1
|
Li H, Yan S, Xu H, Li X, Wang R, Yan Y, Li P, Zhang L, Wang Y, Zu M, Wang Y. Characterising the change rule of freshness and inorganic anions in reconstituted tobacco pulp with oscillation time. Sci Rep 2025; 15:1539. [PMID: 39789145 PMCID: PMC11718068 DOI: 10.1038/s41598-025-85562-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/03/2025] [Indexed: 01/12/2025] Open
Abstract
In order to study the change rule of freshness and acid ions in reconstituted tobacco slurry, the content changes of 17 organic acids and 5 inorganic anions in reconstituted tobacco slurry with different residence times under confined condition were determined by on-line solid-phase extraction ion chromatography in this study. The results showed that the changes of acetic acid, nitrate ion and isovaleric acid in different reconstituted tobacco slurries with oscillation time were regular and consistent, and the trends of the changes of acetic acid, nitrate ion and isovaleric acid in different reconstituted tobacco slurries with oscillation time were correlated with each other in a highly significant way. Taking the evaluation of olfactory aroma and sensory quality qualities of reconstituted tobacco pulps with different residence times as a benchmark, it was found that the variation patterns of nitrate ions and isovaleric acid in reconstituted tobacco pulps with oscillation time were consistent with the variation patterns of olfactory and sensory qualities in the process of closed oscillation; compared with the fresh pulp, the olfactory aroma and sensory qualities of tobacco pulps had unpleasant odours appearing when the content of nitrate ions was reduced by about 48%. The selection of isovaleric acid and nitrate ion as the characteristic components of tobacco reconstituted pulp for monitoring can provide technology for optimising pulp retention time and production process.
Collapse
Affiliation(s)
- Huayu Li
- Key Laboratory for Standardization of Reconstituted Tobacco Sheet in the Tobacco Industry, Henan Provincial Engineering Research Center for Reconstituted Tobacco Sheet, Henan Cigarette Industrial Reconstituted Tobacco Sheet Co., Ltd., Xuchang, 461000, People's Republic of China.
| | - Shaohui Yan
- Luo he Vocational Technology College, Luohe, 462000, People's Republic of China
| | - Hongtao Xu
- Key Laboratory for Standardization of Reconstituted Tobacco Sheet in the Tobacco Industry, Henan Provincial Engineering Research Center for Reconstituted Tobacco Sheet, Henan Cigarette Industrial Reconstituted Tobacco Sheet Co., Ltd., Xuchang, 461000, People's Republic of China
| | - Xiaoyu Li
- Key Laboratory for Standardization of Reconstituted Tobacco Sheet in the Tobacco Industry, Henan Provincial Engineering Research Center for Reconstituted Tobacco Sheet, Henan Cigarette Industrial Reconstituted Tobacco Sheet Co., Ltd., Xuchang, 461000, People's Republic of China
| | - Runan Wang
- Key Laboratory for Standardization of Reconstituted Tobacco Sheet in the Tobacco Industry, Henan Provincial Engineering Research Center for Reconstituted Tobacco Sheet, Henan Cigarette Industrial Reconstituted Tobacco Sheet Co., Ltd., Xuchang, 461000, People's Republic of China
| | - Ying Yan
- Key Laboratory for Standardization of Reconstituted Tobacco Sheet in the Tobacco Industry, Henan Provincial Engineering Research Center for Reconstituted Tobacco Sheet, Henan Cigarette Industrial Reconstituted Tobacco Sheet Co., Ltd., Xuchang, 461000, People's Republic of China
| | - Pengyu Li
- Flavors and Fragrance Engineering and Technology Research Center of Henan Province, College of Tobacco Science, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, People's Republic of China
| | - Litao Zhang
- Key Laboratory for Standardization of Reconstituted Tobacco Sheet in the Tobacco Industry, Henan Provincial Engineering Research Center for Reconstituted Tobacco Sheet, Henan Cigarette Industrial Reconstituted Tobacco Sheet Co., Ltd., Xuchang, 461000, People's Republic of China
| | - Yanqing Wang
- Key Laboratory for Standardization of Reconstituted Tobacco Sheet in the Tobacco Industry, Henan Provincial Engineering Research Center for Reconstituted Tobacco Sheet, Henan Cigarette Industrial Reconstituted Tobacco Sheet Co., Ltd., Xuchang, 461000, People's Republic of China
| | - Mengmeng Zu
- Key Laboratory for Standardization of Reconstituted Tobacco Sheet in the Tobacco Industry, Henan Provincial Engineering Research Center for Reconstituted Tobacco Sheet, Henan Cigarette Industrial Reconstituted Tobacco Sheet Co., Ltd., Xuchang, 461000, People's Republic of China
| | - Yibo Wang
- Chengfa Urban Service Technology (Henan) Co., Ltd, Zhengzhou, 450002, People's Republic of China
| |
Collapse
|
2
|
Das P, Nayak PK, Kesavan RK. Artificial neural networks (ANN)-genetic algorithm (GA) optimization on thermosonicated achocha juice: kinetic and thermodynamic perspectives of retained phytocompounds. Prep Biochem Biotechnol 2024:1-16. [PMID: 38995873 DOI: 10.1080/10826068.2024.2378101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
The extraction of phytocompounds from Achocha (Cyclanthera pedata) vegetable juice using traditional methods often results in suboptimal yields and efficiency. This study aimed to enhance the extraction process through the application of thermosonication (TS). To achieve this, an artificial neural network (ANN) and a genetic algorithm (GA) were utilized to simulate and optimize the process parameters. The study investigated the influence of ultrasonic amplitude (30%-50%), temperature (30 °C-50 °C), and sonication duration (15-60 min) on total polyphenolic content (TPC), total flavonoid content (TFC), antioxidant activity (AOA), and ascorbic acid content (AA). Remarkably, the ANN-GA optimization resulted in optimal TS conditions: an ultrasonic amplitude of 40%, a temperature of 40 °C, and a sonication duration of 30 min. Subsequent analysis of extraction kinetics and thermodynamics across various temperatures (30 °C-50 °C) and extraction times (0-30 min) demonstrated R2 (0.98821) and χ2 (1.74773) for TPC with activation energy (Ea) 26.0456, R2 (0.99906) and χ2 (0.07215) for TFC with Ea 26.2336, R2 (0.99867) and χ2 (0.03003) for AOA with Ea 26.0987, R2 (0.99731) and χ2 (0.13719) for AA with Ea 26.0984, validating the pseudo second-order kinetic model. These findings indicate that increased temperature enhances the saturation concentration and rate constant of phytochemical extraction.
Collapse
Affiliation(s)
- Puja Das
- Department of Food Engineering & Technology, Central Institute of Technology, Deemed to be University, Kokrajhar, Assam, India
| | - Prakash Kumar Nayak
- Department of Food Engineering & Technology, Central Institute of Technology, Deemed to be University, Kokrajhar, Assam, India
| | - Radha Krishnan Kesavan
- Department of Food Engineering & Technology, Central Institute of Technology, Deemed to be University, Kokrajhar, Assam, India
| |
Collapse
|
3
|
Shi Y, Tan Z, Wu D, Wu Y, Li G. Pyrococcus furiosus argonaute based Alicyclobacillus acidoterrestrsis detection in fruit juice. Food Microbiol 2024; 120:104475. [PMID: 38431321 DOI: 10.1016/j.fm.2024.104475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/28/2023] [Accepted: 01/09/2024] [Indexed: 03/05/2024]
Abstract
Alicyclobacillus acidoterrestris is the major threat to fruit juice for its off-odor producing characteristic. In this study, Pyrococcus furiosus Argonaute (PfAgo), a novel endonuclease with precise DNA cleavage activity, was used for A. acidoterrestrisdetection, termed as PAD. The partially amplified 16 S rRNA gene of A. acidoterrestris can be cleaved by PfAgo activated by a short 5'-phosphorylated single strand DNA, producing a new guide DNA (gDNA). Then, PfAgo was activated by the new gDNA to cut a molecular beacon (MB) with fluorophore-quencher reporter, resulting in the recovery of fluorescence. The fluorescent intensity is positively related with the concentration of A. acidoterrestris. The PAD assay showed excellent specificity and sensitivity as low as 101 CFU/mL, which can be a powerful tool for on-site detection of A. acidoterrestris in fruit juice industry in the future, reducing the economic loss.
