1
|
Deng Q, Chen S, Wu W, Zhang S, An C, Hu N, Han X. Ultrasound-Assisted Preparation and Performance Regulation of Electrocatalytic Materials. Chempluschem 2024; 89:e202300688. [PMID: 38199955 DOI: 10.1002/cplu.202300688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/12/2024]
Abstract
With the advancement of scientific research, the introduction of external physical methods not only adds extra freedom to the design of electro-catalytical processes for green technologies but also effectively improves the reactivity of materials. Physical methods can adjust the intrinsic activity of materials and modulate the local environment at the solid-liquid interface. In particular, this approach holds great promise in the field of electrocatalysis. Among them, the ultrasonic waves have shown reasonable control over the preparation of materials and the electrocatalytic process. However, the research on coupling ultrasonic waves and electrocatalysis is still early. The understanding of their mechanisms needs to be more comprehensive and deep enough. Firstly, this article extensively discusses the adhibition of the ultrasonic-assisted preparation of metal-based catalysts and their catalytic performance as electrocatalysts. The obtained metal-based catalysts exhibit improved electrocatalytic performances due to their high surface area and more exposed active sites. Additionally, this article also points out some urgent unresolved issues in the synthesis of materials using ultrasonic waves and the regulation of electrocatalytic performance. Lastly, the challenges and opportunities in this field are discussed, providing new insights for improving the catalytic performance of transition metal-based electrocatalysts.
Collapse
Affiliation(s)
- Qibo Deng
- School of Mechanical Engineering, and School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Shuang Chen
- School of Mechanical Engineering, and School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Wenliu Wu
- School of Mechanical Engineering, and School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Shiyu Zhang
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Cuihua An
- School of Mechanical Engineering, and School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300401, China
| | - Ning Hu
- State Key Laboratory of Reliability and Intelligence Electrical Equipment, Key Laboratory of Advanced Intelligent Protective Equipment Technology, Ministry of Education, Hebei University of Technology, Tianjin, 300130, China
| | - Xiaopeng Han
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
2
|
2D MOFs and their derivatives for electrocatalytic applications: Recent advances and new challenges. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
3
|
Cao X, Tong R, Tang S, Jang BWL, Mirjalili A, Li J, Guo X, Zhang J, Hu J, Meng X. Design of Pd-Zn Bimetal MOF Nanosheets and MOF-Derived Pd 3.9Zn 6.1/CNS Catalyst for Selective Hydrogenation of Acetylene under Simulated Front-End Conditions. Molecules 2022; 27:5736. [PMID: 36080499 PMCID: PMC9457924 DOI: 10.3390/molecules27175736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/30/2022] Open
Abstract
Novel zinc-palladium-porphyrin bimetal metal-organic framework (MOF) nanosheets were directly synthesized by coordination chelation between Zn(II) and Pd(II) tetra(4-carboxyphenyl)porphin (TCPP(Pd)) using a solvothermal method. Furthermore, a serial of carbon nanosheets supported Pd-Zn intermetallics (Pd-Zn-ins/CNS) with different Pd: Zn atomic ratios were obtained by one-step carbonization under different temperature using the prepared Zn-TCPP(Pd) MOF nanosheets as precursor. In the carbonization process, Pd-Zn-ins went through the transformation from PdZn (650 °C) to Pd3.9Zn6.1 (~950 °C) then to Pd3.9Zn6.1/Pd (1000 °C) with the temperature increasing. The synthesized Pd-Zn-ins/CNS were further employed as catalysts for selective hydrogenation of acetylene. Pd3.9Zn6.1 showed the best catalytic performance compared with other Pd-Zn intermetallic forms.
