1
|
Sima J, Wang J, Song J, Du X, Lou F, Zhu Y, Lei J, Huang Q. Efficient degradation of polystyrene microplastic pollutants in soil by dielectric barrier discharge plasma. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133754. [PMID: 38394892 DOI: 10.1016/j.jhazmat.2024.133754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024]
Abstract
In this study, the atmospheric dielectric barrier discharge (DBD) plasma was proposed for the degradation of polystyrene microplastics (PS-MPs) for the first time, due to its ability to generate reactive oxygen species (ROS). The local temperature in plasma was found to play a crucial role, as it enhanced the degradation reaction induced by ROS when it exceeded the melting temperature of PS-MPs. Factors including applied voltage, air flow rate, and PS-MPs concentration were investigated, and the degradation products were analyzed. High plasma energy and adequate supply of ROS were pivotal in promoting degradation. At 20.1 kV, the degradation efficiency of PS-MPs reached 98.7% after 60 min treatment, with gases (mainly COx, accounting for 96.4%) as the main degradation products. At a concentration of 1 wt%, the PS-MPs exhibited a remarkable conversion rate of 90.6% to COx, showcasing the degradation performance and oxidation degree of this technology. Finally, the degradation mechanism of PS-MPs combined with the detection results of ROS was suggested. This work demonstrates that DBD plasma is a promising strategy for PS-MPs degradation, with high energy efficiency (8.80 mg/kJ) and degradation performance (98.7% within 1 h), providing direct evidence for the rapid and comprehensive treatment of MP pollutants.
Collapse
Affiliation(s)
- Jingyuan Sima
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jun Wang
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China; Jiaxing Research Institute, Zhejiang University, Jiaxing 314000, China
| | - Jiaxing Song
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xudong Du
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China
| | - Fangfang Lou
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China
| | - Youqi Zhu
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiahui Lei
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qunxing Huang
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
2
|
Liu D, Liu X, Guo Z, Li Q, Yang J, Xing H, Chen D. Aluminum-Porphyrin Metal-Organic Frameworks for Visible-Light Photocatalytic and Sonophotocatalytic Cr(VI) Reduction. Inorg Chem 2023; 62:19812-19820. [PMID: 37988065 DOI: 10.1021/acs.inorgchem.3c03563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
In this study, four isostructural aluminum-based porphyrin metal-organic frameworks [Al-TCPP(M), M = H2 and Zn] with different morphologies and sizes were synthesized by the hydrothermal method. By adjusting the hydrothermal reaction time and the types of porphyrin ligands, Al-TCPP(M) MOFs exhibited diverse morphologies including tetragonal, rectangular, and carambola-like phase. In view of the introduction of porphyrin ligands and the strong coordination effect of Al-O units, Al-TCPP(M) MOFs exhibited good chemical stability, broad visible light harvesting capability, and fast photogenerated charge response. Four Al-TCPP(M) MOFs exhibited excellent photocatalytic activities for Cr(VI) in aqueous solution. Notably, the regulation to the nanoscale carambola-like morphology of Al-TCPP MOFs and metallization of the porphyrin ligand promoted the Cr(VI) photoreduction reaction where the catalytic activity of metallic carambola-like Al-TCPP increased 1.7 times compared to that of nonmetallic tetragonal MOFs. With the assistance of sonophotocatalysis, the Cr(VI) average reduction rates reached 0.658, 0.542, 0.785, and 0.629 mg·L-1·min-1 for Al-TCPP(H2)-24h, Al-TCPP(H2)-72h, Al-TCPP(Zn)-24h, and Al-TCPP(Zn)-72h, which are 1.2-1.4 times higher than that of photocatalysis. UV-vis absorption spectroscopy, electronic spin resonance, and fluorescence spectroscopy experiments demonstrated that the synergistic effect of photochemistry and sonochemistry promoted the transfer of photogenerated electrons from Al-TCPP(M) to Cr(VI), thus enhancing the catalytic activity. The combination of the sonophotocatalytic technology with aluminum-porphyrin MOFs may become an effective strategy to improve MOF-based photocatalytic systems.
