1
|
Kottis T, Soursos N, Govatsi K, Sygellou L, Vakros J, Manariotis ID, Mantzavinos D, Lianos P. Biochar from olive tree twigs and spent malt rootlets as electrodes in Zn-air batteries. J Colloid Interface Sci 2024; 665:10-18. [PMID: 38513404 DOI: 10.1016/j.jcis.2024.03.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/14/2024] [Accepted: 03/17/2024] [Indexed: 03/23/2024]
Abstract
Biochars, i.e. porous carbons obtained by pyrolysis of biomass, can act as electrocatalysts for oxygen evolution and oxygen reduction reaction. In the present work, two biochars have been prepared by using materials of completely different biomass origin: olive-tree twigs and spent malt rootlets (brewery wastes). Both biomass species were subjected to pyrolysis under limited oxygen supply and then they were activated by mixing with KOH and pyrolysis again. The obtained biochars were characterized by several techniques in order to determine their structural characteristics and the composition of their active components. Despite their different origin, the two biochars demonstrated similar structural and compositional characteristics thus highlighting the importance of the pyrolysis and activation procedure. Both biochars were used as electrocatalysts in the operation of rechargeable Zn-air batteries, where they also demonstrated similar electrocatalytic capacities with only a small advantage gained by olive-tree-twigs biochar. Compared to bare nanoparticulate carbon (carbon black), both biochars demonstrated a marked advantage towards oxygen evolution reaction.
Collapse
Affiliation(s)
- Theodoros Kottis
- Department of Chemical Engineering, University of Patras, 26500 Patras, Greece
| | - Nikolaos Soursos
- Department of Chemical Engineering, University of Patras, 26500 Patras, Greece
| | - Katerina Govatsi
- Laboratory of Electron Microscopy and Microanalysis, School of Natural Sciences, University of Patras 26500 Greece
| | - Lamprini Sygellou
- Foundation of Research and Technology - Institute of Chemical Engineering Science (FORTH/ICE-HT), Stadiou Str. Platani, P.O. Box 1414, Patras 26500, Greece
| | - John Vakros
- Department of Chemical Engineering, University of Patras, 26500 Patras, Greece.
| | - Ioannis D Manariotis
- Department of Civil Engineering, Environmental Engineering Laboratory, University of Patras, University Campus 26500 Patras, Greece
| | | | - Panagiotis Lianos
- Department of Chemical Engineering, University of Patras, 26500 Patras, Greece.
| |
Collapse
|
2
|
Fedorov K, Kong L, Wang C, Boczkaj G. High-performance activation of ozone by sonocavitation for BTEX degradation in water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 363:121343. [PMID: 38843727 DOI: 10.1016/j.jenvman.2024.121343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/10/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024]
Abstract
This work presents a novel advanced oxidation process (AOP) for degradation of emerging organic pollutants - benzene, toluene, ethylbenzene and xylenes (BTEXs) in water. A comparative study was performed for sonocavitation assisted ozonation under 40-120 kHz and 80-200 kHz dual frequency ultrasounds (DFUS). Based on the obtained results, the combination of 40-120 kHz i.e., low-frequency US (LFDUS) with O3 exhibited excellent oxidation capacity degrading 99.37-99.69% of BTEXs in 40 min, while 86.09-91.76% of BTEX degradation was achieved after 60 min in 80-200 kHz i.e., high-frequency US (HFDUS) combined with O3. The synergistic indexes determined using degradation rate constants were found as 7.86 and 2.9 for LFDUS/O3 and HFDUS/O3 processes, respectively. The higher extend of BTEX degradation in both processes was observed at pH 6.5 and 10. Among the reactive oxygen species (ROSs), hydroxyl radicals (HO•) were found predominant according to scavenging tests, singlet oxygen also importantly contributed in degradation, while O2•- radicals had a minor contribution. Sulfate (SO42-) ions demonstrated higher inhibitory effect compared to chloride (Cl-) and carbonate (CO32-) ions in both processes. Degradation pathways of BTEX was proposed based on the intermediates identified using GC-MS technique.
