1
|
Hanan E, Dar AH, Shams R, Goksen G. New insights into essential oil nano emulsions loaded natural biopolymers recent development, formulation, characterization and packaging applications: A comprehensive review. Int J Biol Macromol 2024; 280:135751. [PMID: 39304053 DOI: 10.1016/j.ijbiomac.2024.135751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/29/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Customer demand for wholesome diets has spurred researchers to explore preservative-free methods for maintaining food product quality. Nano emulsion-based coatings and films are seen as sustainable solutions for extending the shelf life of fresh produce. These innovations are driving progress in various industries. Nano emulsion techniques offer effective encapsulation of bioactive compounds due to their small droplet size, stability, and enhanced activity. This review highlights the preparation and manufacturing methods of biopolymer-based nano emulsions containing essential oils, which are used as edible coatings and films over the past decade, representing the first comprehensive review paper on this topic to encompass research from the past ten years. The characterization and application of these coatings and films are also discussed. It has been revealed that essential oils can be successfully incorporated into nano emulsion delivery system with different biopolymers. These edible coatings and films help delay or prevent oxidation in various food products, enhancing their quality and safety during storage. They present a green, sustainable, and biodegradable solution for protecting fresh foods in the industry. Essential oil biopolymer nano emulsions not only extend shelf life but also offer protection against hazards, contributing to consumer trust in food safety and quality. This technology holds promise for delivering healthier food options in the marketplace. The current review thus provides an updated overview of the latest literature on EO nano emulsions as active agents in the advancement of edible coatings and films.
Collapse
Affiliation(s)
- Entesar Hanan
- Department of Nutrition and Dietetics, School of Allied Health Sciences, Manav Rachna International Institute of Research and Studies, Faridabad Haryana, India
| | - Aamir Hussain Dar
- Department of Food Technology, Islamic University of Science and Technology, Kashmir, India.
| | - Rafeeya Shams
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab, India
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100, Mersin, Turkey.
| |
Collapse
|
2
|
Lou S, Ni X, Xiao W, Li Y, Gao Z. Physical stability, microstructure and antimicrobial properties of konjac glucomannan coatings enriched with Litsea cubeba essential oil nanoemulsion and its effect on citruses preservation. Int J Biol Macromol 2024; 256:128306. [PMID: 37995787 DOI: 10.1016/j.ijbiomac.2023.128306] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/12/2023] [Accepted: 11/19/2023] [Indexed: 11/25/2023]
Abstract
This study purposed to develop konjac glucomannan (KGM) based antimicrobial coatings containing Litsea cubeba essential oil nanoemulsion (LNE) for citruses preservation. Physical stability, rheological, structural and antimicrobial properties of the coating solutions were investigated, along with the release characteristics of Litsea cubeba essential oil (LCO). Results showed that the coating solutions displayed shear thinning behavior. The oil droplets were distributed homogeneously in KGM phase with good stability. The coating structure became loose with increasing LNE content due to LNE interfering with molecular interactions and entanglement of KGM. The coating solutions showed stronger antibacterial activity against Escherichia coli than against Staphylococcus aureus and were effective in inhibiting the growth of Penicillium italicum on citrus surfaces. KGM-LNE 10 negatively affected citruses due to phytotoxicity caused by high levels of LCO. LCO was released slowly and continuously from the coatings, and its release was faster in deionized water than in an ethanol-water solution. KGM-LNE 2.5 coated citruses had the least weight loss, the greatest hardness, and kept the minimum changes in total soluble solids, total acid and vitamin C content, implying that KGM-LNE 2.5 best maintained the quality of citruses. The findings suggest that KGM-based coatings containing LNE have high potential for citruses preservation.
Collapse
Affiliation(s)
- Shangrong Lou
- Glyn O. Phillips Hydrocolloid Research Centre, School of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, PR China
| | - Xuewen Ni
- Glyn O. Phillips Hydrocolloid Research Centre, School of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, PR China.