Collapse
Affiliation(s)
- Xinxiang Cao
- Laboratory for Development & Application of Cold Plasma Technology, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, China
| | - Ruijian Tong
- School of Agriculture and Bioengineering, Heze University, Heze 274015, China
| | - Siye Tang
- Laboratory for Development & Application of Cold Plasma Technology, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, China
| | - Ben W. -L. Jang
- Department of Chemistry, Texas A&M University-Commerce, Commerce, TX 75429-3011, USA
| | - Arash Mirjalili
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Jiayi Li
- Laboratory for Development & Application of Cold Plasma Technology, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, China
| | - Xining Guo
- Laboratory for Development & Application of Cold Plasma Technology, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, China
| | - Jingyi Zhang
- Laboratory for Development & Application of Cold Plasma Technology, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, China
| | - Jiaxue Hu
- Laboratory for Development & Application of Cold Plasma Technology, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, China
| | - Xin Meng
- Laboratory for Development & Application of Cold Plasma Technology, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, China
| |
Collapse
|
4
|
|
5
|
Yang F, Du M, Yin K, Qiu Z, Zhao J, Liu C, Zhang G, Gao Y, Pang H. Applications of Metal-Organic Frameworks in Water Treatment: A Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105715. [PMID: 34881495 DOI: 10.1002/smll.202105715] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/15/2021] [Indexed: 06/13/2023]
Abstract
The ever-expanding scale of industry and agriculture has led to the gradual increase of pollutants (e.g., heavy metal ions, synthetic dyes, and antibiotics) in water resources, and the ecology and wastewater are grave problems that need to be solved urgently and has attracted widespread attention from the research community and industry in recent years. Metal-organic frameworks (MOFs) are a type of organic-inorganic hybrid material with a distinctive 3D network crystal structure. Lately, MOFs have made striking progress in the fields of adsorption, catalytic degradation, and biomedicine on account of their large specific surface and well-developed pore structure. This review summarizes the latest research achievements in the preparation of pristine MOFs, MOF composites, and MOF derivatives for various applications including the removal of heavy metal ions, organic dyes, and other harmful substances in sewage. Furthermore, the working mechanisms of utilizing adsorption, photocatalytic degradation, and membrane separation technologies are also briefly described for specific pollutants removal from sewage. It is expected that this review will provide inspiration and references for the synthesis of pristine MOFs as well as their composites and derivatives with excellent water treatment performance.
Collapse
Affiliation(s)
- Feiyu Yang
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225127, P. R. China
- School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu, 213164, P. R. China
| | - Meng Du
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Kailiang Yin
- School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu, 213164, P. R. China
| | - Ziming Qiu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Jiawei Zhao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Chunli Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Guangxun Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Yajun Gao
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225127, P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| |
Collapse
|
6
|
Sabbouh M, Nikitina A, Rogacheva E, Kraeva L, Ulasevich SA, Skorb EV, Nosonovsky M. Separation of motions and vibrational separation of fractions for biocide brass. ULTRASONICS SONOCHEMISTRY 2021; 80:105817. [PMID: 34773755 PMCID: PMC8592938 DOI: 10.1016/j.ultsonch.2021.105817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 05/09/2023]
Abstract
The mathematical method of separation of motions represents the effect of fast high-frequency oscillations by an effective averaged force or potential. Ultrasound acoustic vibrations are an example of such rapid oscillations leading to cavitation in water due to the gas phase formation (bubbles). Ultrasound cavitation is used to treat the surface of brass microparticles submerged in water. The formation of bubbles and their collapse triggers the modification of surface roughness and chemical composition. Consequently, the suspension separates into various fractions related to demonstrating biocide properties. While the exact mechanism of this process is complex, it can be explained phenomenologically by using the Onsager reciprocal relations for coupling the copper ion diffusion with the gas phase separation in water as a result of the action of the effective average vibrational force.