Collapse
Affiliation(s)
- Kirill Fedorov
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, Gdansk, Poland
| | - Lingshuai Kong
- Institute of Eco-Environmental Forensics, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Chongqing Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Grzegorz Boczkaj
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, Gdansk, Poland; Gdansk University of Technology, EcoTech Center, 11/12 Narutowicza St., 80-233, Gdansk, Poland.
| |
Collapse
|
3
|
Yeganeh M, Sobhi HR, Fallah S, Ghambarian M, Esrafili A. Sono-assisted photocatalytic degradation of ciprofloxacin in aquatic media using g-C 3N 4/MOF-based nanocomposite under visible light irradiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:35811-35823. [PMID: 38743329 DOI: 10.1007/s11356-024-33222-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/02/2024] [Indexed: 05/16/2024]
Abstract
This research study is centered on the sono-assisted photocatalytic degradation of a well-known antibiotic (ciprofloxacin; CIP) in aquatic media using a g-C3N4/NH2-UiO-66 (Zr) catalyst under visible light irradiation. Initially, the catalyst was prepared by a simple method, and its physiochemical features were thoroughly analyzed by XRD, FT-IR, FE-SEM, EDX, EDS-Dot-Mapping, and UV-Vis analytical techniques. After that, the impact of several influential factors affecting the performance of the applied sono-assisted photocatalytic process such as the initial concentration of CIP, solution pH, catalyst dosage, light intensity, and ultrasound power was fully assessed, and the optimal conditions were established. After 75 min of the sono-assisted photocatalytic treatment, the complete degradation of CIP (10 mg/L) was accomplished under the condition as follows: g-C3N4/NH2-UiO-66 (Zr), 0.6 g/L; pH, 5.0, and ultrasound power, light intensity 75 mw/cm2, 200 W/m2. Meanwhile, the photocatalytic degradation of CIP followed the pseudo-first-order kinetic model. In addition, the scavenger experiments demonstrated that OH˚ and O2°- radicals played a key role in the sono-assisted photocatalytic degradation process. It is also acknowledged that the applied catalyst was reused for five consecutive runs with a minor loss observed in its degradation efficiency. In a further experiment, a significant synergistic effect with regard to the degradation of CIP was observed once all three major parameters (visible light, ultrasound waves, and catalyst) were used in combination compared to each used alone. To sum up, it is thought that the integration of g-C3N4/MOF-based catalyst, ultrasound waves, and visible light irradiation could be potentially applied as a promising strategy for the degradation of various pharmaceuticals on account of high degradation performance, simple operation, excellent reusability, and eco-friendly approach.
Collapse
Affiliation(s)
- Mojtaba Yeganeh
- Research Center for Environmental Health Technology Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | | | - Sevda Fallah
- Student Research Committee, Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshty University of Medical Science, Tehran, Iran
| | - Mahnaz Ghambarian
- Iranian Research and Development Center for Chemical Industries, ACECR, Tehran, Iran
| | - Ali Esrafili
- Research Center for Environmental Health Technology Iran University of Medical Sciences, Tehran, Iran.
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Ioannidi AA, Bampos G, Antonopoulou M, Oulego P, Boczkaj G, Mantzavinos D, Frontistis Z. Sonocatalytic degradation of Bisphenol A from aquatic matrices over Pd/CeO 2 nanoparticles: Kinetics study, transformation products, and toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170820. [PMID: 38340814 DOI: 10.1016/j.scitotenv.2024.170820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
In this work, different ratios of palladium - cerium oxide (Pd/CeO2) catalyst were synthesized and characterized, while their sonocatalytic activity was evaluated for the degradation of the xenobiotic Bisphenol A (BPA) from aqueous solutions. Sonocatalytic activity expressed as BPA decomposition exhibited a volcano-type behavior in relation to the Pd loading, and the 0.25Pd/CeO2 catalyst characterized by the maximum Pd dispersion and lower crystallite size demonstrated the higher activity. Using 500 mg/L of 0.25 % Pd/CeO2 increased the kinetic constant for BPA destruction by more than two times compared to sonolysis alone (20 kHz at 71 W/L). Meanwhile, the simultaneous use of ultrasound and a catalyst enhanced the efficiency by 50.1 % compared to the sum of the individual processes, resulting in 95 % BPA degradation in 60 min. The sonocatalytic degradation of BPA followed pseudo-first-order kinetics, and the apparent kinetic constant was increased with ultrasound power and catalyst loading, while the efficiency was decreased in bottled water and secondary effluent. From the experiments that were conducted using appropriate scavengers, it was revealed that the degradation mainly occurred on the bubble/liquid interface of the formed cavities, while the reactive species produced from the thermal or light excitation of the prepared semiconductor also participated in the reaction. Five first-stage and four late-stage transformation products were identified using UHPLC/TOF-MS, and a pathway for the sonocatalytic degradation of BPA was proposed. According to ECOSAR software prediction, most transformation by-products (TBPs) present lower ecotoxicity than the parent compound, although some remain toxic to the indicators chosen.