Collapse
Affiliation(s)
- Dandan Liu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, No. 26 Hexing Road, Harbin 150040, China
| | - Xin Liu
- Provincial Key Laboratory of Advanced Energy Materials, College of Chemistry, Northeast Normal University, No. 5268 Renmin Street, Changchun 130024, China
| | - Zhifen Guo
- Jiangsu Key Laboratory for Biofunctional Molecules, School of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, No. 6 Xinhe West Road, Nan Jing 211200, China
| | - Qiang Li
- Inner Mongolia Institute of Synthetic Chemicals, No. 65 Xinhua East Street, Hohhot 010010, China
| | - Jian Yang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, No. 26 Hexing Road, Harbin 150040, China
| | - Hongzhu Xing
- Provincial Key Laboratory of Advanced Energy Materials, College of Chemistry, Northeast Normal University, No. 5268 Renmin Street, Changchun 130024, China
| | - Dashu Chen
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, No. 26 Hexing Road, Harbin 150040, China
| |
Collapse
|
3
|
Rama P, Mariselvi P, Sundaram R, Muthu K. Eco-friendly green synthesis of silver nanoparticles from Aegle marmelos leaf extract and their antimicrobial, antioxidant, anticancer and photocatalytic degradation activity. Heliyon 2023; 9:e16277. [PMID: 37255978 PMCID: PMC10225894 DOI: 10.1016/j.heliyon.2023.e16277] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 06/01/2023] Open
Abstract
The present research work, green synthesis of silver nanoparticles (Ag NPs) was synthesized from silver ions using the reducing and capping agents of Aegle marmelos leaf extract. Initially, UV-vis spectrophotometry absorption of the Surface Plasmon Resonance centre at 450 nm was confirmed the formation of Ag NPs. Preliminary phytochemical and FT-IR analysis indicate the identification of secondary metabolised flavonoids that act as the reducing and capping agent of the synthesized Ag NPs. Transmission electron microscope analysis, morphology of Ag NPs shown by transmission electron microscopy is spherical with a size range of ∼30-50 nm. The synthesized Ag NPs were investigate the in-vitro anticancer, antimicrobial and antioxidant activity, results shows the potential activity against the standard drugs. The Ag NPs also revealed the cytotoxicity against MDA-MB-231 human breast cancer cells. The MTT assay shows the IC50 values at 125 ± 4.26 μg/mL of Ag NPs compared to the untreated cells of negative control. The Ag NPs was excellent photocatalyst act as degradation of environmentally polluted Basic Fuchsin dye within 18 min.
Collapse
Affiliation(s)
- P. Rama
- Department of Chemistry, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, 627012, Tamil Nadu, India
| | - P. Mariselvi
- Department of Chemistry, Rani Anna Govt. College for Women (Affiliated to Manonmaniam Sundaranar University, Tirunelveli, 627012, Tamil Nadu, India), Tirunelveli, 627008, Tamil Nadu, India
| | - R. Sundaram
- Department of Biochemistry, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences, (Saveetha University) Vellapanchavadi, Chennai, 600077, Tamil Nadu, India
| | - K. Muthu
- Department of Chemistry, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, 627012, Tamil Nadu, India
| |
Collapse
|
4
|
Yadav S, Shakya K, Gupta A, Singh D, Chandran AR, Varayil Aanappalli A, Goyal K, Rani N, Saini K. A review on degradation of organic dyes by using metal oxide semiconductors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:71912-71932. [PMID: 35595896 DOI: 10.1007/s11356-022-20818-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/10/2022] [Indexed: 06/14/2023]
Abstract
The discharge of organic dye pollutants in natural water bodies has put forward a big challenge of providing clean water to a large part of the population. As the population is increasing with time, only underground water is not sufficient to complete the water requirements of everyone everywhere. Purification of wastewater and its reuse is the only way to fulfill the water needs. Nanotechnology has been used very efficiently for wastewater treatment via photocatalytic degradation of dye molecules. In the past few years, a lot of investigations have been done to enhance the photocatalytic activity of metal oxide semiconductors for water purification. In this review, we have discussed the different methods of synthesis of various metal oxide semiconductor nanoparticles, energy band gap, their role as efficient photocatalysts, radiations used for photocatalytic reactions, and their degradation efficiency to degrade the dye pollutants. We have also discussed the nanocomposites of metal oxide with graphene. These nanocomposites have been utilized as the efficient photocatalyst due to unique characteristics of graphene such as extended range of light absorption, separation of charges, and high capacity of adsorption of the dye pollutants.