| | - Weilu Xiao
- Glyn O. Phillips Hydrocolloid Research Centre, School of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, PR China
| | - Yanlei Li
- Glyn O. Phillips Hydrocolloid Research Centre, School of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, PR China
| | - Zhiming Gao
- Glyn O. Phillips Hydrocolloid Research Centre, School of Bioengineering and Food Science, Hubei University of Technology, Wuhan 430068, PR China
| |
Collapse
|
3
|
Jesser E, Yeguerman CA, Urrutia RI, Murray AP, Domini C, Werdin-González JO. Development and characterization of nanoemulsions loaded with essential oil and β-cypermethrin and their bioefficacy on insect pest of economic and medical importance. PEST MANAGEMENT SCIENCE 2023; 79:4162-4171. [PMID: 37319327 DOI: 10.1002/ps.7613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/22/2023] [Accepted: 06/15/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND The development of novel and ecofriendly tools plays an important role in insect pest management. Nanoemulsions (NEs) based on essential oils (EOs) offer a safer alternative for human health and the environment. This study aimed to elaborate and evaluate the toxicological effects of NEs containing peppermint or palmarosa EOs combined with β-cypermethrin (β-CP) using ultrasound technique. RESULTS The optimized ratio of active ingredients to surfactant was 1:2. The NEs containing peppermint EO combined with β-CP (NEs peppermint/β-CP) were polydisperse with two peaks at 12.77 nm (33.4% intensity) and 299.1 nm (66.6% intensity). However, the NEs containing palmarosa EO combined with β-CP (NEs palmarosa/β-CP) were monodisperse with a size of 104.5 nm. Both NEs were transparent and stable for 2 months. The insecticidal effect of NEs was evaluated against Tribolium castaneum and Sitophilus oryzae adults, as well as Culex pipiens pipiens larvae. On all these insects, NEs peppermint/β-CP enhanced pyrethroid bioactivity from 4.22- to 16-folds while NEs palmarosa/β-CP, from 3.90- to 10.6-folds. Moreover, both NEs maintained high insecticidal activities against all insects for 2 months, although a slight increase of the particle size was detected. CONCLUSION The NEs elaborated in this work can be considered as highly promising formulations for the development of new insecticides. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Emiliano Jesser
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Av. Alem 1253, Bahía Blanca, Buenos Aires, 8000, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), San Juan 670, Bahía Blanca, Buenos Aires, 8000, Argentina
| | - Cristhian Alan Yeguerman
- INBIOSUR, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-CONICET, San Juan 671, Bahía Blanca, Buenos Aires, 8000, Argentina
| | - Rodrigo Iñaki Urrutia
- INBIOSUR, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-CONICET, San Juan 671, Bahía Blanca, Buenos Aires, 8000, Argentina
| | - Ana Paula Murray
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Av. Alem 1253, Bahía Blanca, Buenos Aires, 8000, Argentina
| | - Claudia Domini
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Av. Alem 1253, Bahía Blanca, Buenos Aires, 8000, Argentina
| | - Jorge Omar Werdin-González
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), San Juan 670, Bahía Blanca, Buenos Aires, 8000, Argentina
- INBIOSUR, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS)-CONICET, San Juan 671, Bahía Blanca, Buenos Aires, 8000, Argentina
| |
Collapse
|
4
|
Ben Abada M, Soltani A, Tahri M, Haoual Hamdi S, Boushih E, Fourmentin S, Greige-Gerges H, Mediouni Ben Jemâa J. Encapsulation of Rosmarinus officinalis essential oil and of its main components in cyclodextrin: application to the control of the date moth Ectomyelois ceratoniae (Pyralidae). PEST MANAGEMENT SCIENCE 2023; 79:2433-2442. [PMID: 36811278 DOI: 10.1002/ps.7418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/16/2022] [Accepted: 02/21/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Synthetic insecticides are the most useful tools for preventing losses caused by insect pest's infestation during storage. However, the use of pesticides should be limited because of the development of insect resistance and their adverse effects on human health and environment. In the last decades, natural insecticidal products, principally essential oils (EOs) and their active components, exhibited potential alternatives for pest control. Nevertheless, due to their volatile nature, encapsulation could be considered as the most appropriate solution. Therefore, this work aims to investigate the fumigant ability of inclusion complexes of Rosmarinus officinalis EO and its major constituents (1,8-cineole, α-pinene and camphor) with 2-hydroxypropyl-beta-cyclodextrin (HP-β-CD) against Ectomyelois ceratoniae (Pyralidae) larvae. RESULTS The encapsulation within HP-β-CD reduced greatly the release rate of the encapsulated molecules. Therefore, free compounds were more toxic than those encapsulated. Moreover, results revealed that encapsulated volatiles exhibited interesting insecticidal toxicity towards E. ceratoniae larvae. In fact, after 30 days mortality rates were 53.85, 94.23, 3.85 and 42.31% for α-pinene, 1,8-cineole, camphor and EO, respectively, encapsulated within HP-β-CD. In addition, results showed also that 1,8-cineole free and encapsulated was more effective toward E. ceratoniae larvae than the other tested volatiles. Additionally, the HP-β-CD/volatiles complexes exhibited best persistence compared to the volatiles components. The half-life of the encapsulated α-pinene, 1,8-cineole, camphor and EO (7.83, 8.75, 6.87 and 11.20 days) was significantly longer than that of the free ones (3.46, 5.02, 3.38 and 5.58 days). CONCLUSION These results sustain the utility of R. officinalis EO and its main components encapsulated in CDs as treatment to stored-date commodities. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Maha Ben Abada
- National Agricultural Research Institute of Tunisia (INRAT), Laboratory of Biotechnology Applied to Agriculture, University of Carthage, Tunis, Tunisia
| | - Abir Soltani
- National Agricultural Research Institute of Tunisia (INRAT), Laboratory of Biotechnology Applied to Agriculture, University of Carthage, Tunis, Tunisia
| | - Maroua Tahri
- National Agricultural Research Institute of Tunisia (INRAT), Laboratory of Biotechnology Applied to Agriculture, University of Carthage, Tunis, Tunisia