Collapse
Affiliation(s)
- Alexandra A Ioannidi
- Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras, Greece
| | - Georgios Bampos
- Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras, Greece
| | - Maria Antonopoulou
- Department of Sustainable Agriculture, University of Patras, GR-30131 Agrinio, Greece
| | - Paula Oulego
- Department of Chemical and Environmental Engineering, University of Oviedo, c/ Julián Claverías, E-33071 Oviedo, Spain
| | - Grzegorz Boczkaj
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland; EkoTech Center, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
| | - Dionissios Mantzavinos
- Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras, Greece
| | - Zacharias Frontistis
- Department of Chemical Engineering, University of Western Macedonia, GR-50132 Kozani, Greece.
| |
Collapse
|
5
|
Shanmugam Ranjith K, Majid Ghoreishian S, Han S, Chodankar NR, Seeta Rama Raju G, Marje SJ, Huh YS, Han YK. Synergistic effects of layered Ti 3C 2T X MXene/MIL-101(Cr) heterostructure as a sonocatalyst for efficient degradation of sulfadiazine and acetaminophen in water. ULTRASONICS SONOCHEMISTRY 2023; 99:106570. [PMID: 37678067 PMCID: PMC10495666 DOI: 10.1016/j.ultsonch.2023.106570] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/22/2023] [Accepted: 08/27/2023] [Indexed: 09/09/2023]
Abstract
In this work, different mass loadings of MXene-coupled MIL-101(Cr) (MXe/MIL-101(Cr)) nanocomposites were generated through a hydrothermal process in order to investigate the potential of this nanocomposite as a novel sonocatalyst for the elimination of sulfadiazine (SD) and acetaminophen (AAP) in aqueous media. The sonocatalytic activity of different MXe/MIL-101(Cr) compositions and surface functionalities was investigated. In addition, the sonocatalytic activities at various pH values, temperatures, pollutant concentrations, catalyst dosages, initial H2O2 concentrations, and organic matter contents were investigated. The experiments on the sonocatalytic elimination of SD and AAP revealed that MXe/MIL-101(Cr) exhibited a catalytic efficiency of ∼ 98% in 80 min when the MXene loading was 30 wt% in the nanocomposite. Under optimized reaction conditions, the degradation efficiency of MXe/MIL-101(Cr) reached 91.5% for SD and 90.6% for AAP in 60 min; these values were 1.2 and 1.8 times greater than those of MXene and MIL-101(Cr), respectively. The high surface area of the MXe/MIL-101(Cr) nanocomposite increased from 4.68 m2/g to 294.21 m2/g, and the band gap of the tagged MIL-101(Cr) on the MXene surface was minimized. The superior sonocatalytic activity of MXe/MIL-101(Cr) was attributed to the effective contact interface, the effective separation rate of e- - h+ pairs through the type II heterostructure interface, and the favorable high free •OH radical production rates that promoted the degradation of SD and AAP. The solid heterointerface between MIL-101(Cr) and MXene was confirmed through Raman and FTIR analysis and was found to promote accessible •OH radical production under sonication, thus maximizing the catalytic activity of nanocomposites. The present results present an effective strategy for the design of a highly efficient, low-cost, reliable sonocatalyst that can eradicate pharmaceutical pollutants in our environment.
