1
|
Jia J, Tian D. Computational Design of Ni 6@Pt 1M 31 Clusters for Multifunctional Electrocatalysts. Molecules 2023; 28:7563. [PMID: 38005285 PMCID: PMC10675175 DOI: 10.3390/molecules28227563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 11/26/2023] Open
Abstract
High-efficiency and low-cost multifunctional electrocatalysts for hydrogen evolution reaction (HERs), oxygen evolution reaction (OERs) and oxygen reduction reaction (ORRs) are important for the practical applications of regenerative fuel cells. The activity trends of core-shell Ni6@M32 and Ni6@Pt1M31 (M = Pt, Pd, Cu, Ag, Au) were investigated using the density functional theory (DFT). Rate constant calculations indicated that Ni6@Pt1Ag31 was an efficient HER catalyst. The Volmer-Tafel process was the kinetically favorable reaction pathway for Ni6@Pt1M31. The Volmer-Heyrovsky reaction mechanism was preferred for Ni6@M32. The Pt active site reduced the energy barrier and changed the reaction mechanism. The ORR and OER overpotentials of Ni6@Pt1Ag31 were calculated to be 0.12 and 0.33 V, indicating that Ni6@Pt1Ag31 could be a promising multifunctional electrocatalyst. Ni6@Pt1M31 core-shell clusters present abundant active sites with a moderate adsorption strength for *H, *O, *OH and *OOH. The present study shows that embedding a single Pt atom onto a Ni@M core-shell cluster is a rational strategy for designing an effective multifunctional electrocatalyst.
Collapse
Affiliation(s)
| | - Dongxu Tian
- School of Chemistry, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China;
| |
Collapse
|
2
|
Lu Q, Gu X, Li J, Li W, Luque R, Eid K. Unraveling ultrasonic assisted aqueous-phase one-step synthesis of porous PtPdCu nanodendrites for methanol oxidation with a CO-poisoning tolerance. ULTRASONICS SONOCHEMISTRY 2023; 98:106494. [PMID: 37356216 PMCID: PMC10319326 DOI: 10.1016/j.ultsonch.2023.106494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/10/2023] [Accepted: 06/16/2023] [Indexed: 06/27/2023]
Abstract
The tailored design of tri-metallic Pt-based porous nanodendrites (PNDs) is crucial for green energy production technologies, ascribed to their fancy features, great surface areas, accessible active sites, and stability against aggregation. However, their aqueous-phase one-step synthesis at room temperature remains a daunting challenge. Herein, we present a facile, green, and template-free approach for the one-step synthesis of PtPdCu PNDs by ultrasonication of an aqueous solution of metal salts and Pluronic F127 at 25 ℃, based on natural isolation among nucleation and growth step driven by the disparate reduction kinetics of the metals and acoustic cavitation mechanism of ultrasonic waves. The resultant PtPdCu PNDs formed in a spatial nanodendritic shape with a dense array of branches, open corners, interconnected pores, high surface area (46.9 m2/g), and high Cu content (21 %). The methanol oxidation reaction (MOR) mass activity of PtPdCu PNDs (3.66 mA/µgPt) is 1.45, 2.73, and 2.83 times higher than those of PtPd PNDs, PtCu PNDs, and commercial Pt/C, respectively based on equivalent Pt mass, which is superior to previous PtPdCu catalysts reported elsewhere, besides a superior durability and CO-poisoning tolerance. This study may pave the way for the controlled fabrication of ternary Pt-based PNDs for various electrocatalytic applications.
Collapse
Affiliation(s)
- Qingqing Lu
- Engineering & Technology Center of Electrochemistry, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Xilei Gu
- Engineering & Technology Center of Electrochemistry, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Jiaojiao Li
- Engineering & Technology Center of Electrochemistry, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Wenpeng Li
- Engineering & Technology Center of Electrochemistry, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Rafael Luque
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya str., 117198 Moscow, Russian Federation; Universidad ECOTEC, Km 13.5 Samborondón, Samborondón EC092302, Ecuador
| | - Kamel Eid
- Gas Processing Center (GPC), College of Engineering, Qatar University, Doha 2713, Qatar.