Collapse
Affiliation(s)
- Yiheng Shi
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zishan Tan
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Di Wu
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, United Kingdom
| | - Yongning Wu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Guoliang Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
4
|
Wang B, Duan Y, Wang C, Liu C, Wang J, Jia J, Wu Q. Combined volatile compounds and non-targeted metabolomics analysis reveals variation in flavour characteristics, metabolic profiles and bioactivity of mulberry leaves after Monascus purpureus fermentation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3294-3305. [PMID: 38087418 DOI: 10.1002/jsfa.13215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/04/2023] [Accepted: 12/12/2023] [Indexed: 12/27/2023]
Abstract
BACKGROUND Mulberry leaves (MLs) are widely used in food because of their nutritional and functional characteristics. However, plant cell walls and natural bitterness influence nutrient release and the flavor properties of MLs. Liquid-state fermentation using Monascus purpureus (LFMP) is a common processing method used to improve food properties. The present study used headspace solid-phase micro extraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) and non-targeted metabolomics to examine changes in volatile and non-volatile metabolites in MLs. The transformation mechanism of LFMP was investigated by microscopic observation and dynamic analysis of enzyme activity, and changes in the biological activity of MLs were analyzed. RESULTS LFMP significantly increased total phenolics, total flavonoids, free amino acids and soluble sugars in MLs, at the same time as decreasing phytic acid levels. In total, 92 volatile organic compounds (VOCs) were identified and quantified. VOCs such as (2R,3R)-(-)-2,3-butanediol, terpineol and eugenol showed some improvement in the flavour characteristics of MLs. By using non-targeted metabolomics, 124 unique metabolites in total were examined. LFMP altered the metabolic profile of MLs, mainly in plant secondary metabolism, lipid metabolism and amino acid metabolism. Microscopic observation and dynamic analysis of enzyme activity indicated that LFMP promoted cell wall degradation and biotransformation of MLs. In addition, LFMP significantly increased the angiotensin I-converting enzyme and α-glucosidase inhibitory activity of MLs. CONCLUSION LFMP altered the flavour characteristics, metabolite profile and biological activity of MLs. These findings will provide ideas for the processing of MLs into functional foods. In addition, they also provide useful information for biochemical studies of fermented MLs. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Biao Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Yichen Duan
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Chengmo Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Chun Liu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Jun Wang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Junqiang Jia
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Qiongying Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, China
| |
Collapse
|
5
|
Gogoi S, Das P, Nayak PK, Sridhar K, Sharma M, Sari TP, Kesavan RK, Bhaswant M. Optimizing Quality and Shelf-Life Extension of Bor-Thekera ( Garcinia pedunculata) Juice: A Thermosonication Approach with Artificial Neural Network Modeling. Foods 2024; 13:497. [PMID: 38338632 PMCID: PMC10855326 DOI: 10.3390/foods13030497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/27/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
This study investigated the quality characteristics of pasteurized and thermosonicated bor-thekera (Garcinia pedunculata) juices (TSBTJs) during storage at 4 °C for 30 days. Various parameters, including pH, titratable acidity (TA), total soluble content (TSSs), antioxidant activity (AA), total phenolic content (TPC), total flavonoid content (TFC), ascorbic acid content (AAC), cloudiness (CI) and browning indexes (BI), and microbial activity, were analyzed at regular intervals and compared with the quality parameters of fresh bor-thekera juice (FBTJ). A multi-layer artificial neural network (ANN) was employed to model and optimize the ultrasound-assisted extraction of bor-thekera juice. The impacts of storage time, treatment time, and treatment temperature on the quality attributes were also explored. The TSBTJ demonstrated the maximum retention of nutritional attributes compared with the pasteurized bor-thekera juice (PBTJ). Additionally, the TSBTJ exhibited satisfactory results for microbiological activity, while the PBTJ showed the highest level of microbial inactivation. The designed ANN exhibited low mean squared error values and high R2 values for the training, testing, validation, and overall datasets, indicating a strong relationship between the actual and predicted results. The optimal extraction parameters generated by the ANN included a treatment time of 30 min, a frequency of 44 kHz, and a temperature of 40 °C. In conclusion, thermosonicated juices, particularly the TSBTJ, demonstrated enhanced nutritional characteristics, positioning them as valuable reservoirs of bioactive components suitable for incorporation in the food and pharmaceutical industries. The study underscores the efficacy of ANN as a predictive tool for assessing bor-thekera juice extraction efficiency. Moreover, the use of thermosonication emerged as a promising alternative to traditional thermal pasteurization methods for bor-thekera juice preservation, mitigating quality deterioration while augmenting the functional attributes of the juice.
Collapse
Affiliation(s)
- Shikhapriyom Gogoi
- Department of Food Engineering and Technology, Central Institute of Technology, Kokrajhar 783370, India; (S.G.); (P.D.); (P.K.N.)
| | - Puja Das
- Department of Food Engineering and Technology, Central Institute of Technology, Kokrajhar 783370, India; (S.G.); (P.D.); (P.K.N.)
| | - Prakash Kumar Nayak
- Department of Food Engineering and Technology, Central Institute of Technology, Kokrajhar 783370, India; (S.G.); (P.D.); (P.K.N.)
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to Be University), Coimbatore 641021, India
| | - Minaxi Sharma
- Department of Applied Biology, University of Science and Technology Meghalaya, Baridua 793101, India;
| | - Thachappully Prabhat Sari
- Department of Food Science and Technology, National Institute of Food Technology, Entrepreneurship and Management, Kundli 131028, India;
| | - Radha krishnan Kesavan
- Department of Food Engineering and Technology, Central Institute of Technology, Kokrajhar 783370, India; (S.G.); (P.D.); (P.K.N.)
| | - Maharshi Bhaswant
- New Industry Creation Hatchery Center, Tohoku University, Sendai 980-8579, Japan
- Center for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai 600119, India
| |
Collapse
|
6
|
Wahia H, Fakayode OA, Mintah BK, Mustapha AT, Zhou C, Dabbour M. Effect of dual-frequency thermosonication, food matrix, and germinants on Alicyclobacillus acidoterrestris spore germination. Food Res Int 2023; 171:113054. [PMID: 37330854 DOI: 10.1016/j.foodres.2023.113054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/19/2023]
Abstract
The off-odors associated with spoilage of acidic beverages are linked to the germination and growth of Alicyclobacillus acidoterrestris (AAT) spores. As a consequence, we determined the influence of nutrients, non-nutrient germinants, dual-frequency thermosonication (DFTS), and food matrix on spore germination. AAT spores in orange juice (OJ), supplemented by L-alanine (L-ala), had the highest germination rate and lowest DPA content at 10 h of incubation. The formation of microscopic pores in cell membranes during DFTS caused irreversible damage in AAT spores in citrate buffer solution (CBS); however, it stimulated AAT spore germination in CBS containing L-ala. Hence, the germination potential was established in the order: L-ala > Calcium dipicolinate > asparagine, glucose, fructose, and potassium ion mixture (AGFK) > L-valine. The conductivity analysis indicated that membrane damage could be a key factor contributing to the artificial germination in CBS. AFM images revealed that after 2 h of adding L-ala, the protein content increased with increased germinated cells. TEM showed that membrane poration and coat detachment were the main pre-germination morphological changes detected after DFTS treatment. This study provides evidence that germination stimulated with DFTS might be an effective strategy for reducing A. acidoterrestris spores in fruit juices.