Collapse
Affiliation(s)
| | | | - Soobin Han
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, South Korea
| | - Nilesh R Chodankar
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, South Korea
| | - Ganji Seeta Rama Raju
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, South Korea
| | - Supriya J Marje
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, South Korea
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, South Korea.
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, South Korea.
| |
Collapse
|
6
|
Shah SWH, Hameed F, Ali Z, Muntha ST, Bibi I. Degradation of cosmetic ingredient methylparaben by zinc oxide nanoparticles, aided by sonication, light or a combination of sonication and light. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2022. [DOI: 10.1080/16583655.2022.2131992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Syed W. H. Shah
- Department of Chemistry, Hazara University, Mansehra, Pakistan
| | - Fateeha Hameed
- Department of Chemistry, Hazara University, Mansehra, Pakistan
| | - Zarshad Ali
- Department of Chemistry, Hazara University, Mansehra, Pakistan
| | | | - Iram Bibi
- Department of Chemistry, Hazara University, Mansehra, Pakistan
| |
Collapse
|
7
|
Xu L, Liu NP, An HL, Ju WT, Liu B, Wang XF, Wang X. Preparation of Ag 3PO 4/CoWO 4 S-scheme heterojunction and study on sonocatalytic degradation of tetracycline. ULTRASONICS SONOCHEMISTRY 2022; 89:106147. [PMID: 36087545 PMCID: PMC9465027 DOI: 10.1016/j.ultsonch.2022.106147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 05/12/2023]
Abstract
In this study, 0.6Ag3PO4/CoWO4 composites were synthesized by hydrothermal method. The prepared materials were systematically characterized by techniques of scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffractometer (XRD), X-ray photoelectron spectroscopy (XPS), N2 adsorption/desorption, and UV-vis diffuse reflectance spectrum (DRS). Furthermore, the sonocatalytic degradation performance of 0.6Ag3PO4/CoWO4 composites towards tetracycline (TC) was investigated under ultrasonic radiation. The results showed that, combined with potassium persulfate (K2S2O8), the 0.6Ag3PO4/CoWO4 composites achieved a high sonocatalytic degradation efficiency of 97.89 % within 10 min, which was much better than bare Ag3PO4 or CoWO4. By measuring the electrochemical properties, it was proposed that the degradation mechanism of 0.6Ag3PO4/CoWO4 is the formation of S-scheme heterojunction, which increases the separation efficiency of electron-hole pairs (e--h+) and generates more electrons and holes, thereby enhancing the degradation activity. The scavenger experiments confirmed that hole (h+) was the primary active substance in degrading TC, and free radicals (OH) and superoxide anion radical (O2-) were auxiliary active substances. The results indicated that 0.6Ag3PO4/CoWO4 nanocomposites could be used as an efficient and reliable sonocatalyst for wastewater treatment.
Collapse
Affiliation(s)
- Liang Xu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Ni-Ping Liu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Hui-Li An
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Wan-Ting Ju
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Bin Liu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Xiao-Fang Wang
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Xin Wang
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China.
