1
|
Shishido T, Hayashi Y, Takizawa H. Sonochemical decomposition effects of nickelocene aiming for low-temperature and dispersant-free synthesis of nickel fine particle. ULTRASONICS SONOCHEMISTRY 2024; 108:106976. [PMID: 38945051 PMCID: PMC11261452 DOI: 10.1016/j.ultsonch.2024.106976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/18/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Sonochemical decomposition effects of nickelocene, which sublimates easily were investigated to synthesize dispersant-free nickel fine particles at low temperature. In a hydrazine monohydrate and 2-propanol mixed solvent, the reduction of nickelocene was promoted by ultrasound irradiation, and nickel fine particles were synthesized while precluding the sublimation of nickelocene. Unlike the common hydrazine reduction of nickel salts, which requires multiple-step reactions, nickelocene was reduced directly without forming intermediates. The effect of the water-bath temperature (20-60 °C) was investigated, where larger fine particles were synthesized using a higher water-bath temperature (60 °C). When irradiated at 20 °C, the reduction rate of nickelocene was low, leading to the formation of nickel fine particles and organic nanoparticles via the reduction and decomposition of nickelocene. The ultrasound frequency was also investigated, where fine nickel particles were synthesized using low-frequency ultrasound irradiation. The formation of high-temperature hotspots led to the diffusion and growth of nickel on the surface of the nickel fine particles; therefore, raspberry-like nickel fine particles were synthesized. In this study, the difficult-to-handle nature of nickelocene, owing to its sublimation properties, was easily overcome by ultrasound irradiation. Instantaneous and localized reactions at hotspots contributed to inhibiting particle growth. Furthermore, Ni fine particles were synthesized via a direct reduction pathway, which differs from previous reactions. This method represents a new, dispersant-free, low-temperature process for synthesizing Ni fine particles.
Collapse
Affiliation(s)
- Tatsuya Shishido
- Graduate School of Engineering, Department of Applied Chemistry, Tohoku University, 6-6 Aoba, Aramaki, Aobaku, Sendai 980-8579, Japan
| | - Yamato Hayashi
- Graduate School of Engineering, Department of Applied Chemistry, Tohoku University, 6-6 Aoba, Aramaki, Aobaku, Sendai 980-8579, Japan.
| | - Hirotsugu Takizawa
- Graduate School of Engineering, Department of Applied Chemistry, Tohoku University, 6-6 Aoba, Aramaki, Aobaku, Sendai 980-8579, Japan
| |
Collapse
|
2
|
Yu J, Cao Y, He F, Xiang F, Wang S, Ke W, Wu W. Polysaccharides from Artemisia argyi leaves: Environmentally friendly ultrasound-assisted extraction and antifatigue activities. ULTRASONICS SONOCHEMISTRY 2024; 107:106932. [PMID: 38824698 PMCID: PMC11170280 DOI: 10.1016/j.ultsonch.2024.106932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/19/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024]
Abstract
Artemisia argyi leaf polysaccharide (AALPs) were prepared through ultrasound-assisted extraction (UAE), and their antifatigue activities were evaluated. Extraction was optimized using response surface methodology (RSM), which yielded the following optimal UAE conditions: ultrasonication power of 300 W, extraction temperature of 51 °C, liquid:solid ratio of 20 mL/g, and ultrasonication time of 47 mins. The above optimal conditions resulted in the maximum extraction rate of 10.49 %. Compared with hot water extraction (HWE), UAE supported higher yields and total sugar, uronic acid, and sulfate contents of AALPs. Meanwhile, AALP prepared through UAE (AALP-U) exhibited higher stability due to its smaller particle size and higher absolute value of zeta potential than AALP prepared through HWE (AALP-H). In addition, AALP-U demonstrated stronger antioxidant activity than AALP-H. In forced swimming tests on mice, AALP-U could significantly prolong swimming time with a dose-dependent effect, increase liver and muscle glycogen levels, and improve other biochemical indices, thus showing great potential for application in functional food.
