1
|
Zhu C, Lin Z, Jiang H, Wei F, Wu Y, Song L. Recent Advances in the Health Benefits of Phenolic Acids in Whole Grains and the Impact of Processing Techniques on Phenolic Acids: A Comprehensive Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24131-24157. [PMID: 39441722 DOI: 10.1021/acs.jafc.4c05245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Phenolic acids, essential compounds in whole grains, are renowned for their health-enhancing antioxidant and anti-inflammatory properties. Variations in concentration, particularly of hydroxybenzoic and hydroxycinnamic acids, are observed among grain types. Their antiobesity and antidiabetes effects are linked to their modulation of key signaling pathways like AMPK and PI3K, crucial for metabolic regulation and the body's response to inflammation and oxidative stress. Processing methods significantly influence phenolic acid content and bioavailability in whole grains. Thermal techniques like boiling, baking, or roasting can degrade these compounds, with loss influenced by processing conditions. Nonthermal methods such as germination, fermentation, or their combination, can protect or enhance phenolic acid content under ideal conditions. Novel nonthermal approaches like ultrahigh pressure (UHP), irradiation, and pulsed electric fields (PEF) show promise in preserving these compounds. Further research is needed to fully comprehend the impact mechanisms of these innovative methods on the nutritional and sensory attributes of cereals.
Collapse
Affiliation(s)
- Chuang Zhu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zihan Lin
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huibin Jiang
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fenfen Wei
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Wu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lihua Song
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Maleke MS, Adebo OA, Wilkin J, Ledbetter M, Feng X, Gieng J, Molelekoa TBJ. Effect of fermentation, malting and ultrasonication on sorghum, mopane worm and Moringa oleifera: improvement in their nutritional, techno-functional and health promoting properties. Front Nutr 2024; 11:1469960. [PMID: 39416648 PMCID: PMC11480039 DOI: 10.3389/fnut.2024.1469960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Background Food processing offers various benefits that contribute to food nutrition, food security and convenience. This study investigated the effect of three different processes (fermentation, malting and ultrasonication) on the nutritional, techno-functional and health-promoting properties of sorghum, mopane worm and Moringa oleifera. Methods The fermented and malted flours were prepared at 35°C for 48 h, and for ultrasonication, samples were subjected to 10 min at 4°C with amplitudes of 40-70 Hz. The biochemical, nutritional quality and techno-functional properties of the obtained flours were analysed using standard procedures. Results Fermentation resulted in significantly lower pH and higher titratable acidity in sorghum and mopane worm (4.32 and 4.76; 0.24 and 0.69% lactic acid, respectively), and malting resulted in higher total phenolic content and total flavonoid content in sorghum (3.23 mg GAE/g and 3.05 mg QE/g). Ultrasonication resulted in higher protein and fibre in raw sorghum flour (13.38 and 4.53%) and mopane worm (56.24 and 11.74%) while raw moringa had the highest protein (30.68%). Biomodification by fermentation in sorghum led to higher water and oil holding capacity and increased dispersibility in the ultrasonicated samples. Ultrasonication of mopane worms led to higher water holding capacity, oil holding capacity and dispersibility. Lightness was found to be significantly higher in the fermented samples in sorghum and mopane worm. Raw moringa had the greatest lightness compared to the ultrasonicated moringa. Moringa had the most redness and browning index among all samples. Conclusion In this study, all the investigated processes were found to have caused variations in flours' biochemical, nutritional and techno-functional properties. Ultrasonication process was noteworthy to be the most efficient to preserve the nutritional value in sorghum, mopane worm and M. oleifera flours.