| | - Soumaya Haoual Hamdi
- National Agricultural Research Institute of Tunisia (INRAT), Laboratory of Biotechnology Applied to Agriculture, University of Carthage, Tunis, Tunisia
| | - Emna Boushih
- National Agricultural Research Institute of Tunisia (INRAT), Laboratory of Biotechnology Applied to Agriculture, University of Carthage, Tunis, Tunisia
| | - Sophie Fourmentin
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV, UR 4492), Université du Littoral Côte d'Opale (ULCO), Dunkerque, France
| | - Hélène Greige-Gerges
- Bioactive Molecules Research Group, Department of Chemistry and Biochemistry, Faculty of Sciences-2, Lebanese University, Beirut, Lebanon
| | - Jouda Mediouni Ben Jemâa
- National Agricultural Research Institute of Tunisia (INRAT), Laboratory of Biotechnology Applied to Agriculture, University of Carthage, Tunis, Tunisia
| |
Collapse
|
5
|
Advances and trends in encapsulation of essential oils. Int J Pharm 2023; 635:122668. [PMID: 36754179 DOI: 10.1016/j.ijpharm.2023.122668] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/08/2023] [Accepted: 01/28/2023] [Indexed: 02/09/2023]
Abstract
There is a huge concern regarding the potential carcinogenic and mutagenic risks associated with the usage of synthetic chemicals as preservatives in various consumer products such as food and pharmaceutical formulations. In this aspect, there is a need for the development of alternative natural preservatives to replace these synthetic chemicals. More recently, naturally occurring essential oils have emerged as popular ingredients owing to their unique characteristics like antioxidant and antimicrobial activity, to enrich and enhance the functional properties of consumer products. However, due to their high volatility and hydrophobicity, their functionality is lost and their incorporation in aqueous products is challenging. One of the promising strategies to overcome this challenge is encapsulation which involves the entrapment of the essential oil inside a biocompatible material for its controlled release and increased bioavailability. Also, the choice of encapsulation method depends on the component to be encapsulated and the shell material. In this review, encapsulation in various colloidal systems that facilitate the potential delivery of essential oils is discussed. The focus is on encapsulation techniques along with their advantages and disadvantages, encapsulation efficiency, and in vitro release studies.
Collapse
|
6
|
Jesser E, Castillo L, Alonso Y, Urrutia R, Murray A, Domini C, Werdin-González J. Development of active biodegradable films based on chitosan and essential oil to prevent infestation of Plodia interpunctella (Lepidoptera: Pyralidae). Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Nanoemulsions of oregano essential oil and green extracts: Characterization and application in whey cheese. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Oladipupo SO, Hu XP, Appel AG. Essential Oils in Urban Insect Management-A Review. JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:1375-1408. [PMID: 35791493 DOI: 10.1093/jee/toac083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Indexed: 06/15/2023]
Abstract
The allures of city life have culminated in the rise of urban populations resulting in conditions that promote the establishment of certain insect pests. Globally, the public health significance of these urban insect pests is enormous, ranging from billions of dollars to loss of lives. Most chemical insecticides no longer provide the anticipated level of control, and significant insecticide resistance has been reported. Therefore, there has been a spike in interest for alternatives to conventional insecticides. Among them, natural products from plants such as essential oils (EOs) and essential oil components (EOCs) have enjoyed the most attention owing to widespread reports of efficacy and toxicity even against insecticide-resistant urban insects. Yet, there is no comprehensive synthesis on the extent and impact of the management of urban insects using EOs or EOCs. Such a review is highly relevant since it provides a means to assess the extent of progress made, shortfalls, limitations, and prospects. More so, we hope it can be used to make informed decisions and develop relevant policies reliably. We present the ranges of insecticidal effects of EOs, EOCs, and commercially available EO-based products from laboratory and field studies. Finally, we discuss the gaps in our knowledge and prospects for the sustainable use of EOs.
Collapse
Affiliation(s)
- S O Oladipupo
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36830, USA
| | - X P Hu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36830, USA
| | - A G Appel
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36830, USA
| |
Collapse
|
9
|
Yeguerman CA, Urrutia RI, Jesser EN, Massiris M, Delrieux CA, Murray AP, González JOW. Essential oils loaded on polymeric nanoparticles: bioefficacy against economic and medical insect pests and risk evaluation on terrestrial and aquatic non-target organisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:71412-71426. [PMID: 35597828 DOI: 10.1007/s11356-022-20848-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
This paper introduces the lethal, sublethal, and ecotoxic effects of peppermint and palmarosa essential oils (EOs) and their polymeric nanoparticles (PNs). The physicochemical analyses indicated that peppermint PNs were polydisperse (PDI > 0.4) with sizes of 381 nm and loading efficiency (LE) of 70.3%, whereas palmarosa PNs were monodisperse (PDI < 0.25) with sizes of 191 nm and LE of 89.7%. EOs and their PNs were evaluated on the adults of rice weevil (Sitophilus oryzae L.) and cigarette beetle (Lasioderma serricorne F.) and the larvae of Culex pipiens pipiens Say. On S. oryzae and L. serricorne, PNs increased EOs' lethal activity, extended repellent effects for 84 h, and also modified behavioral variables during 24 h. Moreover, EOs and PNs generated toxic effects against C. pipiens pipiens. On the other hand, peppermint and palmarosa EOs and their PNs were not toxic to terrestrial non-target organisms, larvae of mealworm (Tenebrio molitor L.), and nymphs of orange-spotted cockroach (Blaptica dubia S.). In addition, PNs were slightly toxic to aquatic non-target organisms, such as brine shrimp (Artemia salina L.). Therefore, these results show that PNs are a novel and eco-friendly formulation to control insect pests.