Collapse
Affiliation(s)
- Hafida Wahia
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | | | | | | | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; School of Biological and Food Engineering, Chuzhou University, Chuzhou, 239000, PR China.
| | - Mokhtar Dabbour
- Department of Agricultural and Biosystems Engineering, Faculty of Agriculture, Benha University, PO Box 13736, Moshtohor, Qaluobia, Egypt
| |
Collapse
|
7
|
Lopes SJS, S Sant'Ana A, Freire L. Non-thermal emerging processing Technologies: Mitigation of microorganisms and mycotoxins, sensory and nutritional properties maintenance in clean label fruit juices. Food Res Int 2023; 168:112727. [PMID: 37120193 DOI: 10.1016/j.foodres.2023.112727] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/01/2023] [Accepted: 03/02/2023] [Indexed: 05/01/2023]
Abstract
The increase in the fruit juice consumption and the interest in clean label products boosted the development and evaluation of new processing technologies. The impact of some emerging non-thermal technologies in food safety and sensory properties has been evaluated. The main technologies applied in the studies are ultrasound, high pressure, supercritical carbon dioxide, ultraviolet, pulsed electric field, cold plasma, ozone and pulsed light. Since there is no single technique that presents high potential for all the evaluated requirements (food safety, sensory, nutritional and the feasibility of implementation in the industry), the search for new technologies to overcome the limitations is fundamental. The high pressure seems to be the most promising technology regarding all the aspects mentioned. Some of the outstanding results are 5 log reduction of E. coli, Listeria and Salmonella, 98.2% of polyphenol oxidase inactivation and 96% PME reduction. However its cost can be a limitation for industrial implementation. The combination of pulsed light and ultrasound could overcome this limitation and provide higher quality fruit juices. The combination was able to achieve 5.8-6.4 log cycles reduction of S. Cerevisiae, and pulsed light is able to obtain PME inactivation around 90%, 61.0 % more antioxidants, 38.8% more phenolics and 68.2% more vitamin C comparing to conventional processing, and similar sensory scores after 45 days at 4 °C comparing to fresh fruit juice. This review aims to update the information related to the application of non-thermal technologies in the fruit juice processing through systematic and updated data to assist in industrial implementation strategies.
Collapse
Affiliation(s)
- Simone J S Lopes
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Luísa Freire
- Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul. Campo Grande, Mato Grosso do Sul, Brazil.
| |
Collapse
|
8
|
Osmólska E, Stoma M, Starek-Wójcicka A. Juice Quality Evaluation with Multisensor Systems-A Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:4824. [PMID: 37430738 DOI: 10.3390/s23104824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 07/12/2023]
Abstract
E-nose and e-tongue are advanced technologies that allow for the fast and precise analysis of smells and flavours using special sensors. Both technologies are widely used, especially in the food industry, where they are implemented, e.g., for identifying ingredients and product quality, detecting contamination, and assessing their stability and shelf life. Therefore, the aim of this article is to provide a comprehensive review of the application of e-nose and e-tongue in various industries, focusing in particular on the use of these technologies in the fruit and vegetable juice industry. For this purpose, an analysis of research carried out worldwide over the last five years, concerning the possibility of using the considered multisensory systems to test the quality and taste and aroma profiles of juices is included. In addition, the review contains a brief characterization of these innovative devices through information such as their origin, mode of operation, types, advantages and disadvantages, challenges and perspectives, as well as the possibility of their applications in other industries besides the juice industry.
Collapse
Affiliation(s)
- Emilia Osmólska
- Department of Power Engineering and Transportation, Faculty of Production Engineering, University of Life Sciences in Lublin, 20-612 Lublin, Poland
| | - Monika Stoma
- Department of Power Engineering and Transportation, Faculty of Production Engineering, University of Life Sciences in Lublin, 20-612 Lublin, Poland
| | - Agnieszka Starek-Wójcicka
- Department of Biological Bases of Food and Feed Technologies, Faculty of Production Engineering, University of Life Sciences in Lublin, 20-612 Lublin, Poland
| |
Collapse
|
9
|
Lepaus BM, Santos AKPDO, Spaviero AF, Daud PS, de São José JFB. Thermosonication of Orange-Carrot Juice Blend: Overall Quality during Refrigerated Storage, and Sensory Acceptance. Molecules 2023; 28:molecules28052196. [PMID: 36903442 PMCID: PMC10005015 DOI: 10.3390/molecules28052196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/13/2023] [Accepted: 01/26/2023] [Indexed: 03/02/2023] Open
Abstract
Ultrasound combined with high temperatures (thermosonication) is an alternative to thermal treatments applied for juice preservation purposes. Blend juices, such as orange-carrot juice, are an interesting option for consumers due to their diversity of unique flavors. The main aim of the present study is to investigate thermosonication's impact on the overall quality of an orange-carrot juice blend over 22-day storage at 7 °C, in comparison to thermal treatment. Sensory acceptance was assessed on the first storage day. The juice blend was prepared based on using 700 mL of orange juice and 300 g of carrot. The effect of ultrasound treatment at 40, 50, and 60 °C for 5 and 10 min, as well as of thermal treatment at 90 °C for 30 s, on the physicochemical, nutritional, and microbiological quality of the investigated orange-carrot juice blend was tested. Both the ultrasound and the thermal treatment could maintain pH, °Brix, total titratable acidity, total carotenoid content, total phenolic compounds, and the antioxidant capacity of untreated juice samples. All ultrasound treatments improved samples' brightness and hue value, and made the juice brighter and redder. Only ultrasound treatments at 50 °C/10 min and at 60 °C/10 min have significantly reduced total coliform counts at 35 °C. Thus, they were selected along with untreated juice for sensory analysis, whereas thermal treatment was used for comparison purposes. Thermosonication at 60 °C for 10 min recorded the lowest scores for juice flavor, taste, overall acceptance, and purchase intention. Thermal treatment and ultrasound at 60 °C for 5 min recorded similar scores. Minimal variations in quality parameters were observed over 22-day storage in all treatments. Thermosonication at 60 °C for 5 min has improved samples' microbiological safety and resulted in good sensorial acceptance. Although thermosonication has the potential to be used in orange-carrot juice processing, further investigations are necessary to enhance its microbial effect on this product.