| |
Collapse
|
8
|
Motlagh PY, Soltani RDC, Pesaran Z, Akay S, Kayan B, Yoon Y, Khataee A. Sonocatalytic degradation of fluoroquinolone compounds of levofloxacin using titanium and zirconium oxides nanostructures supported on paper sludge/wheat husk-derived biochar. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.06.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Guerra-Rodríguez S, Ribeiro ARL, Ribeiro RS, Rodríguez E, Silva AMT, Rodríguez-Chueca J. UV-A activation of peroxymonosulfate for the removal of micropollutants from secondary treated wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:145299. [PMID: 33736410 DOI: 10.1016/j.scitotenv.2021.145299] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 05/28/2023]
Abstract
The occurrence of micropollutants (MPs) in the aquatic environment poses a threat to the environment and to the human health. The application of sulfate radical-based advanced oxidation processes (SR-AOPs) to eliminate these contaminants has attracted attention in recent years. In this work, the simultaneous degradation of 20 multi-class MPs (classified into 5 main categories, namely antibiotics, beta-blockers, other pharmaceuticals, pesticides, and herbicides) was evaluated for the first time in secondary treated wastewater, by activating peroxymonosulfate (PMS) with UV-A radiation, without any pH adjustment or iron addition. The optimal PMS concentration to remove the spiked target MPs (100 μg L-1) from wastewater was 0.1 mM, leading to an average degradation of 80% after 60 min, with most of the elimination occurring during the first 5 min. Synergies between radiation and the oxidant were demonstrated and quantified, with an average extent of synergy of 69.1%. The optimized treatment was then tested using non-spiked wastewater, in which 12 out of the 20 target contaminants were detected. Among these, 7 were degraded at some extent, varying from 10.7% (acetamiprid) to 94.4% (ofloxacin), the lower removals being attributed to the quite inferior ratio of MPs to natural organic matter. Phytotoxicity tests carried out with the wastewater before and after photo-activated PMS oxidation revealed a decrease in the toxicity and that the plants were able to grow in the presence of the treated water. Therefore, despite the low degradation rates obtained for some MPs, the treatment effectively reduces the toxicity of the matrix, making the water safer for reuse.
Collapse
Affiliation(s)
- Sonia Guerra-Rodríguez
- Department of Industrial Chemical & Environmental Engineering, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, Madrid, Spain
| | - Ana Rita Lado Ribeiro
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal.
| | - Rui S Ribeiro
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Encarnación Rodríguez
- Department of Industrial Chemical & Environmental Engineering, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, Madrid, Spain
| | - Adrián M T Silva
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| | - Jorge Rodríguez-Chueca
- Department of Industrial Chemical & Environmental Engineering, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, Madrid, Spain.
| |
Collapse
|
10
|
Feng J, Nian P, Peng L, Zhang A, Sun Y. Degradation of aqueous methylparaben by non-thermal plasma combined with ZnFe 2O 4-rGO nanocomposites: Performance, multi-catalytic mechanism, influencing factors and degradation pathways. CHEMOSPHERE 2021; 271:129575. [PMID: 33460902 DOI: 10.1016/j.chemosphere.2021.129575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/18/2020] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
Non-thermal plasma (NTP) combined with zinc ferrite-reduced graphene oxide (ZnFe2O4-rGO) nanocomposites were used for the degradation of aqueous methylparaben (MeP). ZnFe2O4-rGO nanocomposites were prepared using the hydrothermal method, with the structure and photoelectric properties of nanocomposites then characterized. The effects of discharge power, initial MeP concentration, initial pH, and air flow rate on MeP degradation efficiency were investigated, and the multi-catalytic mechanism and MeP degradation pathways were established. Results showed that ZnFe2O4-rGO nanocomposites with a 10%:90% mass ratio of GO:ZnFe2O4 had an optimal catalytic effect. The MeP degradation efficiency of NTP combined with ZnFe2O4-rGO (10 wt%), was approximately 25% higher than that of NTP alone. Conditions favorable for MeP degradation included higher discharge power, lower MeP concentration, neutral pH value, and higher air flow rate. The degradation of MeP by NTP combined with ZnFe2O4-rGO nanocomposites followed pseudo-first-order kinetics. O2•-, •OH, H2O2, and O3 were found to play important roles in the MeP degradation, as part of the multi-catalytic mechanism of NTP combined with ZnFe2O4-rGO nanocomposites. MeP degradation pathways were proposed based on the degradation intermediates detected by gas chromatography mass spectrometry, including demethylation, hydroxylation, carboxylation, ring-opening, and mineralization reactions. The prepared ZnFe2O4-rGO nanocomposites provide an approach for improved contaminant degradation efficiency, with reduced energy consumption in the NTP process.
