1
|
Fan S, Yin Y, Liu Q, Yang X, Pan D, Wu Z, Du M, Tu M. Blue food proteins: Novel extraction technologies, properties, bioactivities and applications in foods. Curr Res Food Sci 2024; 9:100878. [PMID: 39498458 PMCID: PMC11533013 DOI: 10.1016/j.crfs.2024.100878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/25/2024] [Accepted: 10/08/2024] [Indexed: 11/07/2024] Open
Abstract
With the growing demand for healthy and sustainable food, blue food proteins have emerged as an important way to address resource-intensive production and environmental concerns. This paper systematically reviewed the extraction technologies, properties and bioactivities of blue food proteins and explored their wide range of applications. The novel extraction technologies not only improve the extraction efficiency of the proteins, shorten the production time and have environmental advantages, but also enhance the protein properties and facilitate subsequent applications. The amino acid composition of the blue food proteins is close to the FAO recommended standard and better than most of the livestock proteins, with excellent solubility and water holding capacity. Some of the proteins also have significant bioactivity and show great potential for improving health. Applications include emulsions, protein films, microcapsules, food colorants, dietary supplements, 3D printing materials, and cultured meat. This paper provides theoretical support for further research and application of blue food proteins and promotes their wider application in future food products.
Collapse
Affiliation(s)
- Shuo Fan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo, 315800, China
| | - Yaxin Yin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo, 315800, China
| | - Qirui Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo, 315800, China
| | - Xinru Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo, 315800, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo, 315800, China
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo, 315800, China
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Maolin Tu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, 315211, China
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food Science and Engineering, Ningbo University, Ningbo, 315800, China
| |
Collapse
|
2
|
Wang Y, Zhang H, Cai L, Xue F, Chen H, Gong J, Du S. Polymer-mediated and ultrasound-assisted crystallization of ropivacaine: Crystal growth and morphology modulation. ULTRASONICS SONOCHEMISTRY 2023; 97:106475. [PMID: 37321071 DOI: 10.1016/j.ultsonch.2023.106475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
The objective of this research was to modify the crystal shape and size of poorly water-soluble drug ropivacaine, and to reveal the effects of polymeric additive and ultrasound on crystal nucleation and growth. Ropivacaine often grow as needle-like crystals extended along the a-axis and the shape was hardly controllable by altering solvent types and operating conditions for the crystallization process. We found that ropivacaine crystallized as block-like crystals when polyvinylpyrrolidone (PVP) was used. The control over crystal morphology by the additive was related to crystallization temperature, solute concentration, additive concentration, and molecular weight. SEM and AFM analyses were performed providing insights into crystal growth pattern and cavities on the surface induced by the polymeric additive. In ultrasound-assisted crystallization, the impacts of ultrasonic time, ultrasonic power, and additive concentration were investigated. The particles precipitated at extended ultrasonic time exhibited plate-like crystals with shorter aspect ratio. Combined use of polymeric additive and ultrasound led to rice-shaped crystals, which the average particle size was further decreased. The induction time measurement and single crystal growth experiments were carried out. The results suggested that PVP worked as strong nucleation and growth inhibitor. Molecular dynamics simulation was performed to explore the action mechanism of the polymer. The interaction energies between PVP and crystal faces were calculated, and mobility of the additive with different chain length in crystal-solution system was evaluated by mean square displacement. Based on the study, a possible mechanism for the morphological evolution of ropivacaine crystals assisted by PVP and ultrasound was proposed.
Collapse
Affiliation(s)
- Yan Wang
- School of Pharmaceutical Sciences (Shandong Analysis and Testing Center), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, PR China
| | - Huixiang Zhang
- School of Pharmaceutical Sciences (Shandong Analysis and Testing Center), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, PR China
| | - Lun Cai
- School of Pharmaceutical Sciences (Shandong Analysis and Testing Center), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, PR China
| | - Fumin Xue
- School of Pharmaceutical Sciences (Shandong Analysis and Testing Center), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, PR China
| | - Hui Chen
- School of Pharmaceutical Sciences (Shandong Analysis and Testing Center), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, PR China
| | - Junbo Gong
- School of Pharmaceutical Sciences (Shandong Analysis and Testing Center), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, PR China; School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Shichao Du
- School of Pharmaceutical Sciences (Shandong Analysis and Testing Center), Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, PR China.