Collapse
Affiliation(s)
- Cristhian A Yeguerman
- INBIOSUR, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS) - CONICET, B8000CPB, Buenos Aires, Argentina
| | - Rodrigo I Urrutia
- INBIOSUR, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS) - CONICET, B8000CPB, Buenos Aires, Argentina
| | - Emiliano N Jesser
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS) - CONICET, B8000CPB, Buenos Aires, Argentina
- Departamento de Biología, Bioquímica Y Farmacia, Universidad Nacional del Sur (UNS), B8000CPB, Buenos Aires, Argentina
| | - Manlio Massiris
- Laboratorio de Ciencias de Las Imágenes, Departamento de Ingeniería Eléctrica Y Computadoras, CONICET-Universidad Nacional del Sur. Av, San Andrés 800 (B8000CPB), Bahía Blanca, Buenos Aires, Argentina
| | - Claudio A Delrieux
- Laboratorio de Ciencias de Las Imágenes, Departamento de Ingeniería Eléctrica Y Computadoras, CONICET-Universidad Nacional del Sur. Av, San Andrés 800 (B8000CPB), Bahía Blanca, Buenos Aires, Argentina
| | - Ana P Murray
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS) - CONICET, B8000CPB, Buenos Aires, Argentina
| | - Jorge O Werdin González
- INBIOSUR, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS) - CONICET, B8000CPB, Buenos Aires, Argentina.
- Departamento de Biología, Bioquímica Y Farmacia, Universidad Nacional del Sur (UNS), B8000CPB, Buenos Aires, Argentina.
| |
Collapse
|
10
|
Subaharan K, Senthamarai Selvan P, Subramanya TM, Senthoorraja R, Manjunath S, Das T, Pragadheesh VS, Bakthavatsalam N, Mohan MG, Senthil-Nathan S, Uragayala S, Samuel PP, Govindarajan R, Eswaramoorthy M. Ultrasound-assisted nanoemulsion of Trachyspermum ammi essential oil and its constituent thymol on toxicity and biochemical aspect of Aedes aegypti. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:71326-71337. [PMID: 35595904 DOI: 10.1007/s11356-022-20870-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Aedes aegypti is the main vector of yellow fever, chikungunya, Zika, and dengue worldwide and is managed by using chemical insecticides. Though effective, their indiscriminate use brings in associated problems on safety to non-target and the environment. This supports the use of plant-based essential oil (EO) formulations as they are safe to use with limited effect on non-target organisms. Quick volatility and degradation of EO are a hurdle in its use; the present study attempts to develop nanoemulsions (NE) of Trachyspermum ammi EO and its constituent thymol using Tween 80 as surfactant by ultrasonication method. The NE of EO had droplet size ranging from 65 ± 0.7 to 83 ± 0.09 nm and a poly dispersity index (PDI) value of 0.18 ± 0.003 to 0.20 ± 0.07 from 1 to 60 days of storage. The NE of thymol showed a droplet size ranging from 167 ± 1 to 230 ± 1 nm and PDI value of 0.30 ± 0.03 to 0.40 ± 0.008 from 1 to 60 days of storage. The droplet shape of both NEs appeared spherical under a transmission electron microscope (TEM). The larvicidal effect of NEs of EO and thymol was better than BEs (Bulk emulsion) of EO and thymol against Ae. aegypti. Among the NEs, thymol (LC50 34.89 ppm) had better larvicidal action than EO (LC50 46.73 ppm). Exposure to NEs of EO and thymol causes the shrinkage of the larval cuticle and inhibited the acetylcholinesterase (AChE) activity in Ae. aegypti. Our findings show the enhanced effect of NEs over BEs which facilitate its use as an alternative control measure for Ae. aegypti.
Collapse
Affiliation(s)
- Kesavan Subaharan
- Division of Germplasm Conservation and Utilization, ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, India, 560024.