Collapse
Affiliation(s)
- Jiahui Yu
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huangzhou 438000, China
| | - Ying Cao
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huangzhou 438000, China
| | - Feng He
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huangzhou 438000, China
| | - Fu Xiang
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huangzhou 438000, China
| | - Shuzhen Wang
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huangzhou 438000, China
| | - Wenbing Ke
- Department of Infectious Diseases, Huangshi Hospital of Traditional Chinese Medicine, Huangshi 435000, China.
| | - Wei Wu
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huangzhou 438000, China.
| |
Collapse
|
3
|
Peng K, Tian S, Zhang Y, Li J, Qu W, Li C. The violent collapse of vapor bubbles in cryogenic liquids. ULTRASONICS SONOCHEMISTRY 2024; 104:106845. [PMID: 38490059 PMCID: PMC10955664 DOI: 10.1016/j.ultsonch.2024.106845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
Vapor bubbles in cryogenic fluids may collapse violently under subcooled and pressurized conditions. Despite important implications for engineering applications such as cavitation erosion in liquid propellant rocket engines, these intense phenomena are still largely unexplored. In this paper, we systematically investigate the ambient conditions leading to the occurrence of violent collapses in liquid nitrogen and analyze their thermodynamic characteristics. Using Brenner's time ratio χ, the regime of violent collapse is identified in the ambient pressure-temperature parameter space. Complete numerical simulations further refine the prediction and illustrate two classes of collapses. At 1 < χ < 10, the collapse is impacted by significant thermal effects and attains only moderate wall velocity. Only when χ > 10 does the collapse show more inertial features. A mechanism analysis pinpoints a critical time when the surrounding liquid enters supercritical state. The ultimate collapse intensity is shown to be closely associated with the dynamics at this moment. Our study provides a fresh perspective to the treatment of cavitation in cryogenic fluids. The findings can be instrumental in engineering design to mitigate adverse effects arising from intense cavitational activities.
Collapse
Affiliation(s)
- Kewen Peng
- Guangdong Provincial Key Laboratory of Distributed Energy Systems, Dongguan University of Technology, Dongguan 523808, China.
| | - Shouceng Tian
- State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China
| | - Yiqun Zhang
- State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China
| | - Jingbin Li
- State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China
| | - Wanjun Qu
- Guangdong Provincial Key Laboratory of Distributed Energy Systems, Dongguan University of Technology, Dongguan 523808, China
| | - Chao Li
- Guangdong Provincial Key Laboratory of Distributed Energy Systems, Dongguan University of Technology, Dongguan 523808, China
| |
Collapse
|
4
|
Bidi S, Shams A, Koukouvinis P, Gavaises M. Prediction of shock heating during ultrasound-induced bubble collapse using real-fluid equations of state. ULTRASONICS SONOCHEMISTRY 2023; 101:106663. [PMID: 38039592 PMCID: PMC10711231 DOI: 10.1016/j.ultsonch.2023.106663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/26/2023] [Indexed: 12/03/2023]
Abstract
Numerical simulations of collapsing air bubbles considering complex and more accurate equations of state (EoS) for estimating the properties of both the liquid and gas are presented. The necessity for utilising such EoSs in bubble collapse simulations is illustrated by the unphysical (spurious) liquid temperature jump formed in the vicinity of the bubble-air interface when simplified EoSs are used. The solved fluid flow equations follow the mechanical equilibrium multiphase method of Kapila. The solver is coded in the AMReX platform, enabling high-performance computation with parallel processing and Adaptive Mesh Refinement for speeding up simulations. It is initially demonstrated that the frequently used Stiffened Gas (SG) EoS overpredicts the liquid temperature at high compression. More sophisticated EoS models, such as the International Association for the Properties of Water and Steam (IAPWS), the Modified Noble Abel Stiffened Gas (MNASG) and a modified Tait EoS introduced here, are also implemented into the flow solver and their differences are highlighted for bubble collapse cases for the first time. Subsequently, application of the developed model to cases of practical interest is showcased. More specifically, simulations of bubble collapse near a solid wall are presented for conditions simulating shock wave lithotripsy (SWL). It is concluded that for such cases, a maximum increase of 25 K of the liquid temperature in contact along the solid wall is caused during the collapse of the air bubble due to shock wave focusing effects. It is also highlighted that the maximum liquid heating varies depending on the initial bubble-wall stand-off distance.