Collapse
Affiliation(s)
- Sapna Yadav
- Department of Chemistry, Miranda House, University of Delhi, New Delhi-110007, India
| | - Kriti Shakya
- Department of Chemistry, Miranda House, University of Delhi, New Delhi-110007, India
| | - Aarushi Gupta
- Department of Chemistry, Miranda House, University of Delhi, New Delhi-110007, India
| | - Divya Singh
- Department of Chemistry, Miranda House, University of Delhi, New Delhi-110007, India
| | - Anjana R Chandran
- Department of Chemistry, Miranda House, University of Delhi, New Delhi-110007, India
| | | | - Kanika Goyal
- Department of Chemistry, Miranda House, University of Delhi, New Delhi-110007, India
| | - Nutan Rani
- Department of Chemistry, Miranda House, University of Delhi, New Delhi-110007, India
| | - Kalawati Saini
- Department of Chemistry, Miranda House, University of Delhi, New Delhi-110007, India.
| |
Collapse
|
5
|
Bala A, Rani G, Kumar N, Ahlawat R. Catalytic and antioxidant activity of silver nanoparticles fabricated by Neolamarckia cadamba bark extract. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 25:1979-1987. [PMID: 37218063 DOI: 10.1080/15226514.2023.2214243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Plant parts have unfathomable potential in the synthesis of nanoparticles. The current study was designed for the photosynthesis of silver nanoparticles (NC-AgNPs) using bark extract of N. cadamba. Different analytical methods were used to characterize the synthesized nanoparticles. HR-TEM analysis identifies the formation of multi-shaped NC-AgNPs like spherical, quasi-spherical, rod-shaped, trigonal, square, pentagonal, and hexagonal with a size range of 18-91 nm. The crystallize size of NC-AgNPs was found to be 27.6 nm. The catalytic effectiveness of NC-AgNPs in degrading Crystal violet (CV) dye is remarkable. Important parameters such as the effect of catalyst dose and pH were investigated. Dose-dependentantioxidant activity of NC-AgNPs was determined by using 2,2-Diphenyl-1-picrylhydrazyl (DPPH) assay. Low-cost synthesis and eco-friendly reagents were the salient features that made NC-AgNPs more attractive toward catalytic and antioxidant activities.
Collapse
Affiliation(s)
- Anu Bala
- Department of Chemistry, Chaudhary Devi Lal University, Sirsa, India
| | - Gita Rani
- Department of Chemistry, Chaudhary Devi Lal University, Sirsa, India
| | - Naveen Kumar
- Department of Chemistry, M.D. University, Rohtak, India
| | - Rachna Ahlawat
- Department of Physics, Chaudhary Devi Lal University, Sirsa, India
| |
Collapse
|
6
|
Nascimento VX, Pinto D, Lütke SF, da Silva MCF, Machado FM, Lima ÉC, Silva LFO, Dotto GL. Brilliant blue FCF dye adsorption using magnetic activated carbon from Sapelli wood sawdust. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:58684-58696. [PMID: 36997777 DOI: 10.1007/s11356-023-26646-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/21/2023] [Indexed: 05/10/2023]
Abstract
Sapelli wood sawdust-derived magnetic activated carbon (SWSMAC) was produced by single-step pyrolysis using KOH and NiCl2 as activating and magnetization agents. SWSMAC was characterized by several techniques (SEM/EDS, N2 adsorption/desorption isotherms, FTIR, XRD, VSM, and pHPZC) and applied in the brilliant blue FCF dye adsorption from an aqueous medium. The obtained SWSMAC was a mesoporous material and showed good textural properties. Metallic nanostructured Ni particles were observed. Also, SWSMAC exhibited ferromagnetic properties. In the adsorption experiments, adequate conditions were an adsorbent dosage of 0.75 g L-1 and a solution pH of 4. The adsorption was fast, and the pseudo-second-order demonstrated greater suitability to the kinetic data. The Sips model fitted the equilibrium data well, and the maximum adsorption capacity predicted by this model was 105.88 mg g-1 (at 55 °C). The thermodynamic study revealed that the adsorption was spontaneous, favorable, and endothermic. Besides, the mechanistic elucidation suggested that electrostatic interactions, hydrogen bonding, π-π interactions, and n-π interactions were involved in the brilliant blue FCF dye adsorption onto SWSMAC. In summary, an advanced adsorbent material was developed from waste by single-step pyrolysis, and this material effectively adsorbs brilliant blue FCF dye.