| | - Periyasamy Senthamarai Selvan
- Division of Germplasm Conservation and Utilization, ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, India, 560024
| | | | - Rajendran Senthoorraja
- Division of Germplasm Conservation and Utilization, ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, India, 560024
| | - Sowmya Manjunath
- Division of Germplasm Conservation and Utilization, ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, India, 560024
| | - Tania Das
- Division of Germplasm Conservation and Utilization, ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, India, 560024
| | | | - Nandagopal Bakthavatsalam
- Division of Germplasm Conservation and Utilization, ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, India, 560024
| | - Muthu Gounder Mohan
- Division of Germplasm Conservation and Utilization, ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, India, 560024
| | - Sengottayan Senthil-Nathan
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, 627412, Tirunelveli, Tamil Nadu, India
| | - Sreehari Uragayala
- ICMR, National Institute for Malaria Research FU, Bangalore, India, 562110
| | | | - Renu Govindarajan
- ICMR - Vector Control Research Centre, Field Station, Madurai, India, 625002
| | | |
Collapse
|
11
|
Gholamhosseinpour A, Hashemi SMB, Jafarpour D. Nanoemulsion of satureja sahendica bornm essential oil: antibacterial and antioxidant activities. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01615-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
12
|
Dąbrowska A. The first evidence of the Indian meal moth (Plodia interpunctella) interaction with the silicone moulds. CHEMOSPHERE 2022; 299:134451. [PMID: 35364077 DOI: 10.1016/j.chemosphere.2022.134451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
The Indian meal moth (Plodia interpunctella, Lepidoptera) is a common insect species and well-known, widespread kitchen pest. This paper reports the results of their interaction with silicone baking moulds and the evidence for synthetic material decomposition. The obtained fibres exhibited a high level of purification and were characterized by Raman spectroscopy. The reported interaction should be further studied from the biological perspective, as it can be crucial for the remediation of silicones or other synthetic polymers in the environment.
Collapse
Affiliation(s)
- Agnieszka Dąbrowska
- University of Warsaw, Faculty of Chemistry, Laboratory of Spectroscopy of Intermolecular Interactions, Pasteura 1, 02-093, Warsaw, Poland; University of Warsaw Biological and Chemical Research Centre, Żwirki i Wigury 101 st., 02-089, Warsaw, Poland.
| |
Collapse
|
13
|
Manjesh K, Kundu A, Dutta A, Saha S, Neelakanthaiah BS. Bio-Insecticidal Nanoemulsions of Essential Oil and Lipid-Soluble Fractions of Pogostemon cablin. FRONTIERS IN PLANT SCIENCE 2022; 13:874221. [PMID: 35574070 PMCID: PMC9101049 DOI: 10.3389/fpls.2022.874221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/28/2022] [Indexed: 05/08/2023]
Abstract
The present study aimed to develop nanoemulsions (NEs) of essential oil (EO) and lipid-soluble extract (HE) of Pogostemon cablin leaves using biosurfactant, saponin. Hydro-distilled EO and fat-soluble HE were analyzed using GC-MS, which revealed 38.7 ± 2.7% and 37.5 ± 2.1% patchoulol, respectively. EO and HE were formulated with saponin to prepare corresponding coarse emulsions (CEs); furthermore, high-speed homogenization for 2 min was followed by ultrasonication for 3 min with constant frequency of 50 kHz. of the CEs resulted in respective NEs. NEs were characterized for the physico-chemical properties such as emulsion intrinsic stability, particle size distribution, polydispersity index (PDI), and transmission electron microscopy (TEM) for morphology and accurate nanodroplet diameters. CEs and NEs were investigated for insecticidal efficacy against adults of Tetranychus urticae and larvae of Spodoptera litura. Stable NEs of EO and HE at 500 μg mL-1 concentration exhibited corresponding average particle size of 51.7 and 89.9 nm, while TEM image revealed spherical-shaped droplets with the average droplet diameters of 15.3 and 29.4 nm, respectively. NEs of EO and HE displayed highest efficacy in contact toxicity (LC50 43.2 and 58.4 μg mL-1) after 48 h and fumigant toxicity (LC50 9.3 and 13.6 μg mL-1) after 24 h against T. urticae. In addition, NEs of EO showed considerable antifeedant and feeding deterrent action (AI 99.21 ± 0.74 and FI 99.73 ± 1.24) against S. litura larvae.
Collapse
Affiliation(s)
- Keerthiraj Manjesh
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Aditi Kundu
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
- *Correspondence: Aditi Kundu ;
| | - Anirban Dutta
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Supradip Saha
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | |
Collapse
|
14
|
Song R, Lin Y, Li Z. Ultrasonic-assisted preparation of eucalyptus oil nanoemulsion: Process optimization, in vitro digestive stability, and anti-Escherichia coli activity. ULTRASONICS SONOCHEMISTRY 2022; 82:105904. [PMID: 34979457 PMCID: PMC8799746 DOI: 10.1016/j.ultsonch.2021.105904] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 06/01/2023]
Abstract
Eucalyptus oil (EO) is a natural and effective antimicrobial agent; however, it has disadvantages such as poor water solubility and instability. The aim of this study was to investigate the effect of process vessels and preparation process parameters on the particle size of the emulsion droplets using ultrasonic technique and response surface methodology to prepare eucalyptus oil nanoemulsion (EONE). The optimal sonication process parameters in conical centrifuge tubes were confirmed: sonication distance of 0.9 cm, sonication amplitude of 18%, and sonication time of 2 min. Under these conditions, the particle size of EONE was 18.96 ± 4.66 nm, the polydispersity index was 0.39 ± 0.09, and the zeta potential was -31.17 ± 2.15 mV. In addition, the changes in particle size, potential, micromorphology, and anti-Escherichia coli activity of EONE during digestion were investigated by in vitro simulated digestion. The emulsion was stable in simulated salivary fluid, tended to aggregate in simulated gastric fluid, and increased in particle size and potential value in simulated intestinal fluid. EONE showed higher anti-E. coli activity than EO by simulated digestion. These results provide a useful reference for the in vivo antimicrobial application of the essential oil.