Collapse
Affiliation(s)
- Saeed Bidi
- School of Mathematics, Computer Sciences & Engineering, City, University of London, UK; Institut Jean Le Rond D'Alembert, Sorbonne Université and CNRS UMR 7190, F-75005 Paris, France.
| | - Armand Shams
- School of Mathematics, Computer Sciences & Engineering, City, University of London, UK
| | - Phoevos Koukouvinis
- School of Mathematics, Computer Sciences & Engineering, City, University of London, UK
| | - Manolis Gavaises
- School of Mathematics, Computer Sciences & Engineering, City, University of London, UK
| |
Collapse
|
5
|
Hui GT, Meng TK, Kassim MA. Green ultrasonication-assisted extraction of microalgae Chlorella sp. for polysaturated fatty acid (PUFA) rich lipid extract using alternative solvent mixture. Bioprocess Biosyst Eng 2023; 46:1499-1512. [PMID: 37580470 DOI: 10.1007/s00449-023-02917-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 07/26/2023] [Indexed: 08/16/2023]
Abstract
Conventionally, microalgal lipid extraction uses volatile organic compounds as an extraction solvent. However, these solvents are harmful to human and environmental health. Therefore, this study evaluated the feasibility of alternative green solvents, namely, ethanol, dimethyl carbonate (DMC), cyclopentyl methyl ether (CPME), and 2-methyltetrahydrofuran (2-MeTHF) in lipid extraction from Chlorella sp. via ultrasound-assisted extraction (UAE). This study indicated that extraction parameters, such as ethanol-to-2-MeTHF ratio, solvent-to-biomass ratio, temperature, and time, significantly affected the crude lipid yield (P < 0.05). The highest crude lipid yield of 25.05 ± 0.924% was achieved using ethanol-2-MeTHF mixture (2:1, v/v) with a solvent-to-biomass ratio of 20:1 (v/w) at 60 °C for 25 min accompanying 100 W and 40 kHz. Ethanol-2-MeTHF-extracted lipids showed dominance in linoleic acid, α-linolenic acid, and palmitic acid. Overall this findings supported UAE using ethanol and 2-MeTHF as extraction solvents is a promising green alternative to conventional solvent extraction of lipids from microalgae.
Collapse
Affiliation(s)
- Goh Ting Hui
- Division of Bioprocess Technology, School of Industrial Technology, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Tan Kean Meng
- Division of Bioprocess Technology, School of Industrial Technology, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Mohd Asyraf Kassim
- Division of Bioprocess Technology, School of Industrial Technology, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| |
Collapse
|
6
|
Qin D, Lei S, Chen B, Li Z, Wang W, Ji X. Numerical investigation on acoustic cavitation characteristics of an air-vapor bubble: Effect of equation of state for interior gases. ULTRASONICS SONOCHEMISTRY 2023; 97:106456. [PMID: 37271030 DOI: 10.1016/j.ultsonch.2023.106456] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/13/2023] [Accepted: 05/24/2023] [Indexed: 06/06/2023]
Abstract
The cavitation dynamics of an air-vapor mixture bubble with ultrasonic excitation can be greatly affected by the equation of state (EOS) for the interior gases. To simulate the cavitation dynamics, the Gilmore-Akulichev equation was coupled with the Peng-Robinson (PR) EOS or the Van der Waals (vdW) EOS. In this study, the thermodynamic properties of air and water vapor predicted by the PR and vdW EOS were first compared, and the results showed that the PR EOS gives a more accurate estimation of the gases within the bubble due to the less deviation from the experimental values. Moreover, the acoustic cavitation characteristics predicted by the Gilmore-PR model were compared to the Gilmore-vdW model, including the bubble collapse strength, the temperature, pressure and number of water molecules within the bubble. The results indicated that a stronger bubble collapse was predicted by the Gilmore-PR model rather than the Gilmore-vdW model, with higher temperature and pressure, as well as more water molecules within the collapsing bubble. More importantly, it was found that the differences between both models increase at higher ultrasound amplitudes or lower ultrasound frequencies while decreasing as the initial bubble radius and the liquid parameters (e.g., surface tension, viscosity and temperature of the surrounding liquid) increase. This study might offer important insights into the effects of the EOS for interior gases on the cavitation bubble dynamics and the resultant acoustic cavitation-associated effects, contributing to further optimization of its applications in sonochemistry and biomedicine.
Collapse
Affiliation(s)
- Dui Qin
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China; Postdoctoral Workstation of Chongqing General Hospital, Chongqing, People's Republic of China.
| | - Shuang Lei
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China
| | - Bo Chen
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China
| | - Zhangyong Li
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China
| | - Wei Wang
- Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing, People's Republic of China.
| | - Xiaojuan Ji
- Postdoctoral Workstation of Chongqing General Hospital, Chongqing, People's Republic of China; Department of Ultrasound, Chongqing General Hospital, Chongqing, People's Republic of China.