Collapse
Affiliation(s)
- Victoria X Nascimento
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil
| | - Diana Pinto
- Universidad de La Costa, CUC, Calle 58 # 55-56, 080002, Barranquilla, Atlántico, Colombia
| | - Sabrina F Lütke
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil
| | - Maria C F da Silva
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil
| | - Fernando M Machado
- Technology Development Center, Federal University of Pelotas-UFPEL, Gomes Carneiro St., Pelotas, RS, 96010-610, Brazil
| | - Éder C Lima
- Institute of Chemistry, Federal University of Rio Grande do Sul-UFRGS, Av. Bento Gonçalves 9500, P.O. Box 15003, Porto Alegre, RS, 91501-970, Brazil
| | - Luis F O Silva
- Universidad de La Costa, CUC, Calle 58 # 55-56, 080002, Barranquilla, Atlántico, Colombia
| | - Guilherme L Dotto
- Research Group on Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
7
|
Moeen S, Ikram M, Haider A, Haider J, Ul-Hamid A, Nabgan W, Shujah T, Naz M, Shahzadi I. Comparative Study of Sonophotocatalytic, Photocatalytic, and Catalytic Activities of Magnesium and Chitosan-Doped Tin Oxide Quantum Dots. ACS OMEGA 2022; 7:46428-46439. [PMID: 36570226 PMCID: PMC9773341 DOI: 10.1021/acsomega.2c05133] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/25/2022] [Indexed: 05/30/2023]
Abstract
The present study demonstrates the hydrothermal synthesis of SnO2 quantum dots (QDs) doped with different concentrations (2, 4 wt %) of magnesium (Mg) and a fixed amount of chitosan (CS). The obtained samples were investigated through a number of characterizations for optical analysis, elemental composition, crystal structure, functional group presence, interlayer spacing, and surface morphology. The XRD spectrum revealed the tetragonal structure of SnO2 with no significant variations occurring upon the addition of CS and Mg. The crystallite size of QDs was reduced by incorporation of dopants. The optical absorption spectra revealed a red shift, assigned to the reduction of the band gap energy upon doping. TEM analysis proved that the few nanorod-like structures of CS overlapped with SnO2 QDs, and agglomeration was observed upon Mg doping. The incorporation of dopants little enhanced the d-spacing of SnO2 QDs. Moreover, the synthesized nanocatalyst was utilized to calculate the degradation percentage of methylene blue (MB) dye. Afterward, a comparative analysis of catalytic activity, photocatalytic activity, and sonophotocatalytic activity was carried out. Notably, 4% Mg/CS-doped QDs showed maximum sonophotocatalytic degradation of MB in basic medium compared to other activities. Lastly, the prepared nanocatalyst was found to be efficient for dye degradation in any environment and inexpensive.
Collapse
Affiliation(s)
- Sawaira Moeen
- Solar
Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore54000,Punjab, Pakistan
| | - Muhammad Ikram
- Solar
Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore54000,Punjab, Pakistan
| | - Ali Haider
- Department
of Clinical Sciences, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture (MNSUA), Multan66000, Pakistan
| | - Junaid Haider
- Tianjin
Institute of Industrial Biotechnology, Chinese
Academy of Sciences, Tianjin300308, China
| | - Anwar Ul-Hamid
- Center
for Engineering Research, Research Institute, King Fahd University of Petroleum & Minerals, Dhahran31261, Saudi Arabia
| | - Walid Nabgan
- Departament
d′Enginyeria Química, Universitat
Rovira i Virgili, Av
Països Catalans 26, 43007Tarragona, Spain
| | - Tahira Shujah
- Department
of Physics, University of Central Punjab, Lahore54000, Pakistan
| | - Misbah Naz
- Department
of Chemistry, University of Education, Lahore54000, Pakistan
| | - Iram Shahzadi
- Punjab
University College of Pharmacy, University
of the Punjab, 54000Lahore, Pakistan
| |
Collapse
|
8
|
Thomas P, Lai CW, Johan MR. Design of multifunctional C@Fe 3O 4-MoO 3 binary nanocomposite for applications in triphenylmethane textile dye amelioration via ultrasonic adsorption and electrochemical energy storage. CHEMOSPHERE 2022; 308:136214. [PMID: 36057345 DOI: 10.1016/j.chemosphere.2022.136214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/07/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
In this paper, we present the synthesis of C@Fe3O4-MoO3 binary composite were prepared through the facile hydrothermal process. The ultrasonic aided adsorption efficacy was evaluated by studying triphenylmethane dye's adsorption potential. The ultrasonic aided adsorption capacity towards crystal violet was 993.6 mg/g, which is remarkably higher and best fitted with the Langmuir isotherm model and followed pseudo-second-order kinetics. The electrochemical studies working electrode have been prepared with 80 wt% active material, 10 wt% carbon black, and 10% polyvinylidene difluoride to evaluate energy storage characteristics. The C@Fe3O4-MoO3 demonstrated an excellent specific capacitance of 40.94 F/g with better retention and stability, making it a potential cathode material for next-generation electrochemical energy storage devices.