Collapse
Affiliation(s)
- Ruiteng Song
- School of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, PR China
| | - Yongqi Lin
- School of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, PR China
| | - Zhenzhen Li
- Department of Pharmacy, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261053, PR China.
| |
Collapse
|
15
|
Gonçalves DDC, Ribeiro WR, Gonçalves DC, Menini L, Costa H. Recent advances and future perspective of essential oils in control Colletotrichum spp.: A sustainable alternative in postharvest treatment of fruits. Food Res Int 2021; 150:110758. [PMID: 34865776 DOI: 10.1016/j.foodres.2021.110758] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/14/2021] [Accepted: 10/12/2021] [Indexed: 11/28/2022]
Abstract
The world population growth has raised concerns about food security. Agricultural systems are asked to satisfy a growing demand for food with increasingly limited resources, and simultaneously still must reduce the impacts on the environment. This scenario encourages the search for safe and sustainable production strategies. Reducing losses in the production process can be one of the main ways to guarantee food safety. In fruticulture, it is estimated that more than 50% of the production can be lost between harvest and the final consumer due to postharvest diseases caused by phytopathogenic fungi. The fungi of the genus Colletotrichum are opportunistic and are associated with several diseases, being the anthracnose the most relevant in terms of the quality and yield losses in fruit species around worldwide. To control these diseases, the use of synthetic fungicides has been the main instrument utilized, however, because of their phytotoxicity to human health, the environment, and strong selection pressure imposed by continuous applications, the fungicides have caused resistance in the pathogen populations. So reducing the excessive application of these products is indispensable for human health and for sustainable Agriculture. Towards this purpose, research has been carried out to identify the phytopathological potentiality of essential oils (EOs) extracted from plants. Therefore, this review aims to contribute to the formation of knowledge bases, about the discoveries, recent advances, and the use of EOs as a strategy to alternatively control fungal disease caused by Colletotrichum spp. in postharvest fruits. Here, we provide valuable information exploring the application potential of essential oils as commercially useful biorational pesticides for food preservation, contributing to sustainable production and global food security.
Collapse
Affiliation(s)
- Dalila da Costa Gonçalves
- Instituto Federal do Espírito Santo (IFES - Alegre), Rodovia Br 482, Km 47 s/n, Alegre - ES 29520-000, Brazil.
| | - Wilian Rodrigues Ribeiro
- Centro de Ciências Agrárias e Engenharias da Universidade Federal do Espírito Santo (CCA-UFES), Alto Universitário, S/N Guararema, Alegre - ES 29500-000, Brazil.
| | - Débora Cristina Gonçalves
- Centro de Ciências Agrárias e Engenharias da Universidade Federal do Espírito Santo (CCA-UFES), Alto Universitário, S/N Guararema, Alegre - ES 29500-000, Brazil.
| | - Luciano Menini
- Instituto Federal do Espírito Santo (IFES - Alegre), Rodovia Br 482, Km 47 s/n, Alegre - ES 29520-000, Brazil.
| | - Hélcio Costa
- Fazenda do Estado - Incaper. BR 262, km 94 - Domingos, Martins - ES 29278-000, Brazil.
| |
Collapse
|
16
|
Essential Oil-Based Nano-Biopesticides: Formulation and Bioactivity against the Confused Flour Beetle Tribolium confusum. SUSTAINABILITY 2021. [DOI: 10.3390/su13179746] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Post-harvest pest control can rely on few approved pesticides and tools; hence, there is a rising interest in new sustainable, eco-friendly approaches. In this study, eight commercial essential oils (EOs) (anise Pimpinella anisum, artemisia Artemisia vulgaris, fennel Foenicum vulgare, garlic Allium sativum, lavender Lavandula angustifolia, mint Mentha piperita, rosemary Rosmarinus officinalis, and sage Salvia officinalis) were selected for their bioactivity and commercial availability, and then formulated in nano-emulsions. Repellency and acute toxicity of the developed nano-formulations were tested against a key stored product pest, Tribolium confusum (Coleoptera: Tenebrionidae). All the developed nano-emulsions presented optimal physical characteristics (droplet dimension = 95.01–144.30 nm; PDI = 0.146–0.248). All the formulations were repellent over time tested against adult beetles, in area preference bioassays. The best repellent was the anise EO-based formulation (RC50 = 0.033 mg). Mortality values from cold aerosol trials showed that the majority of tested EOs caused immediate acute toxicity, and garlic EO nano-emulsion caused the highest mortality of T. confusum adults (LC50 = 0.486 mg/L of air). EO-based nano-insecticides, used as cold aerosol and gel, are promising control methods against stored product pests, which can be integrated and combined with other sustainable biorational approaches.