Collapse
Affiliation(s)
- Bárbara Morandi Lepaus
- Postgraduate Program in Nutrition and Health, Federal University of Espírito Santo, Marechal Campos Avenue, Vitória 29040-090, ES, Brazil
| | | | - Arthur Favoretti Spaviero
- Graduation in Nutrition, Federal University of Espírito Santo, Marechal Campos Avenue, Vitória 29040-090, ES, Brazil
| | - Polliany Strassmann Daud
- Graduation in Nutrition, Federal University of Espírito Santo, Marechal Campos Avenue, Vitória 29040-090, ES, Brazil
| | - Jackline Freitas Brilhante de São José
- Integrated Health Education Department, Federal University of Espírito Santo, Marechal Campos Avenue, Vitória 29040-090, ES, Brazil
- Correspondence: ; Tel.: +55-27-3335-7223
| |
Collapse
|
10
|
Nutter J, Correa de Carvalho M, Zarbo Colombo AA, Jagus RJ, Agüero MV. Thermal and nonthermal sonication: Extraction of bioactive compounds from beet leaves and microbiological quality of extracts. J FOOD PROCESS ENG 2023. [DOI: 10.1111/jfpe.14294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Julia Nutter
- Department of Food Science and Human Nutrition Iowa State University Ames USA
| | - Màrcia Correa de Carvalho
- Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Química Laboratorio de Investigación en Tecnología de Alimentos Buenos Aires Argentina
- CONICET‐Universidad de Buenos Aires Instituto de Tecnologías y Ciencias de la Ingeniería (INTECIN) Buenos Aires Argentina
| | - Antonella Ailín Zarbo Colombo
- Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Química Laboratorio de Investigación en Tecnología de Alimentos Buenos Aires Argentina
- CONICET‐Universidad de Buenos Aires Instituto de Tecnologías y Ciencias de la Ingeniería (INTECIN) Buenos Aires Argentina
| | - Rosa Juana Jagus
- Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Química Laboratorio de Investigación en Tecnología de Alimentos Buenos Aires Argentina
- CONICET‐Universidad de Buenos Aires Instituto de Tecnologías y Ciencias de la Ingeniería (INTECIN) Buenos Aires Argentina
| | - María Victoria Agüero
- Universidad de Buenos Aires. Facultad de Ingeniería. Departamento de Ingeniería Química Laboratorio de Investigación en Tecnología de Alimentos Buenos Aires Argentina
- CONICET‐Universidad de Buenos Aires Instituto de Tecnologías y Ciencias de la Ingeniería (INTECIN) Buenos Aires Argentina
| |
Collapse
|
11
|
Wahia H, Fakayode OA, Mustapha AT, Zhou C, Dabbour M. Application and potential of multifrequency ultrasound in juice industry: Comprehensive analysis of inactivation and germination of Alicyclobacillus acidoterrestris spores. Crit Rev Food Sci Nutr 2022; 64:4561-4586. [PMID: 36412233 DOI: 10.1080/10408398.2022.2143475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The majority of acidic fruits are perishable owing to their high-water activity, which promotes microbial activity, thus exhibiting metabolic functions that cause spoilage. Along with sanitary practices, several treatments are used during processing and/or storage to inhibit the development of undesirable bacteria. To overcome the challenges caused by mild heat treatment, juice manufacturers have recently increased their involvement in developing novel non-thermal processing procedures. Ultrasonication alone or in combination with other hurdle technologies may be used to pasteurize processed fruit juices. Multifrequency ultrasound has gained popularity due to the fact that mono-frequency ultrasound has less impact on bacterial inactivation and bioactive compound enhancement of fruit juice. Here, we present and discuss the fundamental information and technological knowledge of how spoilage bacteria, specifically Alicyclobacillus acidoterrestris, assemble resistant spores and inactivate and germinate dormant spores in response to nutrient germinants and physical treatments such as heat and ultrasound. To the authors' knowledge, no prior review of ultrasonic inactivation and germination of A. acidoterrestris in fruit juice exists. Therefore, this article aims to provide a review of previously published research on the inactivation and germination of A. acidoterrestris in fruit juice by ultrasound and heat.
Collapse
Affiliation(s)
- Hafida Wahia
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
| | | | | | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, PR China
- School of Biological and Food Engineering, Chuzhou University, Chuzhou, PR China
| | - Mokhtar Dabbour
- Department of Agricultural and Biosystems Engineering, Faculty of Agriculture, Benha University, Moshtohor, Qaluobia, Egypt
| |
Collapse
|
12
|
Boateng ID. Recent processing of fruits and vegetables using emerging thermal and non-thermal technologies. A critical review of their potentialities and limitations on bioactives, structure, and drying performance. Crit Rev Food Sci Nutr 2022; 64:4240-4274. [PMID: 36315036 DOI: 10.1080/10408398.2022.2140121] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fruits and vegetables have rich bioactive compounds and antioxidants that are vital for the human body and prevent the cell from disease-causing free radicals. Therefore, there is a growing demand for high-quality fruits and vegetables. Nevertheless, fruits and vegetables deteriorate due to their high moisture content, resulting in a 40-50% loss. Drying is a common food preservation technique in the food industry to increase fruits and vegetables' shelf-life. However, drying causes chemical modifications, changes in microstructure, and bioactives, thus, lowering the final product's quality as a considerable amount of bioactives compounds and antioxidants are lost. Conventional pretreatments such as hot water blanching, and osmotic pretreatment have improved fruit and vegetable drying performance. However, these conventional pretreatments affect fruits' bioactive compounds retention and microstructure. Hence, emerging thermal (infrared blanching, microwave blanching, and high-humidity hot-air impingement blanching) and non-thermal pretreatments (cold plasma, ultrasound, pulsed electric field, and edible films and coatings) have been researched. So the question is; (1) what are the mechanisms behind emerging non-thermal and thermal technologies' ability to improve fruits and vegetables' microstructure, texture, and drying performance? (2) how do emerging thermal and non-thermal technologies affect fruits and vegetables' bioactive compounds and antioxidant activity? and (3) what are preventing the large-scale commercialization of these emerging thermal and non-thermal technologies' for fruits and vegetables, and what are the future recommendations? Hence, this article reviewed emerging thermal blanching and non-thermal pretreatment technologies, emphasizing their efficacy in improving dried fruits and vegetables' bioactive compounds, structural properties, and drying performance. The fundamental mechanisms in emerging thermal and non-thermal blanching pretreatment methods on the fruits and vegetables' microstructure and drying performance were delved in, as well as what are preventing the large-scale commercialization of these emerging thermal and non-thermal blanching for fruits and vegetables, and the future recommendations. Emerging pretreatment approaches not only improve the drying performance but further significantly improve the retention of bioactive compounds and antioxidants and enhance the microstructure of the dried fruits and vegetables.
Collapse
Affiliation(s)
- Isaac Duah Boateng
- Food Science Program, Division of Food, Nutrition and Exercise Sciences, University of Missouri, Columbia, MO, USA
| |
Collapse
|
13
|
Jia X, Ren J, Fan G, Reineccius GA, Li X, Zhang N, An Q, Wang Q, Pan S. Citrus juice off-flavor during different processing and storage: Review of odorants, formation pathways, and analytical techniques. Crit Rev Food Sci Nutr 2022; 64:3018-3043. [PMID: 36218250 DOI: 10.1080/10408398.2022.2129581] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
As the most widespread juice produced and consumed globally, citrus juice (mandarin juice, orange juice, and grapefruit juice) is appreciated for its attractive and distinct aroma. While the decrease of characteristic aroma-active compounds and the formation of off-flavor compounds are easy to occur in processing and storage conditions. This review provides a comprehensive literature of recent research and discovery on citrus juice off-flavor, primarily focusing on off-flavor compounds induced during processing and storage (i.e., thermal, storage, light, oxygen, package, fruit maturity, diseases, centrifugal pretreatment, and debittering process), formation pathways (i.e., terpene acid-catalyzed hydration, caramelization reaction, Maillard reaction, Strecker degradation, and other oxidative degradation) of the off-flavor compounds, effective inhibitor pathway to off-flavor (i.e., electrical treatments, high pressure processing, microwave processing, ultrasound processing, and chemical treatment), as well as odor assessment techniques based on molecular sensory science. The possible precursors (terpenes, sulfur-containing amino acids, carbohydrates, carotenoids, vitamins, and phenolic acids) of citrus juice off-flavor are listed and are also proposed. This review intends to unravel the regularities of aroma variations and even off-flavor formation of citrus juice during processing and storage. Future aroma analysis techniques will evolve toward a colorimetric sensor array for odor visualization to obtain a "marker" of off-flavor in citrus juice.