Collapse
Affiliation(s)
- Mpho Sebabiki Maleke
- Centre for Innovative Food Research (CIFR), Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein, Johannesburg, South Africa
| | - Oluwafemi Ayodeji Adebo
- Centre for Innovative Food Research (CIFR), Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein, Johannesburg, South Africa
| | - Jonathan Wilkin
- Division of Engineering and Food Science, School of Applied Sciences, Abertay University, Dundee, United Kingdom
| | - Moira Ledbetter
- Division of Engineering and Food Science, School of Applied Sciences, Abertay University, Dundee, United Kingdom
| | - Xi Feng
- Department of Nutrition, Food Science, and Packaging, San Jose State University, San Jose, CA, United States
| | - John Gieng
- Department of Nutrition, Food Science, and Packaging, San Jose State University, San Jose, CA, United States
| | - Tumisi Beiri Jeremiah Molelekoa
- Centre for Innovative Food Research (CIFR), Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein, Johannesburg, South Africa
| |
Collapse
|
3
|
Perez B, Zermatten C, Haberkorn I, Mathys A. Enhancing protein extraction from heterotrophic Auxenochlorella protothecoides microalgae through emerging cell disruption technologies combined with incubation. BIORESOURCE TECHNOLOGY 2024; 407:131099. [PMID: 38986878 DOI: 10.1016/j.biortech.2024.131099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/29/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
This study evaluated pulsed electric fields (PEF) and ultrasonication (US) combined with incubation to enhance cell disruption and protein extraction from Auxenochlorella protothecoides, comparing them to conventional high-pressure homogenization (HPH). A 5 h incubation enhanced protein yield by 79.4 % for PEF- and 27.2 % for US-treated samples. Extending the incubation to 24 h resulted in a total yield increase of 122 % for PEF (0.25 ± 0.03 kgEP kgTP-1) and 51.9 % for US (0.20 ± 0.02 kgEP-1 kgTP-1). Autofermentation in untreated cells after 24 h resulted in protein release with lower yields than all other treated and incubated samples. While HPH had the highest protein yield (0.58 ± 0.04 kgEP kgTP-1), PEF-incubation after 5 h (56.6 ± 5.3 MJ kgEP-1) and 24 h (49.5 ± 3.7 MJ kgEP-1) were 1.5 and 1.7-times more energy-efficient than HPH (82.9 ± 7.8 MJ kgEP-1). PEF combined incubation is an energy-efficient and targeted protein extraction method in heterotrophic A. protothecoides biorefinery.
Collapse
Affiliation(s)
- Byron Perez
- Laboratory of Sustainable Food Processing, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland; Singapore-ETH Centre, 1 Create Way #06-01, 138602 Singapore, Singapore.
| | - Carole Zermatten
- Laboratory of Sustainable Food Processing, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland; Singapore-ETH Centre, 1 Create Way #06-01, 138602 Singapore, Singapore.
| | - Iris Haberkorn
- Singapore-ETH Centre, 1 Create Way #06-01, 138602 Singapore, Singapore.
| | - Alexander Mathys
- Laboratory of Sustainable Food Processing, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland; Singapore-ETH Centre, 1 Create Way #06-01, 138602 Singapore, Singapore.
| |
Collapse
|
4
|
Nayak N, Bhujle RR, Nanje-Gowda N, Chakraborty S, Siliveru K, Subbiah J, Brennan C. Advances in the novel and green-assisted techniques for extraction of bioactive compounds from millets: A comprehensive review. Heliyon 2024; 10:e30921. [PMID: 38784533 PMCID: PMC11112340 DOI: 10.1016/j.heliyon.2024.e30921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Millets are rich in nutritional and bioactive compounds, including polyphenols and flavonoids, and have the potential to combat malnutrition and various diseases. However, extracting these bioactive compounds can be challenging, as conventional methods are energy-intensive and can lead to thermal degradation. Green-assisted techniques have emerged as promising methods for sustainable and efficient extraction. This review explores recent trends in employing green-assisted techniques for extracting bioactive compounds from millets, and potential applications in the food and pharmaceutical industries. The objective is to evaluate and comprehend the parameters involved in different extraction methods, including energy efficiency, extraction yield, and the preservation of compound quality. The potential synergies achieved by integrating multiple extraction methods, and optimizing extraction efficiency for millet applications are also discussed. Among several, Ultrasound and Microwave-assisted extraction stand out for their rapidity, although there is a need for further research in the context of minor millets. Enzyme-assisted extraction, with its low energy input and ability to handle complex matrices, holds significant potential. Pulsed electric field-assisted extraction, despite being a non-thermal approach, requires further optimization for millet-specific applications, are few highlights. The review emphasizes the importance of considering specific compound characteristics, extraction efficiency, purity requirements, and operational costs when selecting an ideal technique. Ongoing research aims to optimize novel extraction processes for millets and their byproducts, offering promising applications in the development of millet-based nutraceutical food products. Therefore, the current study benefits researchers and industries to advance extraction research and develop efficient, sustainable, and scalable techniques to extract bioactive compounds from millets.
