms due to the origin and characteristics of this food matrix. All of these microorganisms must be minimized during industrial processing to make food consumption safe and meet quality regulations. Therefore, in this research, the effect of probe ultrasound on the inactivation of three kinds of microorganisms in a raw meat emulsion is evaluated. The microorganisms are: natural microflora NAM, Listeria monocytogenes LIS, and Lactobacillus delbrueckii LAC. A high-intensity probe ultrasound system was used, during 1.0, 2.5, 5.0, 7.5 and 10 min, with pulsed waves of 0.0, 10, 20 and 30 seg, and 200, 250, 300, 350 and 400 W of power. The interrelation between time, wave pulse cycle, and power factors was assessed. The results showed a positive linear independence effect in the treatments without wave pulse for each microorganism, and a quadratic interaction with the time and the ultrasound power for the inactivation of the three kinds of microorganisms. Besides, the desirability function for the inactivation reached up to 60% of the microbial population with the probe ultrasound treatment, with 10 min, a 7.56 s wave pulse and 400 W of power. Thus, these results could be useful to decide the incorporation of mild and emerging technologies in a meat industry line process.
Collapse
Affiliation(s)
- C Aguilar
- Agroindustrial Process Research Group, Universidad de La Sabana, Campus Puente del Común, Autopista Norte Km 7, Chía, Cundinamarca, Colombia
| | - J Serna-Jiménez
- Agricultural and Agro-Business Sciences Faculty, Universidad Tecnológica de Pereira, Carrera 27 #10-02 Pereira, Risaralda, Colombia
| | - E Benitez
- Institute of Data Science and Artificial Intelligence, Universidad de Navarra, Campus Universitario, Pamplona, Navarra, Spain
| | - V Valencia
- Centro de Investigación y Desarrollo Cárnico, Industria de Alimentos Zenú S.A.S., Carrera 64C # 104 - 03, Medellín, Colombia
| | - O Ochoa
- Centro de Investigación y Desarrollo Cárnico, Industria de Alimentos Zenú S.A.S., Carrera 64C # 104 - 03, Medellín, Colombia
| | - L I Sotelo
- EICEA, Food, Process Management and Service Group Universidad de La Sabana, Campus Puente del Común, Autopista Norte Km 7, Chía, Cundinamarca, Colombia.
| |
Collapse
|
17
|
Ferreira J, Opsteyn J, Rocha F, Castro F, Kuhn S. Ultrasonic protein crystallization: Promoting nucleation in microdroplets through pulsed sonication. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2020.08.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
18
|
Delacour C, Stephens DS, Lutz C, Mettin R, Kuhn S. Design and Characterization of a Scaled-up Ultrasonic Flow Reactor. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00148] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Claire Delacour
- KU Leuven, Department of Chemical Engineering, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Dwayne Savio Stephens
- Drittes Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Cécile Lutz
- Service Adsorption, ARKEMA, Groupement de Recherche de Lacq, 64170 Lacq, France
| | - Robert Mettin
- Drittes Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Simon Kuhn
- KU Leuven, Department of Chemical Engineering, Celestijnenlaan 200F, 3001 Leuven, Belgium
| |
Collapse
|
19
|
Dong Z, Delacour C, Mc Carogher K, Udepurkar AP, Kuhn S. Continuous Ultrasonic Reactors: Design, Mechanism and Application. MATERIALS 2020; 13:ma13020344. [PMID: 31940863 PMCID: PMC7014228 DOI: 10.3390/ma13020344] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 01/01/2023]
Abstract
Ultrasonic small scale flow reactors have found increasing popularity among researchers as they serve as a very useful platform for studying and controlling ultrasound mechanisms and effects. This has led to the use of these reactors for not only research purposes, but also various applications in biological, pharmaceutical and chemical processes mostly on laboratory and, in some cases, pilot scale. This review summarizes the state of the art of ultrasonic flow reactors and provides a guideline towards their design, characterization and application. Particular examples for ultrasound enhanced multiphase processes, spanning from immiscible fluid-fluid to fluid-solid systems, are provided. To conclude, challenges such as reactor efficiency and scalability are addressed.
Collapse
|
20
|
Dong Z, Udepurkar AP, Kuhn S. Synergistic effects of the alternating application of low and high frequency ultrasound for particle synthesis in microreactors. ULTRASONICS SONOCHEMISTRY 2020; 60:104800. [PMID: 31563796 DOI: 10.1016/j.ultsonch.2019.104800] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/15/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
Ultrasound (US) is a promising method to address clogging and mixing issues in microreactors (MR). So far, low frequency US (LFUS), pulsed LFUS and high frequency US (HFUS) have been used independently in MR for particle synthesis to achieve narrow particle size distributions (PSD). In this work, we critically assess the advantages and disadvantages of each US application method for the case study of calcium carbonate synthesis in an ultrasonic microreactor (USMR) setup operating at both LFUS (61.7 kHz, 8 W) and HFUS (1.24 MHz, 1.6 W). Furthermore, we have developed a novel approach to switch between LFUS and HFUS in an alternating manner, allowing us to quantify the synergistic effect of performing particle synthesis under two different US conditions. The reactor was fabricated by gluing a piezoelectric plate transducer to a silicon microfluidic chip. The results show that independently applying HFUS and LFUS produces a narrower PSD compared to silent conditions. However, at lower flow rates HFUS leads to agglomerate formation, while the reaction conversion is not enhanced due to weak mixing effects. LFUS on the other hand eliminates particle agglomerates and increases the conversion due to the strong cavitation effect. However, the required larger power input leads to a steep temperature rise in the reactor and the risk of reactor damage for long-term operation. While pulsed LFUS reduces the temperature rise, this application mode leads again to the formation of particle agglomerates, especially at low LFUS percentage. The proposed application mode of switching between LFUS and HFUS is proven to combine the advantages of both LFUS and HFUS, and results in particles with a unimodal narrow PSD (one order of magnitude reduction in the average size and span compared to silent conditions) and negligible rise of the reactor temperature.
Collapse
Affiliation(s)
- Zhengya Dong
- KU Leuven, Department of Chemical Engineering, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | | | - Simon Kuhn
- KU Leuven, Department of Chemical Engineering, Celestijnenlaan 200F, 3001 Leuven, Belgium.
| |
Collapse
|