Collapse
Affiliation(s)
- Xiao Jia
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Jingnan Ren
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Gang Fan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Gary A Reineccius
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA
| | - Xiao Li
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Nawei Zhang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Qi An
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Qingshan Wang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| | - Siyi Pan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, P. R. China
| |
Collapse
|
14
|
Fatty Acid Profile, Physicochemical Composition, and Sensory Properties of Atlantic Salmon Fish (Salmo salar) during Different Culinary Treatments. J FOOD QUALITY 2022. [DOI: 10.1155/2022/7425142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This study was conducted to assess the effects of boiling, steaming, and oven-cooking on the fatty acid profile, physicochemical composition, and sensory properties of Atlantic salmon fish. The protein content of steamed (18.90%) and oven-cooked (20.59%) salmon was significantly higher than that of boiled (16.69%) and raw fish (14.73%). Analysis of the fatty acids profile revealed that steaming significantly (
) influenced the fatty acid contents of Atlantic salmon by recording the lowest SFA and the highest omega-3, omega-6, and PUFA contents. Textural properties such as hardness, gumminess, and chewiness were significantly higher (
) in oven-cooked salmon, with steamed salmon having significantly lower and higher values of hardness (75.32 ± 4.73) and springiness (90.56 ± 3.94), respectively. Also, volatile organic compounds, including aldehydes, ketones, and alcohol, were significantly higher (
) in oven-cooked and steamed salmon. Additionally, the E-nose sensors analysis showed that S2 and S7 were significantly correlated during oven-cooking and steaming. Furthermore, low-field NMR analysis showed that the values of T21 and T22 relaxation characteristics of raw and cooked samples fluctuated, with steamed salmon having the highest peak values indicating reduced proton mobility and increased freedom of the protons compared to other treatments. Therefore, steaming resulted in the best quality salmon when considering the fatty acid profile, physicochemical composition, and sensory properties of Atlantic salmon fish, suggesting further studies to ascertain its effectiveness compared to modern treatments.
Collapse
|
15
|
Urango ACM, Strieder MM, Silva EK, Meireles MAA. Impact of Thermosonication Processing on Food Quality and Safety: a Review. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02760-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
16
|
Sourri P, Tassou CC, Nychas GJE, Panagou EZ. Fruit Juice Spoilage by Alicyclobacillus: Detection and Control Methods—A Comprehensive Review. Foods 2022; 11:foods11050747. [PMID: 35267380 PMCID: PMC8909780 DOI: 10.3390/foods11050747] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/22/2022] [Accepted: 03/02/2022] [Indexed: 12/03/2022] Open
Abstract
Fruit juices have an important place in humans’ healthy diet. They are considered to be shelf stable products due to their low pH that prevents the growth of most bacteria. However thermo-acidophilic endospore forming bacteria of the genus Alicyclobacillus have the potential to cause spoilage of commercially pasteurized fruit juices. The flat sour type spoilage, with absence of gas production but presence of chemical spoilage compounds (mostly guaiacol) and the ability of Alicyclobacillus spores to survive after pasteurization and germinate under favorable conditions make them a major concern for the fruit juice industry worldwide. Their special characteristics and presence in the fruit juice industry has resulted in the development of many isolation and identification methods based on cell detection (plating methods, ELISA, flow cytometry), nucleic acid analysis (PCR, RAPD-PCR, ERIC-PCR, DGGE-PCR, RT-PCR, RFLP-PCR, IMS-PCR, qPCR, and 16S rRNA sequencing) and measurement of their metabolites (HPLC, GC, GC-MS, GC-O, GC-SPME, Electronic nose, and FTIR). Early detection is a big challenge that can reduce economic loss in the industry while the development of control methods targeting the inactivation of Alicyclobacillus is of paramount importance as well. This review includes a discussion of the various chemical (oxidants, natural compounds of microbial, animal and plant origin), physical (thermal pasteurization), and non-thermal (High Hydrostatic Pressure, High Pressure Homogenization, ultrasound, microwaves, UV-C light, irradiation, ohmic heating and Pulse Electric Field) treatments to control Alicyclobacillus growth in order to ensure the quality and the extended shelf life of fruit juices.
Collapse
Affiliation(s)
- Patra Sourri
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization DIMITRA, Sofokli Venizelou 1, 14123 Lycovrissi, Greece;
| | - Chrysoula C. Tassou
- Institute of Technology of Agricultural Products, Hellenic Agricultural Organization DIMITRA, Sofokli Venizelou 1, 14123 Lycovrissi, Greece;
- Correspondence: (C.C.T.); (E.Z.P.)
| | - George-John E. Nychas
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece;
| | - Efstathios Z. Panagou
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece;
- Correspondence: (C.C.T.); (E.Z.P.)
| |
Collapse
|
17
|
Dai C, Hou Y, Xu H, Huang L, Dabbour M, Mintah BK, He R, Ma H. Effect of solid-state fermentation by three different Bacillus species on composition and protein structure of soybean meal. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:557-566. [PMID: 34145902 DOI: 10.1002/jsfa.11384] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/23/2021] [Accepted: 06/19/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Fermentation efficiency of thermophiles of Bacillus licheniformis YYC4 and Geobacillus stearothermophilus A75, and mesophilic Bacillus subtilis 10 160 on soybean meal (SBM), was evaluated by examining the nutritional and protein structural changes. RESULTS SBM fermentation by B. licheniformis YYC4, B. subtilis 10 160 and G. stearothemophilus A75 increased significantly the crude and soluble protein from 442.4 to 524.8, 516.1 and 499.9 g kg-1 , and from 53.9 to 203.3, 291.3 and 74.6 g kg-1 , and decreased trypsin inhibitor from 8.19 to 3.19, 2.14 and 5.10 mg g-1 , respectively. Bacillus licheniformis YYC4 and B. subtilis 10 160 significantly increased phenol and pyrazine content. Furthermore, B. licheniformis YYC4 fermentation could produce abundant alcohols, ketones, esters and acids. Surface hydrophobicity, sulfhydryl groups and disulfide bond contents of SBM protein were increased significantly from 98.27 to 166.13, 173.27 and 150.71, from 3.26 to 4.88, 5.03 and 4.21 μmol g-1 , and from 20.77 to 27.95, 29.53 and 25.5 μmol g-1 after their fermentation. Fermentation induced red shifts of the maximum absorption wavelength (λmax ) of fluorescence spectra from 353 to 362, 376 and 361 nm, while significantly reducing the fluorescence intensity of protein, especially when B. subtilis 10 160 was used. Moreover, fermentation markedly changed the secondary structure composition of SBM protein. Analyses by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and atomic force microscopy showed that macromolecule protein was degraded into small-sized protein or peptide during fermentation of SBM. CONCLUSION Bacillus licheniformis YYC4 fermentation (without sterilization) improved nutrition and protein structure of SBM as B. subtilis 10 160, suggesting its potential application in the SBM fermentation industry. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chunhua Dai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Yizhi Hou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Haining Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Liurong Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Mokhtar Dabbour
- Department of Agricultural and Biosystems Engineering, Faculty of Agriculture, Benha University, Banha, Egypt
| | - Benjamin K Mintah
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Ronghai He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| |
Collapse
|
18
|
Kumar Gupta A, Pratim Sahu P, Mishra P. Ultrasound aided debittering of bitter variety of citrus fruit juice: Effect on chemical, volatile profile and antioxidative potential. ULTRASONICS SONOCHEMISTRY 2021; 81:105839. [PMID: 34871912 PMCID: PMC8649891 DOI: 10.1016/j.ultsonch.2021.105839] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 05/26/2023]
Abstract
In the present study, sonication assisted debittering of pomelo fruit juice was carried out and the effect of sonication along with resin/enzyme on the chemical, phytochemical and volatile composition of juice was also investigated. The optimum conditions for sonication coupled debittering using resin were 50 kHz, 2 min, and 45 ℃ while 50 kHz, 60 min, and 60 ℃ were obtained for enzyme hydrolysis. Sonication treatment not only reduced the debittering time but also enhanced the adsorption and hydrolysis of naringin by 17% and 20% in resin and enzyme respectively. In addition, enzymatic activity was also improved and weakened C-O bonds in naringin. At the same time, sonication significantly affected the bioactive compounds of juice, chemical composition, and volatile compounds of juice. Flavor compounds including octanal, linalool, citral, and ethyl butyrate were enhanced by sonication-assisted enzymatic treated juice.