Collapse
Affiliation(s)
- Nidhi Nayak
- Department of Food Technology, Jain Deemed-to-be University, Bangalore, Karnataka, India
| | - Rohan Rajendraji Bhujle
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Guwahati, India
| | - N.A. Nanje-Gowda
- Department of Food Science, University of Arkansas Division of Agriculture, AR, USA
| | - Snehasis Chakraborty
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, USA
- Department of Food Engineering & Technology, Institute of Chemical Technology, Mumbai, India
| | - Kaliramesh Siliveru
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, USA
| | - Jeyamkondan Subbiah
- Department of Food Science, University of Arkansas Division of Agriculture, AR, USA
| | - Charles Brennan
- STEM College, Royal Melbourne Institute of Technology, Melbourne, Australia
| |
Collapse
|
5
|
Nemli E, Ozkan G, Gultekin Subasi B, Cavdar H, Lorenzo JM, Zhao C, Capanoglu E. Interactions between proteins and phenolics: effects of food processing on the content and digestibility of phenolic compounds. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2535-2550. [PMID: 38318731 DOI: 10.1002/jsfa.13275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 12/03/2023] [Accepted: 12/29/2023] [Indexed: 02/07/2024]
Abstract
Phenolic compounds have recently become one of the most interesting topics in different research areas, especially in food science and nutrition due to their health-promoting effects. Phenolic compounds are found together with macronutrients and micronutrients in foods and within several food systems. The coexistence of phenolics and other food components can lead to their interaction resulting in complex formation. This review article aims to cover the effects of thermal and non-thermal processing techniques on the protein-phenolic interaction especially focusing on the content and digestibility of phenolics by discussing recently published research articles. It is clear that the processing conditions and individual properties of phenolics and proteins are the most effective factors in the final content and intestinal fates of phenolic compounds. Besides, thermal and non-thermal treatments, such as high-pressure processing, pulsed electric field, cold plasma, ultrasonication, and fermentation may induce alterations in those interactions. Still, new investigations are required for different food processing treatments by using a wide range of food products to enlighten new functional and healthier food product design, to provide the optimized processing conditions of foods for obtaining better quality, higher nutritional properties, and health benefits. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Elifsu Nemli
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Türkiye
| | - Gulay Ozkan
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Türkiye
| | - Busra Gultekin Subasi
- Center for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, Aarhus, Denmark
| | - Humeyra Cavdar
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Türkiye
| | - Jose M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Ourense, Spain
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Türkiye
| |
Collapse
|
6
|
Edmundson DD, Gustafson RR, Dichiara AB. Sonochemical synthesis of lignin nanoparticles and their applications in poly (vinyl) alcohol composites. Int J Biol Macromol 2024; 254:127487. [PMID: 37863138 DOI: 10.1016/j.ijbiomac.2023.127487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/30/2023] [Accepted: 10/15/2023] [Indexed: 10/22/2023]
Abstract
Lignin is a common and abundant byproduct of the pulp and paper industry and is generally burned to produce steam. Opportunities exist to acquire greater value from lignin by leveraging the properties of this highly conjugated biomacromolecule for applications in UV absorption and polymer reinforcement. These applications can be commercialized by producing value-added lignin nanoparticles (LNPs) using a scalable sonochemical process. In the present research, monodisperse LNPs have been synthesized by subjecting aqueous dispersions of alkali lignin to acoustic irradiation. The resulting particle size distribution and colloidal stability, as determined by dynamic light scattering, transmission electron microscopy and zeta potential analysis, of LNPs can be adjusted by varying the solution pH and ultrasonication energy. As-synthesized LNPs with a mean diameter of 204 nm were incorporated into poly (vinyl) alcohol (PVA) to prepare thin and flexible nanocomposite films using a simple solvent casting method. The addition of 2.5 wt% LNP increased the material's Sun Protection Factor up to 26 compared to 0 for neat PVA, while maintaining light transmission above 75 % in the visible spectra. In addition, the tensile strength and elastic modulus of the PVA nanocomposites improved by 47 % and 36 %, respectively. The presence of LNP also enhanced the thermal stability of the materials. Significantly, the proposed sonochemical process may be generally applicable to the synthesis of a range of naturally-derived LNPs for a variety of value-added applications.