Collapse
Affiliation(s)
- Paul Thomas
- Nanotechnology & Catalysis Research Centre (NANOCAT), Institute for Advanced Studies (IAS), University of Malaya (UM), Level 3, Block A, 50603, Kuala Lumpur, Malaysia
| | - Chin Wei Lai
- Nanotechnology & Catalysis Research Centre (NANOCAT), Institute for Advanced Studies (IAS), University of Malaya (UM), Level 3, Block A, 50603, Kuala Lumpur, Malaysia.
| | - Mohd Rafie Johan
- Nanotechnology & Catalysis Research Centre (NANOCAT), Institute for Advanced Studies (IAS), University of Malaya (UM), Level 3, Block A, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
9
|
Sadeghi Rad T, Yazici ES, Khataee A, Gengec E, Kobya M. Nanoarchitecture of graphene nanosheets decorated with NiCr layered double hydroxide for sonophotocatalytic degradation of refractory antibiotics. ENVIRONMENTAL RESEARCH 2022; 214:113788. [PMID: 35793723 DOI: 10.1016/j.envres.2022.113788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/27/2022] [Accepted: 06/27/2022] [Indexed: 05/12/2023]
Abstract
Highly efficient and durable catalysts for wastewater treatment are urgently required to tackle critical environmental issues. In this regard, NiCr LDH (NC), NiCr LDH-GO (NC-GO), and NiCr LDH-rGO (NC-rGO) nanocomposites were synthesized. The results of XRD, EDX, and FTIR analyses not only explored the crystallographic and chemical structures of catalysts but also confirmed the successful synthesis. Further morphological, physical, chemical, and optical characteristics of the catalysts were evaluated more by SEM, HRTEM, BET, DRS, and XPS techniques. The as-synthesized catalysts were used for the efficient mineralization of rifadin under 50 W LED visible light irradiation and the ultrasonic power of 150 W. Amongst, 0.75 g L-1 of NC-rGO demonstrated high sonophotocatalytic efficiency (88%) in natural pH (pH = 8) of 15 mg L-1 of rifadin. The introduced system is also powerful for the decontamination of pharmaceutical-containing wastewater as well as other refractory antibiotics. Moreover, the radical trapping experiments demonstrated that the main reactive species involved in the degradation of rifadin are •OH, h+, and O2•-. The possible intermediates were thoroughly investigated using GCMS analysis. Also, NC-rGO demonstrated superior antibacterial activity in comparison with NC, NC-GO samples.
Collapse
Affiliation(s)
- Tannaz Sadeghi Rad
- Department of Environmental Engineering, Gebze Technical University, 41400, Gebze, Turkey
| | - Emine Sevval Yazici
- Department of Environmental Engineering, Gebze Technical University, 41400, Gebze, Turkey
| | - Alireza Khataee
- Department of Environmental Engineering, Gebze Technical University, 41400, Gebze, Turkey; Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran.