Collapse
|
17
|
Gong P, Chen D, Wang C, Li M, Li X, Zhang Y, Li X, Zhu X. Susceptibility of Four Species of Aphids in Wheat to Seven Insecticides and Its Relationship to Detoxifying Enzymes. Front Physiol 2021; 11:623612. [PMID: 33536942 PMCID: PMC7848177 DOI: 10.3389/fphys.2020.623612] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/23/2020] [Indexed: 11/13/2022] Open
Abstract
Sitobion avenae (Fabricius), Rhopalosiphum padi (Linnaeus), Schizaphis graminum (Rondani), and Metopolophium dirhodum (Walker) (Hemiptera: Aphididae) are important pests of wheat and other cereals worldwide. In this study, the susceptibilities of four wheat aphid species to seven insecticides were assessed. Furthermore, the activities of carboxylesterase (CarE), glutathione S-transferase (GSTs), and cytochrome P450 monooxygenase (P450s) were determined in imidacloprid treated and untreated aphids. The results showed that the susceptibilities of four wheat aphid species to tested insecticides are different and M. dirhodum has shown higher tolerance to most insecticides. Relatively higher CarE and GST activities were observed in M. dirhodum, and P450s activities increased significantly in response to imidacloprid treatment. Moreover, susceptibility to imidacloprid were increased by the oxidase inhibitor piperonyl butoxide in M. dirhodum (20-fold). The results we have obtained imply that P450s may play an important role in imidacloprid metabolic process in M. dirhodum. We suggest that a highly species-specific approach is essential for managing M. dirhodum.
Collapse
Affiliation(s)
- Peipan Gong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Defeng Chen
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Beijing Vegetable Research Center, Ministry of Agriculture, Beijing, China.,Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Chao Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mengyi Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunhui Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiangrui Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xun Zhu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
18
|
Nehra M, Dilbaghi N, Marrazza G, Kaushik A, Sonne C, Kim KH, Kumar S. Emerging nanobiotechnology in agriculture for the management of pesticide residues. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123369. [PMID: 32763682 DOI: 10.1016/j.jhazmat.2020.123369] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 06/12/2020] [Accepted: 06/30/2020] [Indexed: 05/18/2023]
Abstract
Utilization of pesticides is often necessary for meeting commercial requirements for crop quality and yield. However, incessant global pesticide use poses potential risks to human and ecosystem health. This situation increases the urgency of developing nano-biotechnology-assisted pesticide formulations that have high efficacy and low risk of side effects. The risks associated with both conventional and nanopesticides are summarized in this review. Moreover, the management of residual pesticides is still a global challenge. The contamination of soil and water resources with pesticides has adverse impact over agricultural productivity and food security; ultimately posing threats to living organisms. Pesticide residues in the eco-system may be treated via several biological and physicochemical processes, such as microbe-based degradation and advanced oxidation processes. With these issues in mind, we present a review that explores both existing and emerging techniques for management of pesticide residues and environmental risks. These techniques can offer a sustainable solution to revitalize the tarnished water/soil resources. Further, state-of-the-art research approaches to investigate biotechnological alternatives to conventional pesticides are discussed along with future prospects and mitigation techniques are recommended.
Collapse
Affiliation(s)
- Monika Nehra
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Neeraj Dilbaghi
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Giovanna Marrazza
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Florence, Italy
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Natural Sciences, Division of Sciences, Arts & Mathematics, Florida Polytechnic University, Lakeland, FL, 33805-8531, United States
| | - Christian Sonne
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000, Roskilde, Denmark
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea
| | - Sandeep Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India.
| |
Collapse
|
19
|
Benelli G, Pavoni L, Zeni V, Ricciardi R, Cosci F, Cacopardo G, Gendusa S, Spinozzi E, Petrelli R, Cappellacci L, Maggi F, Pavela R, Bonacucina G, Lucchi A. Developing a Highly Stable Carlina acaulis Essential Oil Nanoemulsion for Managing Lobesia botrana. NANOMATERIALS 2020; 10:nano10091867. [PMID: 32961890 PMCID: PMC7559805 DOI: 10.3390/nano10091867] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/27/2020] [Accepted: 09/15/2020] [Indexed: 01/25/2023]
Abstract
The growing interest in the development of green pest management strategies is leading to the exploitation of essential oils (EOs) as promising botanical pesticides. In this respect, nanotechnology could efficiently support the use of EOs through their encapsulation into stable nanoformulations, such as nanoemulsions (NEs), to improve their stability and efficacy. This technology assures the improvement of the chemical stability, hydrophilicity, and environmental persistence of EOs, giving an added value for the fabrication of natural insecticides effective against a wide spectrum of insect vectors and pests of public and agronomical importance. Carlina acaulis (Asteraceae) root EO has been recently proposed as a promising ingredient of a new generation of botanical insecticides. In the present study, a highly stable C. acaulis-based NE was developed. Interestingly, such a nanosystem was able to encapsulate 6% (w/w) of C. acaulis EO, showing a mean diameter of around 140 nm and a SOR (surfactant-to-oil ratio) of 0.6. Its stability was evaluated in a storage period of six months and corroborated by an accelerated stability study. Therefore, the C. acaulis EO and C. acaulis-based NE were evaluated for their toxicity against 1st instar larvae of the European grapevine moth (EGVM), Lobesia botrana (Denis & Schiffermüller, 1775) (Lepidoptera: Tortricidae), a major vineyard pest. The chemical composition of C. acaulis EO was investigated by gas chromatography-mass spectrometry (GC-MS) revealing carlina oxide, a polyacetylene, as the main constituent. In toxicity assays, both the C. acaulis EO and the C. acaulis-based NE were highly toxic to L. botrana larvae, with LC50 values of 7.299 and 9.044 µL/mL for C. acaulis EO and NE, respectively. The C. acaulis-based NE represents a promising option to develop highly stable botanical insecticides for pest management. To date, this study represents the first evidence about the insecticidal toxicity of EOs and EO-based NEs against this major grapevine pest.