Collapse
Affiliation(s)
- Dylan D Edmundson
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98195, USA
| | - Richard R Gustafson
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98195, USA
| | - Anthony B Dichiara
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
7
|
Ramakrishnan SR, Antony U, Kim S. Non‐thermal process technologies: Influences on nutritional and storage characteristics of millets. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Sudha Rani Ramakrishnan
- Centre for Food Technology, Department of Biotechnology Anna University Chennai India
- Department of Integrative Food, Bioscience and Biotechnology Chonnam National University Gwangju Republic of Korea
| | - Usha Antony
- Centre for Food Technology, Department of Biotechnology Anna University Chennai India
| | - Soo‐Jung Kim
- Department of Integrative Food, Bioscience and Biotechnology Chonnam National University Gwangju Republic of Korea
| |
Collapse
|
8
|
Combined Effect of Ultrasound and Microwave Power in Tangerine Juice Processing: Bioactive Compounds, Amino Acids, Minerals, and Pathogens. Processes (Basel) 2022. [DOI: 10.3390/pr10102100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The inhibition of Escherichia coli ATCC 25922 (E. coli), Staphylococcus aureus ATCC6538 (S. aureus), Salmonella Enteritidis ATCC 13076 (S. Enteritidis), and Listeria monocytogenes DSM12464 (L. monocytogenes) is one of the main aims of the food industry. This study was the first in which the use of ultrasound and microwave power were applied to optimize the values of the bioactive components, amino acids, and mineral compositions of tangerine juice and to inhibit Escherichia coli, Staphylococcus aureus, Salmonella Enteritidis, and Listeria monocytogenes. The response surface methodology (RSM) was used to describe the inactivation kinetics, and the effects of ultrasound treatment time (X1: 12–20 min), ultrasound amplitude (X2:60–100%), microwave treatment time (X3: 30–40 s), and microwave power (X4:200–700 W). The optimum parameters applied to a 5-log reduction in E. coli were determined as ultrasound (12 min, 60%) and microwave (34 s, 700 W). The optimum condition ultrasound–microwave treatment was highly effective in tangerine juice, achieving up to 5.27, 5.12, and 7.19 log reductions for S. aureus, S. Enteritidis, and L. monocytogenes, respectively. Ultrasound–microwave treatment increased the total phenolic compounds and total amino acids. While Cu, K, Mg, and Na contents were increased, Fe and Ca contents were lower in the UM-TJ (ultrasound–microwave-treated tangerine juice) sample. In this case, significant differences were detected in the color values of ultrasound–microwave-treated tangerine juice (UM-TJ) (p < 0.05). The results of this study showed that ultrasound–microwave treatment is a potential alternative processing and preservation technique for tangerine juice, resulting in no significant quality depreciation.