Collapse
Affiliation(s)
- Jingwei Feng
- Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, School of Civil and Hydraulic Engineering, Hefei University of Technology, Hefei, 230009, China; State Key Laboratory of Pollution Control & Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210046, China; Anhui Province Key Laboratory of Industrial Wastewater and Environmental Treatment, Hefei, 230024, China.
| | - Peng Nian
- Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, School of Civil and Hydraulic Engineering, Hefei University of Technology, Hefei, 230009, China; East China Engineering Science and Technology Co., Ltd., Hefei, 230024, China
| | - Lu Peng
- Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, School of Civil and Hydraulic Engineering, Hefei University of Technology, Hefei, 230009, China; East China Engineering Science and Technology Co., Ltd., Hefei, 230024, China
| | - Aiyong Zhang
- Anhui Provincial Engineering Laboratory for Rural Water Environment and Resources, School of Civil and Hydraulic Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Yabing Sun
- State Key Laboratory of Pollution Control & Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210046, China
| |
Collapse
|
11
|
Paraben Compounds—Part II: An Overview of Advanced Oxidation Processes for Their Degradation. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11083556] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Water scarcity represents a problem for billions of people and is expected to get worse in the future. To guarantee people’s water needs, the use of “first-hand water” or the reuse of wastewater must be done. Wastewater treatment and reuse are favorable for this purpose, since first-hand water is scarce and the economic needs for the exploration of this type of water are increasing. In wastewater treatment, it is important to remove contaminants of emerging concern, as well as pathogenic agents. Parabens are used in daily products as preservatives and are detected in different water sources. These compounds are related to different human health problems due to their endocrine-disrupting behavior, as well as several problems in animals. Thus, their removal from water streams is essential to achieve safe reusable water. Advanced Oxidation Processes (AOPs) are considered very promising technologies for wastewater treatment and can be used as alternatives or as complements of the conventional wastewater treatments that are inefficient in the removal of such contaminants. Different AOP technologies such as ozonation, catalytic ozonation, photocatalytic ozonation, Fenton’s, and photocatalysis, among others, have already been used for parabens abatement. This manuscript critically overviews several AOP technologies used in parabens abatement. These treatments were evaluated in terms of ecotoxicological assessment since the resulting by-products of parabens abatement can be more toxic than the parent compounds. The economic aspect was also analyzed to evaluate and compare the considered technologies.
Collapse
|
12
|
Rad TS, Ansarian Z, Soltani RDC, Khataee A, Orooji Y, Vafaei F. Sonophotocatalytic activities of FeCuMg and CrCuMg LDHs: Influencing factors, antibacterial effects, and intermediate determination. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:123062. [PMID: 32534395 DOI: 10.1016/j.jhazmat.2020.123062] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
Herein, FeCuMg and CrCuMg layered double hydroxides (LDHs) were synthesized and their sonophotocatalytic activities toward Acid blue 113 (AB113) were compared. Sonolysis alone (only ultrasound) led to the decolorization efficiency of 13.0 %. A similar result was obtained in the case of the utilization of photolysis alone using a 10-W LED lamp (13.5 %). The adsorption process of AB113 onto both compounds was not efficient to significantly remove the target contaminant. The bandgap energy of 2.54 eV and 2.41 eV was calculated for FeCuMg and CrCuMg LDHs, respectively, indicating relatively higher photocatalytic activity of Cr-incorporated LDH than FeCuMg LDH. The sonophotocatalysis of AB113 (50 mg L-1) over CrCuMg LDH (81.1 %) was more efficient than that of FeCuMg LDH (57.3 %) within the reaction time of 60 min. Intermediate byproducts of the sonophotocatalytic decomposition of organic dye over the as-synthesized tri-metal layered sonophotocatalysts were also identified. Furthermore, the antibacterial activity of both LDHs was evaluated by the CFU technique and the MBC and MIC values were determined. The antibacterial assessment confirmed the higher antibacterial activity of CrCuMg LDH than that of FeCuMg LDH against Staphylococcus aureus (S. aureus).
Collapse
Affiliation(s)
- Tannaz Sadeghi Rad
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Zahra Ansarian
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Reza Darvishi Cheshmeh Soltani
- Department of Environmental Health Engineering, School of Health, Arak University of Medical Sciences, 38196-93345 Arak, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran; Department of Environmental Engineering, Gebze Technical University, 41400 Gebze, Turkey; Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam.
| | - Yasin Orooji
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Fatemeh Vafaei
- Central Laboratory of the University of Tabriz, University of Tabriz, 51666-16471 Tabriz, Iran
| |
Collapse
|