Collapse
Affiliation(s)
- Arun Kumar Gupta
- Department of Food Engineering and Technology, Tezpur University, Tezpur, Assam, India
| | - Partha Pratim Sahu
- Department of Electrical and Communication Engineering, Tezpur University, Assam, India
| | - Poonam Mishra
- Department of Food Engineering and Technology, Tezpur University, Tezpur, Assam, India.
| |
Collapse
|
19
|
Brenes X, Guevara M, Wong E, Cortés C, Usaga J, Rojas-Garbanzo C. Effect of high intensity ultrasound on main bioactive compounds, antioxidant capacity and color in orange juice. FOOD SCI TECHNOL INT 2021; 28:694-702. [PMID: 34632838 DOI: 10.1177/10820132211050203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Ultrasound is a useful alternative to thermal processing that can be applied to many food products and juices to aid with enzymes and microorganism inactivation and to improve the efficiency of unit operations generally applied in the food industry. The aim of this study was to evaluate the effect of a high-intensity sonication treatment (frequency 20 kHz; intensity 39.4 W/cm2) applied for treatment times from 0 to 105 min on the content of polyphenols, vitamin C, organic acids, and carotenoids, and on the hydrophilic and lipophilic antioxidant capacity and color of orange juice. Treatments were performed in triplicate and data was statistically analyzed. Sonication time did not have a significant effect (P > 0.05) on total polyphenols, total vitamin C, organic acid, and carotenoid contents, lipophilic antioxidant capacity, or juice color. The hydrophilic antioxidant activity and the lutein content increased significantly (P < 0.05) with increased sonication time. These results may be useful as a baseline for the development of sonication treatments that could be used in combination with other traditional and emerging processing approaches to protect the most important bioactive compounds and quality properties of orange juice.
Collapse
Affiliation(s)
- Ximena Brenes
- Escuela de Tecnología de Alimentos, 27915Universidad de Costa Rica, Ciudad Universitaria Rodrigo Facio, Costa Rica
| | - María Guevara
- Escuela de Tecnología de Alimentos, 27915Universidad de Costa Rica, Ciudad Universitaria Rodrigo Facio, Costa Rica
| | - Eric Wong
- Escuela de Tecnología de Alimentos, 27915Universidad de Costa Rica, Ciudad Universitaria Rodrigo Facio, Costa Rica.,Centro Nacional de Ciencia y Tecnología de Alimentos, 27915Universidad de Costa Rica, Ciudad Universitaria Rodrigo Facio, Costa Rica
| | - Carolina Cortés
- Centro Nacional de Ciencia y Tecnología de Alimentos, 27915Universidad de Costa Rica, Ciudad Universitaria Rodrigo Facio, Costa Rica
| | - Jessie Usaga
- Centro Nacional de Ciencia y Tecnología de Alimentos, 27915Universidad de Costa Rica, Ciudad Universitaria Rodrigo Facio, Costa Rica
| | - Carolina Rojas-Garbanzo
- Centro Nacional de Ciencia y Tecnología de Alimentos, 27915Universidad de Costa Rica, Ciudad Universitaria Rodrigo Facio, Costa Rica
| |
Collapse
|
20
|
Manzoor MF, Xu B, Khan S, Shukat R, Ahmad N, Imran M, Rehman A, Karrar E, Aadil RM, Korma SA. Impact of high-intensity thermosonication treatment on spinach juice: Bioactive compounds, rheological, microbial, and enzymatic activities. ULTRASONICS SONOCHEMISTRY 2021; 78:105740. [PMID: 34492523 PMCID: PMC8427224 DOI: 10.1016/j.ultsonch.2021.105740] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 05/04/2023]
Abstract
To study the impacts of thermosonication (TS), the spinach juice treated with TS (200 W, 400 W, and 600 W, 30 kHz, at 60 ± 1 °C for 20 mint) were investigated for bioactive compounds, antioxidant activities, color properties, particle size, rheological behavior, suspension stability, enzymatic and microbial loads. As a result, TS processing significantly improved the bioactive compounds (total flavonols, total flavonoids, total phenolic, carotenoids, chlorophyll, and anthocyanins), antioxidant activities (DPPH and FRAP assay) in spinach juice. Also, TS treatments had higher b*,L*, hue angle (h0), and chroma (C) values, while minimuma* value as compared to untreated and pasteurized samples. TS processing significantly reduced the particle size, improved the suspension stability and rheological properties (shear stress, apparent viscosity, and shear rate) of spinach juice as compared to the untreated and pasteurized sample. TS plays a synergistic part in microbial reduction and gained maximum microbial safety. Moreover, TS treatments inactivated the polyphenol oxidase and peroxidase from 0.97 and 0.034 Abs min-1 (untreated) to 0.31 and 0.018 Abs min-1, respectively. The spinach juice sample treated at a high intensity (600 W, 30 kHz, at 60 ± 1 °C for 20 mint, TS3) exhibited complete inactivation of microbial loads (<1 log CFU/ml), the highest reduction in enzymatic activities, better suspension stability, color properties, and highest bioactive compounds. Collectively, the verdicts proposed that TS processing could be a worthwhile option to pasteurize the spinach juice to enhance the overall quality.
Collapse
Affiliation(s)
- Muhammad Faisal Manzoor
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China; Riphah College of Rehabilitation and Allied Health Sciences, Riphah International University, Faisalabad, 38000 Pakistan
| | - Bin Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China.
| | - Sipper Khan
- University of Hohenheim, Institute of Agricultural Engineering, Tropics and Subtropics Group, Garbenstrasse 9, 70593 Stuttgart, Germany
| | - Rizwan Shukat
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Nazir Ahmad
- Department of Nutritional Sciences, Faculty of Medical Sciences, Government College University, Faisalabad, Pakistan
| | - Muhammad Imran
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore-Lahore, Pakistan
| | - Abdur Rehman
- State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi 214122, China
| | - Emad Karrar
- State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, Wuxi 214122, China
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Sameh A Korma
- Department of Food Science, Faculty of Agriculture, Zagazing University, Sharkia, Egypt
| |
Collapse
|
21
|
Bozkir H, Tekgül Y. Production of orange juice concentrate using conventional and microwave vacuum evaporation: Thermal degradation kinetics of bioactive compounds and color values. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hamza Bozkir
- Food Processing Department Pamukova Vocational School Sakarya University of Applied Sciences Sakarya Turkey
| | - Yeliz Tekgül
- Food Processing Department Kösk Vocational School Aydın Adnan Menderes University Aydin Turkey
| |
Collapse
|
22
|
Optimization of thermosonication processing of pineapple juice to improve the quality attributes during storage. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01011-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Wahia H, Zhou C, Fakayode OA, Amanor-Atiemoh R, Zhang L, Taiye Mustapha A, Zhang J, Xu B, Zhang R, Ma H. Quality attributes optimization of orange juice subjected to multi-frequency thermosonication: Alicyclobacillus acidoterrestris spore inactivation and applied spectroscopy ROS characterization. Food Chem 2021; 361:130108. [PMID: 34038826 DOI: 10.1016/j.foodchem.2021.130108] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/28/2021] [Accepted: 05/12/2021] [Indexed: 12/01/2022]
Abstract
This is the first time to investigate the synergistic inactivation effect and mechanism of multifrequency ultrasound (MTUS) on A. acidoterrestris (AAT) vegetative cells and spores, nutrients and enzymes of orange juice. The optimized results of MTUS (using Box Behnken design- surface responsemethodology) and further comparison with different mode of ultrasound (mono-and multi-frequency) revealed that 20/40 kHz, 24 min and 64 °C were the best optimum results. The AAT spores and vegetative cells were inactivated by 2 and 4 logs, respectively, without deteriorating orange juice contents. In addition, AAT inactivation indicated an inversely proportional relationship with ROS production. FT-IR and UV-Vis spectroscopy characterization confirmed the existence of ROS in treated orange juice and LF-NMR analysis confirmed the inactivation of AAT spores. The findings illustrated the successfully used dual-frequency ultrasound technology for fruit beverages, promoting beneficial changes in physical properties without any significant effects on the quality of ascorbic acid.