Collapse
|
9
|
Punia Bangar S, Suri S, Malakar S, Sharma N, Whiteside WS. Influence of processing techniques on the protein quality of major and minor millet crops: A review. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences Clemson University 29634 Clemson USA
| | - Shweta Suri
- Amity Institute of Food Technology (AIFT) Amity University Uttar Pradesh 201301 Noida India
| | - Santanu Malakar
- Department of Food Engineering National Institute of Food Technology Entrepreneurship and Management 131028 Sonipat Haryana India
| | - Nitya Sharma
- Centre for Rural Development and Technology Indian Institute of Technology Delhi 110016 New Delhi India
| | | |
Collapse
|
10
|
Yusoff IM, Mat Taher Z, Rahmat Z, Chua LS. A review of ultrasound-assisted extraction for plant bioactive compounds: Phenolics, flavonoids, thymols, saponins and proteins. Food Res Int 2022; 157:111268. [DOI: 10.1016/j.foodres.2022.111268] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 12/27/2022]
|
11
|
Keawpeng I, Lekjing S, Paulraj B, Venkatachalam K. Application of Clove Oil and Sonication Process on the Influence of the Functional Properties of Mung Bean Flour-Based Edible Film. MEMBRANES 2022; 12:535. [PMID: 35629861 PMCID: PMC9146281 DOI: 10.3390/membranes12050535] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 02/04/2023]
Abstract
The present study was aimed to investigate the effects of sonication and clove oil incorporation on the improvement of physical, antioxidant, and antimicrobial properties and lipid oxidation inhibiting abilities of mung bean flour (MF)-based films. There were three groups of films tested (1) MF: mung bean flour alone, (2) MFC: MF incorporated with 2% clove oil (C), and (3) MFCU: MFC prepared with sonication (25 kHz, 100% amplitude, 10 min). Film thickness and bulk density showed slight differences, and moisture content, solubility, and water vapor permeability significantly differed between the formulations. Tensile strength, elongation at break, and Young’s modulus were highest for the MFCU films, followed by MFC and MF in rank order. Furthermore, the Fourier-transform infrared spectroscopy results also demonstrated that the clove oil and sonication treatment had improved the interconnections of the biopolymers, thus increasing the physical strength of the film. Phytochemicals in terms of total phenolics and total flavonoids were elevated in the MFCU films and contributed to stronger radical scavenging abilities (p < 0.05). MFC and MFCU films showed a strong antibacterial control of the Gram-positive Staphylococcus aureus (S. aureus) and also of the Gram-negative Campylobacter jejuni (C. jejuni). Overall, the lipid oxidation indicators Thiobarbituric acid reactive substances (TBARS, peroxide value, p-anisidine value, and totox value) showed significantly high inhibition, attributed to radical scavenging activities in the MFCU and MFC samples. The mung bean flour films incorporated with clove oil and prepared with sonication have good potential as packaging materials for food due to strong physical, antimicrobial, and antioxidant properties, as well as lipid oxidation inhibiting abilities.
Collapse
Affiliation(s)
- Ittiporn Keawpeng
- Faculty of Agricultural Technology, Songkhla Rajabhat University, Muang, Songkhla 90000, Thailand;
| | - Somwang Lekjing
- Faculty of Innovative Agriculture and Fishery Establishment Project, Prince of Songkla University, Surat Thani Campus, Makham Tia, Muang, Surat Thani 84000, Thailand;
| | - Balaji Paulraj
- PG and Research Centre in Biotechnology, MGR College, Hosur 635130, Tamil Nadu, India;
| | - Karthikeyan Venkatachalam
- Faculty of Innovative Agriculture and Fishery Establishment Project, Prince of Songkla University, Surat Thani Campus, Makham Tia, Muang, Surat Thani 84000, Thailand;
| |
Collapse
|
12
|
|
13
|
Castañeda-Valbuena D, Ayora-Talavera T, Luján-Hidalgo C, Álvarez-Gutiérrez P, Martínez-Galero N, Meza-Gordillo R. Ultrasound extraction conditions effect on antioxidant capacity of mango by-product extracts. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2021.03.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|