| | - Erhan Gengec
- Department of Environmental Protection, University of Kocaeli, 41275, Izmit, Kocaeli, Turkey
| | - Mehmet Kobya
- Department of Environmental Engineering, Gebze Technical University, 41400, Gebze, Turkey; Department of Environmental Engineering, Kyrgyz-Turkish Manas University, 720038, Bishkek, Kyrgyzstan
| |
Collapse
|
10
|
Low-frequency acoustic irradiation coupled photocatalytic degradation of dye pollutant using LaNi0.5Co0.5O3/g-C3N4 nanocatalyst. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
11
|
Thomas P, Lai CW, Johan MR. Facile synthesis of multifunctional C@Fe 3O 4-MoO 3-rGO ternary composite and its versatile roles as sonoadsorbent to ameliorate triphenylmethane textile dye and as potential electrode for supercapacitor applications. ENVIRONMENTAL RESEARCH 2022; 212:113417. [PMID: 35569532 DOI: 10.1016/j.envres.2022.113417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/01/2022] [Accepted: 04/30/2022] [Indexed: 06/15/2023]
Abstract
The toxic wastewater effluents from textile dyes have been a significant environmental threat worldwide in recent decades. Against this backdrop, this study investigates the performance of C@Fe3O4-MoO3-rGO as a sonoadsorbent to ameliorate crystal violet (CV) dye from the aqua matrix and further explores its potential as an electrode in supercapacitor applications. The phase purity, crystal structure, surface morphology, thermal stability and magnetic behaviour characteristics of the composite were studied using various characterisation techniques such as powder X-ray diffraction (XRD), Raman Spectroscopy, Fourier transform infrared spectroscopy (FTIR), Field emission scanning electron microscopy (FESEM), High-resolution transmission electron microscopy (HRTEM), Thermogravimetric analysis (TGA) and Vibrating-sample magnetometry (VSM). From the Langmuir isotherm model, the synthesised sonoadsorbent exhibited a maximum adsorption capacity of 1664.26 mg/g for crystal violet, which is remarkably high. Further, to its inherited magnetic characteristics, the composite can be easily separated from the solution by using an external magnet. Furthermore, the working electrode was synthesised with 80% active material, 10% carbon black, and 10% polyvinylidene difluoride to investigate its suitability in supercapacitor applications. The C@Fe3O4-MoO3-rGO composite exhibited an excellent capacitance value of 180.36 F/g with commendable cycling stability, making it suitable as a potential cathode material for the next generation supercapacitors.
Collapse
Affiliation(s)
- Paul Thomas
- Nanotechnology & Catalysis Research Centre (NANOCAT), Institute for Advanced Studies (IAS), University of Malaya (UM), Level 3, Block A, 50603, Kuala Lumpur, Malaysia
| | - Chin Wei Lai
- Nanotechnology & Catalysis Research Centre (NANOCAT), Institute for Advanced Studies (IAS), University of Malaya (UM), Level 3, Block A, 50603, Kuala Lumpur, Malaysia.
| | - Mohd Rafie Johan
- Nanotechnology & Catalysis Research Centre (NANOCAT), Institute for Advanced Studies (IAS), University of Malaya (UM), Level 3, Block A, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
12
|
Man S, Luo D, Sun Q, Yang H, Bao H, Xu K, Zeng X, He M, Yin Z, Wang L, Mo Z, Yang W, Li X. When MXene (Ti 3C 2T x) meet Ti/PbO 2: An improved electrocatalytic activity and stability. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128440. [PMID: 35158250 DOI: 10.1016/j.jhazmat.2022.128440] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/17/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Stable electrode materials with high catalytic activity are urgently required for electrochemical degradation of refractory organic pollutants in wastewater treatment. Herein, high conductive MXene (Ti3C2Tx) was firstly fabricated by electrophoretic deposition (EPD) as an interlayer for preparing a novel PbO2 electrode. The well-conducted Ti3C2Tx interlayer significantly improved the electrochemical performance of the EPD-2.0/PbO2 (EPD time was 2.0 min) electrode with the charge transfer resistance decreased by 9.51 times, the inner active sites increased by 5.21 times and the ∙OH radicals generation ability enhanced by 4.07 times than the control EPD-0/PbO2 anode. Consequently, the EPD-2.0/PbO2 electrode achieved nearly 100% basic fuchsin (BF) and 86.78% COD removal efficiency after 3.0 h electrolysis. Therefore, this new PbO2 electrode presented a promising potential for electrochemical degradation of BF and the new Ti3C2Tx middle layer could also be used to fabricate other efficient and stable anodes, such as SnO2, MnO2, TiO2, etc.