| |
Collapse
|
7
|
Peng K, Tian S, Zhang Y, He Q, Wang Q. Penetration of hydroxyl radicals in the aqueous phase surrounding a cavitation bubble. ULTRASONICS SONOCHEMISTRY 2022; 91:106235. [PMID: 36436484 PMCID: PMC9703040 DOI: 10.1016/j.ultsonch.2022.106235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/08/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
In the sonochemical degradation of nonvolatile compounds, the free radicals must be delivered into the aqueous solution from the cavitation bubble to initiate reduction-oxidation reactions. The penetration depth in the liquid becomes an important parameter that influences the radical delivery efficiency and eventual treatment performance. However, the transport of radicals in the liquid phase is not well understood yet. In this paper, we focus on the most reactive OH radical and numerically simulate its penetration behavior. This is realized by solving the coupled equations of bubble dynamics, intracavity chemistry, and radical dispersion in the aqueous phase. The results present both the local and global penetration patterns for the OH radicals. By performing simulations over a wide range of acoustic parameters, we find an undesirable phenomenon that the penetration can be adversely suppressed when strengthening the radical production. A mechanistic analysis attributes this to the excessively vigorous recombination reactions associated with high radical concentrations near the bubble interface. In this circumstance, the radicals are massively consumed and converted into molecular species before they can appreciably diffuse away. Our study sheds light on the interplay between radical production inside the bubble and dispersion in the outside liquid. The derived conclusions provide guides for sonochemical applications from a new perspective.
Collapse
Affiliation(s)
- Kewen Peng
- Guangdong Provincial Key Laboratory of Distributed Energy Systems, Dongguan University of Technology, Dongguan 523808, China.
| | - Shouceng Tian
- State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China.
| | - Yiqun Zhang
- State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China
| | - Qing He
- Guangdong Provincial Key Laboratory of Distributed Energy Systems, Dongguan University of Technology, Dongguan 523808, China
| | - Qianxi Wang
- School of Mathematics, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
8
|
Plant Extraction in Water: Towards Highly Efficient Industrial Applications. Processes (Basel) 2022. [DOI: 10.3390/pr10112233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Since the beginning of this century, the world has experienced a growing need for enabling techniques and more environmentally friendly protocols that can facilitate more rational industrial production. Scientists are faced with the major challenges of global warming and safeguarding water and food quality. Organic solvents are still widely used and seem to be hard to replace, despite their enormous environmental and toxicological impact. The development of water-based strategies for the extraction of primary and secondary metabolites from plants on a laboratory scale is well documented, with several intensified processes being able to maximize the extraction power of water. Technologies, such as ultrasound, hydrodynamic cavitation, microwaves and pressurized reactors that achieve subcritical water conditions can dramatically increase extraction rates and yields. In addition, significant synergistic effects have been observed when using combined techniques. Due to the limited penetration depth of microwaves and ultrasonic waves, scaling up entails changes to reactor design. Nevertheless, the rich academic literature from laboratory-scale investigations may contribute to the engineering work involved in maximizing mass/energy transfer. In this article, we provide an overview of current and innovative techniques for solid-liquid extraction in water for industrial applications, where continuous and semi-continuous processes can meet the high demands for productivity, profitability and quality.
Collapse
|
9
|
Degradation kinetics of pomegranate juice phenolics under cold and warm sonication process. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
10
|
Peng K, Qin FGF, Jiang R, Qu W, Wang Q. Production and dispersion of free radicals from transient cavitation Bubbles: An integrated numerical scheme and applications. ULTRASONICS SONOCHEMISTRY 2022; 88:106067. [PMID: 35751936 PMCID: PMC9234711 DOI: 10.1016/j.ultsonch.2022.106067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/29/2022] [Accepted: 06/13/2022] [Indexed: 05/09/2023]
Abstract
As an advanced oxidation process with a wide range of applications, sonochemistry relies on acoustic cavitation to induce free radicals for degrading chemical contaminants. The complete process includes two critical steps: the radical production inside the cavitation bubble, and the ensuing dispersion of these radicals into the bulk solution. To grasp the physicochemical details in this process, we developed an integrated numerical scheme with the ability to quantitatively describe the radical production-dispersion behavior. It employs coupled simulations of bubble dynamics, intracavity chemical reactions, and diffusion-reaction-dominated mass transport in aqueous solutions. Applying this method to the typical case of argon and oxygen bubbles, the production mechanism for the main radicals is revealed. Moreover, the temporal-spatial distribution of the radicals in the liquid phase is presented. The results demonstrate that the enhanced radical production observed in oxygen bubbles can be traced to the initiation reaction O2 + H2O → OH+HO2, which requires relatively low activation energy. In the outside liquid region, the dispersion of radicals is limited by robust recombination reactions. The simulated penetration depth of OH is around 0.2 μm and agrees with reported experimental measurements. The proposed numerical approach can be employed to better capture the radical activity and is instrumental in optimizing the engineering application of sonochemistry.