Collapse
Affiliation(s)
- Mirna Sabbouh
- Infochemistry Scientific Center, ITMO University, 9 Lomonosov St., Saint Petersburg, 191002, Russia
| | - Anna Nikitina
- Infochemistry Scientific Center, ITMO University, 9 Lomonosov St., Saint Petersburg, 191002, Russia
| | - Elizaveta Rogacheva
- Pasteur Institute of Epidemiology and Microbiology, 14 Mira Street, Saint Petersburg, 197101, Russia
| | - Lyudmila Kraeva
- Pasteur Institute of Epidemiology and Microbiology, 14 Mira Street, Saint Petersburg, 197101, Russia
| | - Sviatlana A Ulasevich
- Infochemistry Scientific Center, ITMO University, 9 Lomonosov St., Saint Petersburg, 191002, Russia.
| | - Ekaterina V Skorb
- Infochemistry Scientific Center, ITMO University, 9 Lomonosov St., Saint Petersburg, 191002, Russia
| | - Michael Nosonovsky
- Infochemistry Scientific Center, ITMO University, 9 Lomonosov St., Saint Petersburg, 191002, Russia.
| |
Collapse
|
7
|
Shi L, Mao W, Zhang L, Zhao Y, Huang H, Xiao Y, Mao L, Fu Z, Yu N, Yin D. An ultrathin amino-acid based copper(II) coordination polymer nanosheet for efficient epoxidation of β-caryophyllene. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Du F, Liu L, Wu Z, Zhao Z, Geng W, Zhu B, Ma T, Xiang X, Ma L, Cheng C, Qiu L. Pd-Single-Atom Coordinated Biocatalysts for Chem-/Sono-/Photo-Trimodal Tumor Therapies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101095. [PMID: 34096109 DOI: 10.1002/adma.202101095] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/07/2021] [Indexed: 02/05/2023]
Abstract
The diversity, complexity, and heterogeneity of malignant tumor seriously undermine the efficiency of mono-modal treatment. Recently, multi-modal therapeutics with enhanced antitumor efficiencies have attracted increasing attention. However, designing a nanotherapeutic platform with uniform morphology in nanoscale that integrates with efficient chem-/sono-/photo-trimodal tumor therapies is still a great challenge. Here, new and facile Pd-single-atom coordinated porphyrin-based polymeric networks as biocatalysts, namely, Pd-Pta/Por, for chem-/sono-/photo-trimodal tumor therapies are designed. The atomic morphology and chemical structure analysis prove that the biocatalyst consists of atomic Pd-N coordination networks with a Pd-N2 -Cl2 catalytic center. The characterization of peroxidase-like catalytic activities displays that the Pd-Pta/Por can generate abundant •OH radicals for chemodynamic therapies. The ultrasound irradiation or laser excitation can significantly boost the catalytic production of 1 O2 by the porphyrin-based sono-/photosensitizers to achieve combined sono-/photodynamic therapies. The superior catalytic production of •OH is further verified by density functional theory calculation. Finally, the corresponding in vitro and in vivo experiments have demonstrated their synergistic chem-/sono-/photo-trimodal antitumor efficacies. It is believed that this study provides new promising single-atom-coordinated polymeric networks with highly efficient biocatalytic sites and synergistic trimodal therapeutic effects, which may inspire many new findings in reactive oxygen species-related biological applications across broad therapeutics and biomedical fields.