| |
Collapse
|
3
|
Shi W, Park AH, Kwon YU. Scalable synthesis of (Pd,Cu)@Pt core-shell catalyst with high ORR activity and durability. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Cruz-Martínez H, Guerra-Cabrera W, Flores-Rojas E, Ruiz-Villalobos D, Rojas-Chávez H, Peña-Castañeda YA, Medina DI. Pt-Free Metal Nanocatalysts for the Oxygen Reduction Reaction Combining Experiment and Theory: An Overview. Molecules 2021; 26:molecules26216689. [PMID: 34771098 PMCID: PMC8588335 DOI: 10.3390/molecules26216689] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/30/2021] [Accepted: 10/13/2021] [Indexed: 12/02/2022] Open
Abstract
The design and manufacture of highly efficient nanocatalysts for the oxygen reduction reaction (ORR) is key to achieve the massive use of proton exchange membrane fuel cells. Up to date, Pt nanocatalysts are widely used for the ORR, but they have various disadvantages such as high cost, limited activity and partial stability. Therefore, different strategies have been implemented to eliminate or reduce the use of Pt in the nanocatalysts for the ORR. Among these, Pt-free metal nanocatalysts have received considerable relevance due to their good catalytic activity and slightly lower cost with respect to Pt. Consequently, nowadays, there are outstanding advances in the design of novel Pt-free metal nanocatalysts for the ORR. In this direction, combining experimental findings and theoretical insights is a low-cost methodology—in terms of both computational cost and laboratory resources—for the design of Pt-free metal nanocatalysts for the ORR in acid media. Therefore, coupled experimental and theoretical investigations are revised and discussed in detail in this review article.
Collapse
Affiliation(s)
- Heriberto Cruz-Martínez
- Tecnológico Nacional de México, Instituto Tecnológico del Valle de Etla, Abasolo S/N, Barrio del Agua Buena, Santiago Suchilquitongo, Oaxaca 68230, Mexico; (H.C.-M.); (D.R.-V.)
| | - Wilbert Guerra-Cabrera
- Tecnológico Nacional de México, Instituto Tecnológico del Istmo, Panamericana 821, 2da., Juchitán de Zaragoza, Oaxaca 70000, Mexico;
| | - Ernesto Flores-Rojas
- Instituto Politécnico Nacional, CICATA-Legaria, Legaria 694, Col. Irrigación, Ciudad de México 11500, Mexico;
| | - Dunia Ruiz-Villalobos
- Tecnológico Nacional de México, Instituto Tecnológico del Valle de Etla, Abasolo S/N, Barrio del Agua Buena, Santiago Suchilquitongo, Oaxaca 68230, Mexico; (H.C.-M.); (D.R.-V.)
| | - Hugo Rojas-Chávez
- Tecnológico Nacional de México, Instituto Tecnológico de Tláhuac II, Camino Real 625, Tláhuac, Ciudad de México 13508, Mexico;
| | - Yesica A. Peña-Castañeda
- Colegio de Ciencia y Tecnología, Universidad Autónoma de la Ciudad de México, Av. Fray Servando Teresa de Mier 92, Cuauhtémoc, Ciudad de México 06080, Mexico
- Correspondence: (Y.A.P.-C.); (D.I.M.)
| | - Dora I. Medina
- Tecnologico de Monterrey, School of Engineering and Sciences, Atizapan de Zaragoza 52926, Estado de Mexico, Mexico
- Correspondence: (Y.A.P.-C.); (D.I.M.)