Collapse
Affiliation(s)
- Hafida Wahia
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; School of Biological and Food Engineering, Chuzhou University, Chuzhou 239000, PR China.
| | | | - Robert Amanor-Atiemoh
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Long Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | | | - Jin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Baoguo Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Rong Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
24
|
Application of Thermosonication in Red Pitaya Juice Processing: Impacts on Native Microbiota and Quality Properties during Storage. Foods 2021; 10:foods10051041. [PMID: 34068803 PMCID: PMC8151109 DOI: 10.3390/foods10051041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/25/2021] [Accepted: 05/08/2021] [Indexed: 02/07/2023] Open
Abstract
The effects of thermosonication (TS) on microbial safety and quality of red pitaya juice during storage were assessed in this study. Freshly prepared red pitaya juices were thermosonicated at 475 W and 56 °C for 20 min. Upon TS processing, native microbiota including aerobic bacteria, yeasts, and molds reduced to less than 10 CFU/mL. Their growth during storage were slow and equal to thermal-processed (83 °C, 1.5 min) samples. During storage at 4 °C for 28 days, soluble solid content, pH, activities of polyphenol oxidase and peroxidase, and browning degree remained unchanged. A visible color decay was observed in TS-processed samples at day 10, mainly resulting from decomposition of betacyanins and the growth of residual native microbiota. Compared to thermal-treated juices, better color retention was obtained by TS treatment. Therefore, TS is a promising alternative technology of thermal methods of juice processing, with equal shelf life and better quality retention effects.
Collapse
|
25
|
Bonah E, Huang X, Hongying Y, Harrington Aheto J, Yi R, Yu S, Tu H. Nondestructive monitoring, kinetics and antimicrobial properties of ultrasound technology applied for surface decontamination of bacterial foodborne pathogen in pork. ULTRASONICS SONOCHEMISTRY 2021; 70:105344. [PMID: 32992130 PMCID: PMC7786579 DOI: 10.1016/j.ultsonch.2020.105344] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/24/2020] [Accepted: 09/05/2020] [Indexed: 05/05/2023]
Abstract
In this study, electronic nose (E-nose) and Hyperspectral Imaging (HSI) was employed for nondestructive monitoring of ultrasound efficiency (20KHZ) in the inactivation of Salmonella Typhimurium, and Escherichia coli in inoculated pork samples treated for 10, 20 and 30 min. Weibull, and Log-linear model fitted well (R2 ≥ 0.9) for both Salmonella Typhimurium, and Escherichia coli inactivation kinetics. The study also revealed that ultrasound has antimicrobial effects on the pathogens. For qualitative analysis, unsupervised (PCA) and supervised (LDA) chemometric algorithms were applied. PCA was used for successful sample clustering and LDA approach was used to construct statistical models for the classification of ultrasound treated and untreated samples. LDA showed classification accuracies of 99.26%,99.63%,99.70%, 99.43% for E-nose - S. Typhimurium, E-nose -E. coli, HSI - S. Typhimurium and HSI -E. coli respectively. PLSR quantitative models showed robust models for S. Typhimurium- (E-nose Rp2 = 0.9375, RMSEP = 0.2107 log CFU/g and RPD = 9.7240 and (HSI Rp2 = 0.9687 RMSEP = 0.1985 log CFU/g and RPD = 10.3217) and E. coli -(E-nose -Rp2 = 0.9531, RMSEP = 0.2057 log CFU/g and RPD = 9.9604) and (HIS- Rp2 = 0.9687, RMSEP = 0.2014 log CFU/g and RPD = 10.1731). This novel study shows the overall effectiveness of applying E-nose and HSI for in-situ and nondestructive detection, discrimination and quantification of bacterial foodborne pathogens during the application of food processing technologies like ultrasound for pathogen inactivation.
Collapse
Affiliation(s)
- Ernest Bonah
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, Jiangsu, PR China; Food and Drugs Authority, Laboratory Services Department, P. O. Box CT 2783, Cantonments, Accra, Ghana
| | - Xingyi Huang
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, Jiangsu, PR China.
| | - Yang Hongying
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, Jiangsu, PR China
| | - Joshua Harrington Aheto
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, Jiangsu, PR China; School of Smart Agriculture, Suzhou Polytechnic Institute of Agriculture, XiYuan Road 279, Suzhou 215000, PR China
| | - Ren Yi
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, Jiangsu, PR China; Food and Drugs Authority, Laboratory Services Department, P. O. Box CT 2783, Cantonments, Accra, Ghana
| | - Shanshan Yu
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, Jiangsu, PR China
| | - Hongyang Tu
- School of Food and Biological Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, Jiangsu, PR China
| |
Collapse
|
26
|
Gao X, Feng T, Liu E, Shan P, Zhang Z, Liao L, Ma H. Ougan juice debittering using ultrasound-aided enzymatic hydrolysis: Impacts on aroma and taste. Food Chem 2020; 345:128767. [PMID: 33340897 DOI: 10.1016/j.foodchem.2020.128767] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/09/2020] [Accepted: 11/28/2020] [Indexed: 12/17/2022]
Abstract
The optimal sonication conditions (40 kHz, 80 W/L and 60 min) during Ougan juice debittering by Aspergillus niger koji extract were established. Enzymatic hydrolysis degrees of naringin and limonin were enhanced to 89.90% and 36.16%, and enzymatic hydrolysis time was shortened by 33%. Sonication significantly enhanced activities of α-l-rhamnosidases, β-glucosidases and limoninases from A. niger koji extract and facilitated break of CO bonds in naringin (p < 0.05). These accounted for the enhanced enzymatic hydrolysis degrees and velocities of bitter compounds. Meanwhile, sonication lowered 40%, 7% and 21%, 13%, 11%, 25% of bitter, sour tastes and green, citrus-like, floral, woody notes, but enhanced 18% and 15% of fruity and sweet notes, resulting in 38% and 33% increases in over-all taste and aroma scores. Lowered levels of bitter compounds, organic acids, green, citrus-like, floral, woody aroma compounds and enhanced levels of fruity, sweet aroma compounds caused by sonication accounted for the flavor improvements.