Collapse
Affiliation(s)
- Fangxue Du
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610041, China
| | - Luchang Liu
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610041, China
| | - Zihe Wu
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610041, China
| | - Zhenyang Zhao
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610041, China
| | - Wei Geng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Bihui Zhu
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610041, China
| | - Tian Ma
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610041, China
| | - Xi Xiang
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610041, China
| | - Lang Ma
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610041, China
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Chong Cheng
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610041, China
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Li Qiu
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
9
|
Sang X, Liu D, Song J, Wang C, Nie X, Shi G, Xia X, Ni C, Wang D. High-efficient liquid exfoliation of 2D metal-organic framework using deep-eutectic solvents. ULTRASONICS SONOCHEMISTRY 2021; 72:105461. [PMID: 33497957 PMCID: PMC7838717 DOI: 10.1016/j.ultsonch.2021.105461] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/09/2020] [Accepted: 01/01/2021] [Indexed: 05/07/2023]
Abstract
The exfoliation of bulk two-dimensional metal-organic framework (MOF) into few-layered nanosheets has attracted much attention recently. In this work, an environmental-friendly route has been developed for layered-MOF (MAMS-1) delamination using deep eutectic solvent (DES), which is more sustainable and efficient alternative than conventional organic solvents for MOF nanosheet preparation. Under sonication condition, DES as solvents, the highest exfoliation rate of MAMS-1 is up to 70% with two host layers via poly(vinylpyrrolidone) (PVP) surfactant-assisted method. The presence of tert-butyl exteriors and the atomically thickness endow the MOF nanosheets stable suspension for at least one month. Due to the 2D structure and excellent stability, MAMS-1 nanosheet (MAMS-1-NS) was chosen as a good candidate to encapsulate Eu3+ cations. The obtained Eu3+@MAMS-1-NS acts as a multi-responsive luminescent sensor through fluorescence quenching, and can specifically recognize Fe3+ (LOD = 0.40 μM, KSV = 1.05 × 105 M-l), Hg2+ (LOD = 0.038 μM, KSV = 5.78 × 106 M-l), Cr2O72- (LOD = 0.33 μM, KSV = 1.55 × 105 M-l) and MnO4- (LOD = 0.088 μM, KSV = 4.49 × 105 M-l). Compared with bulk Eu3+@MAMS-1, the sensitivity of Eu3+@MAMS-1-NS is greatly improved owing to its ultrathin nanosheet morphology and highly accessible active sites on the surface.
Collapse
Affiliation(s)
- Xinxin Sang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| | - Dongyin Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Junling Song
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Chan Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiangdao Nie
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Gang Shi
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiaofeng Xia
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Caihua Ni
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Dawei Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
10
|
Pepió B, Contreras-Pereda N, Suárez-García S, Hayati P, Benmansour S, Retailleau P, Morsali A, Ruiz-Molina D. Solvent-tuned ultrasonic synthesis of 2D coordination polymer nanostructures and flakes. ULTRASONICS SONOCHEMISTRY 2021; 72:105425. [PMID: 33388692 PMCID: PMC7803821 DOI: 10.1016/j.ultsonch.2020.105425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 05/08/2023]
Abstract
Herein, a new 2-dimensional coordination polymer based on copper (II), {Cu2(L)(DMF)2}n, where L stands for 1,2,4,5-benzenetetracarboxylate (complex 1) is synthesized. Interestingly, we demonstrate that both solvent and sonication are relevant in the top-down fabrication of nanostructures. Water molecules are intercalated in suspended crystals of complex 1 modifying not only the coordination sphere of Cu(II) ions but also the final chemical formula and crystalline structure obtaining {[Cu(L)(H2O)3]·H2O}n (complex 2). On the other hand, ultrasound is required to induce the nanostructuration. Remarkably, different morphologies are obtained using different solvents and interconversion from one morphology to another seems to occur upon solvent exchange. Both complexes 1 and 2, as well as the corresponding nanostructures, have been fully characterized by different means such as infrared spectroscopy, x-ray diffraction and microscopy.
Collapse
Affiliation(s)
- Belén Pepió
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Noemí Contreras-Pereda
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Salvio Suárez-García
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Payam Hayati
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Samia Benmansour
- Instituto de Ciencia Molecular, Parque Científico, Universidad de Valencia, José Beltrán 2, 46980 Paterna (Valencia), Spain
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Univ. Paris-Sud, Université Paris-Saclay, 1, av. de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Ali Morsali
- Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14115-4838, Tehran, Islamic Republic of Iran.
| | - Daniel Ruiz-Molina
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
| |
Collapse
|