| |
Collapse
|
3
|
Kumar G, Upadhyay S, Yadav DK, Malakar S, Dhurve P, Suri S. Application of ultrasound technology for extraction of color pigments from plant sources and their potential bio‐functional properties: A review. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Gaurav Kumar
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management Sonipat India
| | - Srishti Upadhyay
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management Sonipat India
| | - Dhiraj Kumar Yadav
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management Sonipat India
| | - Santanu Malakar
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management Sonipat India
- Department of Food Technology Rajiv Gandhi University Doimukh India
| | - Priyanka Dhurve
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management Sonipat India
| | - Shweta Suri
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management Sonipat India
- Amity Institute of Food Technology (AIFT) Amity University Uttar Pradesh Noida India
| |
Collapse
|
4
|
Improving separation efficiency of crystallization by ultrasound-accelerated nucleation: The role of solute diffusion and solvation effect. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121143] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
5
|
AlYammahi J, Hai A, Krishnamoorthy R, Arumugham T, Hasan SW, Banat F. Ultrasound-assisted extraction of highly nutritious date sugar from date palm (Phoenix dactylifera) fruit powder: Parametric optimization and kinetic modeling. ULTRASONICS SONOCHEMISTRY 2022; 88:106107. [PMID: 35926278 PMCID: PMC9356216 DOI: 10.1016/j.ultsonch.2022.106107] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/14/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Alternative sweeteners to white sugar with a lower calorie content and glycemic index obtained through date palm fruits is of great interest to the food industry. In this study, ultrasound-assisted extraction of nutritive sugar from date fruit powder was investigated through Box-Behnken design. A maximum total sugar content (TSC) of 812 mg glucose eq./g of DFP was obtained with a sugar extraction yield (SEY) of 81.40 ± 0.27 % under the following optimal extraction conditions: extraction temperature of 60 °C, extraction time of 30 min, and L/S ratio of 7.6 mL/g. Various modern techniques were used to characterize the obtained extracts and associated residues. The results showed that the extract contained fructose, glucose, and sucrose and had good thermal stability. Furthermore, SEM and TSC analysis revealed that ultrasonic treatment of the biomass improved mass transfer diffusion due to acoustic or ultrasonic cavitation, resulting in a higher sugar yield.
Collapse
Affiliation(s)
- Jawaher AlYammahi
- Department of Chemical Engineering, Khalifa University of Science & Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Abdul Hai
- Department of Chemical Engineering, Khalifa University of Science & Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Rambabu Krishnamoorthy
- Department of Chemical Engineering, Khalifa University of Science & Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Thanigaivelan Arumugham
- Department of Chemical Engineering, Khalifa University of Science & Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Shadi W Hasan
- Department of Chemical Engineering, Khalifa University of Science & Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University of Science & Technology, PO Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
6
|
Deng Y, Wang W, Zhao S, Yang X, Xu W, Guo M, Xu E, Ding T, Ye X, Liu D. Ultrasound-assisted extraction of lipids as food components: Mechanism, solvent, feedstock, quality evaluation and coupled technologies – A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.01.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
|
8
|
Yu G, Zhu H, Huang Y, Zhang X, Sun L, Wang Y, Xia X. Preparation of Daidzein microparticles through liquid antisolvent precipitation under ultrasonication. ULTRASONICS SONOCHEMISTRY 2021; 79:105772. [PMID: 34624663 PMCID: PMC8502945 DOI: 10.1016/j.ultsonch.2021.105772] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 05/15/2023]
Abstract
In this study, daidzein microparticles (DMP) were prepared using an improved ultrasound-assisted antisolvent precipitation method. Preliminary experiments were conducted using six single-factor experiments, and principal component analysis (PCA) was adopted to obtain the three staple elements of the ultrasonic power, solution concentration, and nozzle diameter. The response surface Box-Behnken (BBD) design was used to optimize the level of the above factors. The optimal preparation conditions of the DMP were obtained as follows: the flow rate was 4 mL/min, the concentration of the daidzein solution was 16 mg/mL, the ratio of antisolvent to solvent (liquid-to-liquid ratio) was 9, the nozzle diameter was 300 μm, the ultrasonic power was 180 W (665 W/L), and the system speed was 760 r/min. The minimum average particle size of DMP was 181 ± 2 nm. The properties of daidzein particles before and after preparation were analyzed via scanning electron microscopy, X-ray diffraction analysis, Differential scanning calorimetry and Fourier transform infrared spectroscopy, no obvious change in its chemical structure was observed, but crystallinity was reduced. Compared with daidzein powder, DMP has a higher solubility and stronger antioxidant capacity. The above results indicate that the improved method of ultrasonication combined with antisolvent can reduce the size of daidzein particles and has a great potential in practical production.