Collapse
Affiliation(s)
- Shuaishuai Man
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Dehui Luo
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Qing Sun
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Haifeng Yang
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Hebin Bao
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China; Fundamental Studies department, Army logistics University of PLA, Chongqing 401311, PR China
| | - Ke Xu
- Multiscale Crystal Materials Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China
| | - Xuzhong Zeng
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Miao He
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Zehao Yin
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Li Wang
- College of Power Engineering, Chongqing Electric Power College, Chongqing 400053, PR China
| | - Zhihong Mo
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Wenjing Yang
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China.
| | - Xueming Li
- College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China.
| |
Collapse
|
13
|
Cintas P, Cravotto G, Gondrexon N, Leveque JM. Special Issue on "Ultrasound hybridized technologies: A new breathing for sonochemistry". ULTRASONICS SONOCHEMISTRY 2022; 86:105995. [PMID: 35418337 PMCID: PMC9171233 DOI: 10.1016/j.ultsonch.2022.105995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
|
14
|
Hassani A, Malhotra M, Karim AV, Krishnan S, Nidheesh PV. Recent progress on ultrasound-assisted electrochemical processes: A review on mechanism, reactor strategies, and applications for wastewater treatment. ENVIRONMENTAL RESEARCH 2022; 205:112463. [PMID: 34856168 DOI: 10.1016/j.envres.2021.112463] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/18/2021] [Accepted: 11/27/2021] [Indexed: 05/26/2023]
Abstract
The electrochemical advanced oxidation processes (EAOPs) have received significant attention among the many other water and wastewater treatment technologies. However, achieving a desirable removal effect with a single technique is frequently difficult. Therefore, the integration of ultrasound technique with other processes such as electrocoagulation, electro-Fenton, and electrooxidation is a critical way to achieve effective organic pollutants decomposition from wastewater. This review paper is focused on ultrasound-assisted electrochemical (US/electrochemical) processes, so-called sonoelectrochemical processes of various organic pollutants. Emphasis was given to recently published articles for discussing the results and trends in this research area. The use of ultrasound and integration with electrochemical processes has a synergistic impact owing to the physical and chemical consequences of cavitation, resulting in enhancing the mineralization of organic pollutants. Various types of sonoelectrochemical reactors (batch and continuous) employed in the US/electrochemical processes were reviewed. In addition, the strategies to avoid passivation, enhanced generation of reactive oxygen species, and mixing effect are reviewed. Finally, concluding remarks and future perspectives on this research topic are also explored and recommended.
Collapse
Affiliation(s)
- Aydin Hassani
- Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering, Near East University, 99138 Nicosia, TRNC, Mersin 10, Turkey.
| | - Milan Malhotra
- Environmental Science and Engineering Department, Indian Institute of Technology, Bombay, India
| | - Ansaf V Karim
- Environmental Science and Engineering Department, Indian Institute of Technology, Bombay, India
| | - Sukanya Krishnan
- Environmental Science and Engineering Department, Indian Institute of Technology, Bombay, India
| | - P V Nidheesh
- CSIR National Environmental Engineering Research Institute, Nagpur, Maharashtra, India.
| |
Collapse
|
15
|
Milad Tabatabaeinejad S, Yousif QA, Abbas Alshamsi H, Al-Nayili A, Salavati-Niasari M. Ultrasound-assisted Fabrication and Characterization of a Novel UV-light-responsive Er2Cu2O5 Semiconductor Nanoparticle Photocatalyst. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
16
|
Shi Z, Ma J, Li F, Li T. Nearly monodisperse Dy2Sn2O7 nanospheres: hydrothermal synthesis without a template or surfactant and effective sonocatalytic performance. NEW J CHEM 2022. [DOI: 10.1039/d1nj04690j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nearly monodisperse Dy2Sn2O7 nanospheres were prepared by a one-step hydrothermal method, and were used for the ultrasonic catalytic degradation of organic dyes.