Collapse
Affiliation(s)
- Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy; (V.Z.); (R.R.); (F.C.); (G.C.); (A.L.)
- Correspondence: ; Tel.: +39-0502216141
| | - Lucia Pavoni
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (L.P.); (S.G.); (E.S.); (R.P.); (L.C.); (F.M.); (G.B.)
| | - Valeria Zeni
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy; (V.Z.); (R.R.); (F.C.); (G.C.); (A.L.)
| | - Renato Ricciardi
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy; (V.Z.); (R.R.); (F.C.); (G.C.); (A.L.)
| | - Francesca Cosci
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy; (V.Z.); (R.R.); (F.C.); (G.C.); (A.L.)
| | - Gloria Cacopardo
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy; (V.Z.); (R.R.); (F.C.); (G.C.); (A.L.)
| | - Saverio Gendusa
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (L.P.); (S.G.); (E.S.); (R.P.); (L.C.); (F.M.); (G.B.)
| | - Eleonora Spinozzi
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (L.P.); (S.G.); (E.S.); (R.P.); (L.C.); (F.M.); (G.B.)
| | - Riccardo Petrelli
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (L.P.); (S.G.); (E.S.); (R.P.); (L.C.); (F.M.); (G.B.)
| | - Loredana Cappellacci
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (L.P.); (S.G.); (E.S.); (R.P.); (L.C.); (F.M.); (G.B.)
| | - Filippo Maggi
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (L.P.); (S.G.); (E.S.); (R.P.); (L.C.); (F.M.); (G.B.)
| | - Roman Pavela
- Crop Research Institute, Drnovska 507, 161 06 Prague, Czech Republic;
- Department of Plant Protection, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Praha 6, Suchdol, Czech Republic
| | - Giulia Bonacucina
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (L.P.); (S.G.); (E.S.); (R.P.); (L.C.); (F.M.); (G.B.)
| | - Andrea Lucchi
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy; (V.Z.); (R.R.); (F.C.); (G.C.); (A.L.)
| |
Collapse
|
20
|
Oftadeh M, Jalali Sendi J, Ebadollahi A. Biologically active toxin identified from Artemisia annua against lesser mulberry pyralid, Glyphodes pyloalis. TOXIN REV 2020. [DOI: 10.1080/15569543.2020.1811345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Marziyeh Oftadeh
- Faculty of Agricultural Sciences, Department of Plant Protection, University of Guilan, Rasht, Iran
| | - Jalal Jalali Sendi
- Faculty of Agricultural Sciences, Department of Plant Protection, University of Guilan, Rasht, Iran
- Faculty of Agricultural Sciences, Department of Silk research, University of Guilan, Rasht, Iran
| | - Asgar Ebadollahi
- Moghan College of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| |
Collapse
|
21
|
Skalickova S, Aulichova T, Venusova E, Skladanka J, Horky P. Development of pH-Responsive Biopolymeric Nanocapsule for Antibacterial Essential Oils. Int J Mol Sci 2020; 21:ijms21051799. [PMID: 32151081 PMCID: PMC7084736 DOI: 10.3390/ijms21051799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 02/23/2020] [Accepted: 03/02/2020] [Indexed: 11/28/2022] Open
Abstract
It is generally believed that antibacterial essential oils have the potential to become one of the alternatives in preventing diarrheal diseases of monogastric animals. The disadvantage is their low efficiency per oral due to easy degradation during digestion in the stomach. This study compares the efficacy of chitosan, alginate-chitosan, guar gum-chitosan, xanthan gum-chitosan and pectin-chitosan nanocapsules to the synthesis of pH-responsive biopolymeric nanocapsule for Thymus vulgaris, Rosmarinus officinalis and Syzygium aromaticum essential oils. Using spectrophotometric approach and gas chromatography, release kinetics were determined in pH 3, 5.6 and 7.4. The growth rates of S. aureus and E. coli, as well as minimal inhibition concentration of essential oils were studied. The average encapsulation efficiency was 60%, and the loading efficiency was 70%. The size of the nanocapsules ranged from 100 nm to 500 nm. Results showed that chitosan-guar gum and chitosan-pectin nanocapsules released 30% of essential oils (EOs) at pH 3 and 80% at pH 7.4 during 3 h. Similar release kinetics were confirmed for thymol, eugenol and α-pinene. Minimal inhibition concentrations of Thymus vulgaris and Syzygium aromaticum essential oils ranged from 0.025 to 0.5%. Findings of this study suggest that the suitable pH-responsive nanocapsule for release, low toxicity and antibacterial activity is based on chitosan-guar gum structure.
Collapse
|