Collapse
Affiliation(s)
- Guoping Yu
- Northeast Agricultural University, Harbin 150030, China
| | - Hongwei Zhu
- Northeast Agricultural University, Harbin 150030, China
| | - Yan Huang
- College of Life Science, Jiaying University, Meizhou 514015, China
| | - Xiaonan Zhang
- Northeast Agricultural University, Harbin 150030, China; College of Life Science, Jiaying University, Meizhou 514015, China
| | - Lina Sun
- Northeast Agricultural University, Harbin 150030, China
| | - Yutong Wang
- Northeast Agricultural University, Harbin 150030, China
| | - Xinghao Xia
- Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
9
|
Fang L, Gao Z, Wu S, Jia S, Wang J, Rohani S, Gong J. Ultrasound-assisted solution crystallization of fotagliptin benzoate: Process intensification and crystal product optimization. ULTRASONICS SONOCHEMISTRY 2021; 76:105634. [PMID: 34218067 PMCID: PMC8261672 DOI: 10.1016/j.ultsonch.2021.105634] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/07/2021] [Accepted: 06/15/2021] [Indexed: 06/06/2023]
Abstract
The ultrasound-assisted crystallization process has promising potentials for improving process efficiency and modifying crystalline product properties. In this work, the crystallization process of fotagliptin benzoate methanol solvate (FBMS) was investigated to improve powder properties and downstream desolvation/drying performance. The direct cooling/antisolvent crystallization process was conducted and then optimized with the assistance of ultrasonic irradiation and seeding strategy. Direct cooling/antisolvent crystallization and seeding crystallization processes resulted in needle-like crystals which are undesirable for downstream processing. In contrast, the ultrasound-assisted crystallization process produced rod-like crystals and reduced the crystal size to facilitate the desolvation of FBMS. The metastable zone width (MSZW), induction time, crystal size, morphology, and process yield were studied comprehensively. The results showed that both the seeding and ultrasound-assisted crystallization process (without seeds) can improve the process yield and the ultrasound could effectively reduce the crystal size, narrow the MSZW, and shorten the induction time. Through comparing the drying dynamics of the FBMS, the small rod-shaped crystals with a mean size of 9.6 μm produced by ultrasonic irradiation can be completely desolvated within 20 h, while the desolvation time of long needle crystals with an average size of about 157 μm obtained by direct cooling/antisolvent crystallization and seeding crystallization processes is more than 80 h. Thus the crystal size and morphology were found to be the key factors affecting the desolvation kinetics and the smaller size produced by using ultrasound can benefit the intensification of the drying process. Overall, the ultrasound-assisted crystallization showed a full improvement including crystal properties and process efficiency during the preparation of fotagliptin benzoate desolvated crystals.
Collapse
Affiliation(s)
- Lan Fang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin 300072, PR China
| | - Zhenguo Gao
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin 300072, PR China.
| | - Songgu Wu
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin 300072, PR China
| | - Shengzhe Jia
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin 300072, PR China
| | - Jingkang Wang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin 300072, PR China
| | - Sohrab Rohani
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Junbo Gong
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin 300072, PR China
| |
Collapse
|
10
|
Cheng X, Huang X, Tian B, Wang T, Hao H. Behaviors and physical mechanism of ceftezole sodium de-agglomeration driven by ultrasound. ULTRASONICS SONOCHEMISTRY 2021; 74:105570. [PMID: 33930689 PMCID: PMC8100626 DOI: 10.1016/j.ultsonch.2021.105570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/06/2021] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
Ultrasound-mediated method, which can effectively disperse agglomerates or even eliminate agglomeration, has received more and more attentions in industrial crystallization. However, the ultrasound-mediated de-agglomeration mechanism has not been well understood, and no general conclusions have been drawn. In this study, the crystallization and de-agglomeration process of ceftezole sodium agglomerates under ultrasound irradiation were systematically investigated. Kapur function was selected to investigate the de-agglomeration process under different ultrasonic powers. The results revealed that ultrasound could efficiently inhibit agglomeration. Besides, the de-agglomeration of large sized agglomerate particles was found to be easier to occur in comparison with small sized particles due to its higher specific breakage rate. Finally, the de-agglomeration mechanism under ultrasonic irradiation was proposed on the basis of the calculated cumulative breakage functions.
Collapse
Affiliation(s)
- Xiaowei Cheng
- National Engineering Research Center for Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xin Huang
- National Engineering Research Center for Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China.
| | - Beiqian Tian
- National Engineering Research Center for Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Ting Wang
- National Engineering Research Center for Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Hongxun Hao
- National Engineering Research Center for Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China; School of Chemical Engineering and Technology, Hainan University, Haikou 570208, China.
| |
Collapse
|