Collapse
Affiliation(s)
- Zhaoxia Shi
- College of Chemistry, Key Lab of Environment Friendly Chemistry and Application in Ministry of Education, Xiangtan University, Xiangtan, 411105, China
| | - Jinxiu Ma
- College of Chemistry, Key Lab of Environment Friendly Chemistry and Application in Ministry of Education, Xiangtan University, Xiangtan, 411105, China
| | - Feng Li
- College of Chemistry, Key Lab of Environment Friendly Chemistry and Application in Ministry of Education, Xiangtan University, Xiangtan, 411105, China
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, P.O. Box 3000, FIN-90014, Finland
| | - Taohai Li
- College of Chemistry, Key Lab of Environment Friendly Chemistry and Application in Ministry of Education, Xiangtan University, Xiangtan, 411105, China
- Nano and Molecular Systems Research Unit, Faculty of Science, University of Oulu, P.O. Box 3000, FIN-90014, Finland
| |
Collapse
|
17
|
Maridevaru MC, Aljafari B, Anandan S, Ashokkumar M. Synergistic impacts of sonolysis aided photocatalytic degradation of water pollutant over perovskite-type CeNiO 3 nanospheres. NEW J CHEM 2022. [DOI: 10.1039/d2nj01127a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The current study reports on the preparation of perovskite-type CeNiO3 nanostructures as a sonophotocatalyst via a facile hydrothermal approach followed by annealing at 800 °C.
Collapse
Affiliation(s)
- Madappa C Maridevaru
- Nanomaterials & Solar Energy Conversion Lab, Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620015, India
| | - Belqasem Aljafari
- Department of Electrical Engineering, College of Engineering, Najran University, Najran, 11001, Saudi Arabia
| | - Sambandam Anandan
- Nanomaterials & Solar Energy Conversion Lab, Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620015, India
| | | |
Collapse
|
18
|
Yentür G, Dükkancı M. Synergistic effect of sonication on photocatalytic oxidation of pharmaceutical drug carbamazepine. ULTRASONICS SONOCHEMISTRY 2021; 78:105749. [PMID: 34520962 PMCID: PMC8441083 DOI: 10.1016/j.ultsonch.2021.105749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 07/28/2021] [Accepted: 09/02/2021] [Indexed: 05/05/2023]
Abstract
Photocatalytic, sono-photocatalytic oxidation of pharmaceutical drug of carbamazepine was successfully carried out using Ag/AgCl supported BiVO4 catalyst. For this purpose, firstly, photocatalytic oxidation was optimized by central composite design methodology and then synergistic effect of sonication was investigated. Low frequency (20 kHz) probe type and high frequency (850 kHz) plate type sonication at pulse and continuous mode were studied to degrade the carbamazepine (CBZ) containing wastewater. Pulse duties of 1:5 and 5:1 (on : off) were tested using the high frequency sonication system in the sono-photocatalytic oxidation of CBZ. The effects of frequency, power density measured from calorimetry by changing amplitudes were discussed in the sono-photocatalytic oxidation of CBZ. Complete carbamazepine removal was achieved at the optimum conditions of 5 ppm CBZ initial concentration with 1.5 g/L of catalysts loading and at an alkaline pH of 10 at the end of 4 h of photocatalytic reaction under visible LED light irradiation. Both low frequency and high frequency sonication systems caused an increase in photocatalytic efficiency in a shorter treatment time of 60 min. CBZ removal increased from 44% to 65.42% in low frequency sonication of 20 kHz at the amplitude of 20% (0.15 W/mL power density). In the case of high frequency ultrasonic system (850 kHz), CBZ removal increased significantly from 44% to 89.5 % at 75% amplitude (0.12 W/mL power density) within 60 min of reaction. Continuous mode sonication was observed to be more effective than that of pulse mode sonication not only for degradation efficiency and also for electrical energy consumption needed to degrade CBZ. Sono-catalytic oxidation was also conducted with simulated wastewater that contains SO42-, CO32-, NO3-, Cl- anions and natural organic component of fulvic acid. The CBZ degradation was inhibited slightly in the presence of NO3- and Cl-, and fulvic acid, however, the existence of SO42- and CO32- increased the degradation degree of CBZ. Toxicity tests were performed to determine the toxicity of untreated CBZ, and treated CBZ by photocatalytic, and sono-photocatalytic oxidations.
Collapse
Affiliation(s)
- Gizem Yentür
- Ege University, Engineering Faculty, Chemical Engineering Department, 35100 Bornova, Izmir, Turkey
| | - Meral Dükkancı
- Ege University, Engineering Faculty, Chemical Engineering Department, 35100 Bornova, Izmir, Turkey.
| |
Collapse
|