Collapse
Affiliation(s)
- Xianli Gao
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| | - Tuo Feng
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| | - Ermeng Liu
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| | - Pei Shan
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| | - Zhankai Zhang
- School of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, 6 Hubei Road, Zhengzhou 450046, China.
| | - Lan Liao
- Department of Food Science, College of Food Science and Technology, Foshan University, 33 Guangyun Road, Foshan 528000, China.
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| |
Collapse
|
27
|
Sridhar A, Ponnuchamy M, Kumar PS, Kapoor A. Food preservation techniques and nanotechnology for increased shelf life of fruits, vegetables, beverages and spices: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2020; 19:1715-1735. [PMID: 33192209 PMCID: PMC7651826 DOI: 10.1007/s10311-020-01126-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/17/2020] [Indexed: 05/02/2023]
Abstract
Food wastage is a major issue impacting public health, the environment and the economy in the context of rising population and decreasing natural resources. Wastage occurs at all stages from harvesting to the consumer, calling for advanced techniques of food preservation. Wastage is mainly due to presence of moisture and microbial organisms present in food. Microbes can be killed or deactivated, and cross-contamination by microbes such as the coronavirus disease 2019 (COVID-19) should be avoided. Moisture removal may not be feasible in all cases. Preservation methods include thermal, electrical, chemical and radiation techniques. Here, we review the advanced food preservation techniques, with focus on fruits, vegetables, beverages and spices. We emphasize electrothermal, freezing and pulse electric field methods because they allow both pathogen reduction and improvement of nutritional and physicochemical properties. Ultrasound technology and ozone treatment are suitable to preserve heat sensitive foods. Finally, nanotechnology in food preservation is discussed.
Collapse
Affiliation(s)
- Adithya Sridhar
- Department of Chemical Engineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203 Kanchipuram, Chennai, India
| | - Muthamilselvi Ponnuchamy
- Department of Chemical Engineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203 Kanchipuram, Chennai, India
| | - Ponnusamy Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110 India
| | - Ashish Kapoor
- Department of Chemical Engineering, College of Engineering and Technology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203 Kanchipuram, Chennai, India
| |
Collapse
|
28
|
Inactivation of Bacillus cereus from pork by thermal, non-thermal and single-frequency/multi-frequency thermosonication: Modelling and effects on physicochemical properties. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109939] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
Orellana-Palma P, Tobar-Bolaños G, Casas-Forero N, Zúñiga RN, Petzold G. Quality Attributes of Cryoconcentrated Calafate ( Berberis microphylla) Juice during Refrigerated Storage. Foods 2020; 9:foods9091314. [PMID: 32961955 PMCID: PMC7555764 DOI: 10.3390/foods9091314] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/11/2020] [Accepted: 09/16/2020] [Indexed: 12/27/2022] Open
Abstract
This study aimed to evaluate the potential of centrifugal block cryoconcentration (CBCC) at three cycles applied to fresh calafate juice. The fresh juice and cryoconcentrate at each cycle were stored for five weeks at 4 °C and quality attributes were analyzed every 7 days. CBCC had significant effects in the calafate juice, since in the last cycle, the cryoconcentrate reached a high value of total soluble solids (TSS, ≈42 °Brix), with final attractive color, and an increase of approximately 2.5, 5.2, 5.1, 4.0 and 5.3 times in relation to the fresh juice values, for total bioactive compounds (TBC), 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), ferric reducing antioxidant power (FRAP) and oxygen radical absorbance capacity (ORAC), respectively. However, at 35 days under storage, these values decreased by 5%, 13%, 15%, 19%, 24% and 27%, for TSS, TBC, DPPH, ABTS, FRAP and ORAC, respectively. Additionally, until the day 14, the panelists indicated a good acceptability of the reconstituted cryoconcentrate. Therefore, CBCC can be considered a novel and viable technology for the preservation of quality attributes from fresh calafate juice with interesting food applications of the cryoconcentrates due to their high stability during storage time in comparison to the fresh juice.
Collapse
Affiliation(s)
- Patricio Orellana-Palma
- Department of Biotechnology, Universidad Tecnológica Metropolitana, Las Palmeras 3360, P.O. Box, 7800003 Ñuñoa, Santiago, Chile;
- Correspondence: ; Tel.: +56-2-2787-7032
| | - Guisella Tobar-Bolaños
- Laboratory of Cryoconcentration, Department of Food Engineering, Universidad del Bío-Bío, Av. Andrés Bello 720, Casilla 447, 3780000 Chillán, Chile; (G.T.-B.); (N.C.-F.); (G.P.)
- Magíster en Ciencias e Ingeniería en Alimentos, Universidad del Bío-Bío, Av. Andrés Bello 720, Casilla 447, 3780000 Chillán, Chile
| | - Nidia Casas-Forero
- Laboratory of Cryoconcentration, Department of Food Engineering, Universidad del Bío-Bío, Av. Andrés Bello 720, Casilla 447, 3780000 Chillán, Chile; (G.T.-B.); (N.C.-F.); (G.P.)
- Doctorado en Ingeniería de Alimentos, Universidad del Bío-Bío, Av. Andrés Bello 720, Casilla 447, 3780000 Chillán, Chile
| | - Rommy N. Zúñiga
- Department of Biotechnology, Universidad Tecnológica Metropolitana, Las Palmeras 3360, P.O. Box, 7800003 Ñuñoa, Santiago, Chile;
- Programa Institucional de Fomento a la I+D+i, Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, 8940577 Santiago, Chile
| | - Guillermo Petzold
- Laboratory of Cryoconcentration, Department of Food Engineering, Universidad del Bío-Bío, Av. Andrés Bello 720, Casilla 447, 3780000 Chillán, Chile; (G.T.-B.); (N.C.-F.); (G.P.)
| |
Collapse
|
30
|
Taiye Mustapha A, Zhou C, Amanor-Atiemoh R, Owusu-Fordjour M, Wahia H, Abiola Fakayode O, Ma H. Kinetic modeling of inactivation of natural microbiota and Escherichia coli on cherry tomato treated with fixed multi-frequency sonication. ULTRASONICS SONOCHEMISTRY 2020; 64:105035. [PMID: 32106069 DOI: 10.1016/j.ultsonch.2020.105035] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/12/2020] [Accepted: 02/12/2020] [Indexed: 05/03/2023]
Abstract
The suitability of some non-linear kinetic models (Weibull {with or without tail}, Log-linear, Log-linear shoulder {with or without tail}, Biphasic linear, Logistic, Multi-target and Single-target models) were evaluated to determine the inactivation kinetics of inoculated E. coli, and natural microbiota (i.e. mesophilic aerobic bacteria, and mold and yeast) on cherry tomato treated with fixed multi-frequency ultrasound. Almost all the studied model fitted well (R2 ≥ 0.9) for the inactivation kinetics; however, the Weibull, Log-linear shoulder, and Biphasic linear model showed the highest statistical parameters (0.9 ≤ adj. R2 ≤ 0.99 and smallest RMSE and SSE values). All the three models could be used to compare the kinetic behavior of E. coli and the first two models for the kinetic behavior of mesophilic aerobic bacteria and mold and yeast during sonication treatment. Two distinctive inactivation curves were obtained for the mono-frequency and the multi-frequency (dual and tri-frequency) for all the microbial inactivation. The remarkable results obtained for dual and tri-frequency sonication shows to be an effective and promising alternative to the traditional microbial inactivation techniques and the common practice of using ultrasound with other sanitizing methods.
Collapse
Affiliation(s)
- Abdullateef Taiye Mustapha
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China; School of Biological and Food Engineering, Chuzhou University, Chuzhou, 239000, People's Republic of China.
| | - Robert Amanor-Atiemoh
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Mariam Owusu-Fordjour
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Hafida Wahia
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Olugbenga Abiola Fakayode
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
| |
Collapse
|