| |
Collapse
|
5
|
Park AH, Shi W, Jung JU, Kwon YU. Mechanism study of Single-Step synthesis of Fe(core)@Pt(shell) nanoparticles by sonochemistry. ULTRASONICS SONOCHEMISTRY 2021; 77:105679. [PMID: 34315059 PMCID: PMC8326433 DOI: 10.1016/j.ultsonch.2021.105679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/12/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Transition metal (TM) core-platinum (Pt) shell nanoparticles (TM@Pt NPs) are attracting a great deal of attention as highly active and durable oxygen reduction reaction (ORR) electrocatalysts of fuel cells and metal-air batteries. However, most of the reported synthesis methods of TM@Pt NPs are multistep in nature, a significant disadvantage for real applications. In this regard, our group has reported a single-step method to synthesize TM@Pt NPs for TM = Mn, Fe, Co, and Ni by using sonochemistry, namely the UPS (ultrasound-assisted polyol synthesis) method. Previously, we proposed the mechanism of the formation of these TM@Pt NPs by UPS method, but rather in a rough sense. Some details are missing and the optimal conditions have not been established. In the present work, we performed detailed studies on the formation mechanism of UPS reaction by using Fe@Pt NPs as the model system. Effects of synthesis parameters such as the nature of metal precursor, conditions of ultrasound, and temperature profile as a function of reaction time were assessed, along with the analyses of intermediates during the UPS reaction. As results, we verified our previously proposed mechanism that, under appropriate conditions, Fe core is formed through the cavitation and implosion of the solvent, induced by the ultrasound, and the Pt shell is formed by the chemical reaction between Fe core and Pt reagent, independent from the direct effect of ultrasound. In addition, we established the optimal conditions to obtain a high purity Fe@Pt NPs in a high yield (>90% based on Pt), which may enable the increase of synthesis scale of Fe@Pt NPs, a necessary step for the real application of TM@Pt NPs.
Collapse
Affiliation(s)
- Ah-Hyeon Park
- Department of Chemistry, Sungkyunkwan University, Suwon 16419 Korea
| | - Wenjuan Shi
- Department of Chemistry, Sungkyunkwan University, Suwon 16419 Korea
| | - Jong-Un Jung
- Department of Chemistry, Sungkyunkwan University, Suwon 16419 Korea
| | - Young-Uk Kwon
- Department of Chemistry, Sungkyunkwan University, Suwon 16419 Korea.
| |
Collapse
|
6
|
Li Z, Zhuang T, Dong J, Wang L, Xia J, Wang H, Cui X, Wang Z. Sonochemical fabrication of inorganic nanoparticles for applications in catalysis. ULTRASONICS SONOCHEMISTRY 2021; 71:105384. [PMID: 33221623 PMCID: PMC7786602 DOI: 10.1016/j.ultsonch.2020.105384] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/21/2020] [Accepted: 10/27/2020] [Indexed: 05/04/2023]
Abstract
Catalysis covers almost all the chemical reactions or processes aiming for many applications. Sonochemistry has emerged in designing and developing the synthesis of nano-structured materials, and the latest progress mainly focuses on the synthetic strategies, product properties as well as catalytic applications. This current review simply presents the sonochemical effects under ultrasound irradiation, roughly describes the ultrasound-synthesized inorganic nano-materials, and highlights the sonochemistry applications in the inorganics-based catalysis processes including reduction, oxidation, degradation, polymerization, etc. Or all in all, the review hopes to provide an integrated understanding of sonochemistry, emphasize the great significance of ultrasound-assisted synthesis in structured materials as a unique strategy, and broaden the updated applications of ultrasound irradiation in the catalysis fields.
Collapse
Affiliation(s)
- Zhanfeng Li
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center, Qingdao University, 266071 Qingdao, China
| | - Tingting Zhuang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center, Qingdao University, 266071 Qingdao, China
| | - Jun Dong
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center, Qingdao University, 266071 Qingdao, China
| | - Lun Wang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center, Qingdao University, 266071 Qingdao, China
| | - Jianfei Xia
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center, Qingdao University, 266071 Qingdao, China
| | - Huiqi Wang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center, Qingdao University, 266071 Qingdao, China
| | - Xuejun Cui
- College of Chemistry, Jilin University, 130012 Changchun, China
| | - Zonghua Wang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Instrumental Analysis Center, Qingdao University, 266071 Qingdao, China.
| |
Collapse
|
7
|
Wang W, Zhao X, Shi H, Liu L, Deng H, Xu Z, Tian F, Miao X. Shape inducer-free polygonal angle platinum nanoparticles in graphene oxide as oxygen reduction catalyst derived from gamma irradiation. J Colloid Interface Sci 2020; 575:1-15. [DOI: 10.1016/j.jcis.2020.04.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 10/24/2022]
|