Collapse
Affiliation(s)
- Kewen Peng
- Guangdong Provincial Key Laboratory of Distributed Energy Systems, Dongguan University of Technology, Dongguan 523808, China.
| | - Frank G F Qin
- Guangdong Provincial Key Laboratory of Distributed Energy Systems, Dongguan University of Technology, Dongguan 523808, China
| | - Runhua Jiang
- Guangdong Provincial Key Laboratory of Distributed Energy Systems, Dongguan University of Technology, Dongguan 523808, China
| | - Wanjun Qu
- Guangdong Provincial Key Laboratory of Distributed Energy Systems, Dongguan University of Technology, Dongguan 523808, China
| | - Qianxi Wang
- School of Mathematics, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
11
|
Hong S, Son G. Numerical modelling of acoustic cavitation threshold in water with non-condensable bubble nuclei. ULTRASONICS SONOCHEMISTRY 2022; 83:105932. [PMID: 35121570 PMCID: PMC8818585 DOI: 10.1016/j.ultsonch.2022.105932] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/11/2022] [Accepted: 01/22/2022] [Indexed: 05/09/2023]
Abstract
Numerical modelling of acoustic cavitation threshold in water is presented taking into account non-condensable bubble nuclei, which are composed of water vapor and non-condensable air. The cavitation bubble growth and collapse dynamics are modeled by solving the Rayleigh-Plesset or Keller-Miksis equation, which is combined with the energy equations for both the bubble and liquid domains, and directly evaluating the phase-change rate from the liquid and bubble side temperature gradients. The present work focuses on elucidating acoustic cavitation in water with a wide range of cavitation thresholds (0.02-30 MPa) reported in the literature. Computations for different nucleus sizes and acoustic frequencies are performed to investigate their effects on bubble growth and cavitation threshold. The numerical predictions are observed to be comparable to the experimental data in the previous works and show that the cavitation threshold in water has a wide range depending on the bubble nucleus size.
Collapse
Affiliation(s)
- Seongjin Hong
- Department of Mechanical Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, South Korea
| | - Gihun Son
- Department of Mechanical Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, South Korea.
| |
Collapse
|
12
|
Selective degradation of mixed dye pollutant in aqueous phase in the presence of ZnO/Al2O3 as sonophotocatalysis based on central composite design. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-021-0816-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Peng K, Qin FGF, Tian S, Zhang Y. An inverse method to fast-track the calculation of phase diagrams for sonoluminescing bubbles. ULTRASONICS SONOCHEMISTRY 2021; 73:105534. [PMID: 33812248 PMCID: PMC8044694 DOI: 10.1016/j.ultsonch.2021.105534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/11/2021] [Accepted: 03/18/2021] [Indexed: 05/09/2023]
Abstract
A sound driven air bubble can be transformed into an argon bubble emitting light pulses stably. The very foundation to investigate the sonoluminescing bubble is to accurately determine the ambient radius and gas composition in the interior. The conventional approach is to model the air-to-argon transformation process through a large number of bubble dynamics simulations to obtain the physical parameters of the ultimate argon bubble. In this paper, we propose a highly efficient method to pinpoint this information in a phase diagram. The method is based on the diffusive equilibrium for each species inside the bubble and derives the ambient radius and composition inversely. To calculate the former parameter, the bisection algorithm is employed to consecutively narrow down the searching range until the equilibria is approached. Afterward, several cycles of full dynamics simulations are conducted to refine the composition. The method is validated using published experimental data. The calculated ambient radii deviate from the test results by less than 1 μm, which falls within the margin of measurement error. The advantages of this method over the semi-analytical approach reported by Hilgenfeldt et al. [J. Fluid Mech. 365 (1998)] are also discussed. Our study provides a standard procedure to calculate the ambient radius and composition and is beneficial for the numerical simulation of sonoluminescing bubbles.
Collapse
Affiliation(s)
- Kewen Peng
- Guangdong Provincial Key Laboratory of Distributed Energy Systems, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China.
| | - Frank G F Qin
- Guangdong Provincial Key Laboratory of Distributed Energy Systems, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China
| | - Shouceng Tian
- State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China
| | - Yiqun Zhang
- State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China
| |
Collapse
|