1
|
Li H, Hu C, He X, Wang J, Tian S, Zhu X, Mao X. Mechanism and kinetics study of vanadium leaching from landfilled metallurgical residues by ultrasonic with ozonation enhancement in a low-acid medium. ULTRASONICS SONOCHEMISTRY 2024; 109:106998. [PMID: 39032369 PMCID: PMC11639428 DOI: 10.1016/j.ultsonch.2024.106998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Landfilled metallurgical residues are valuable raw materials for the recovery of strategic vanadium resources. However, efficient separation of vanadium from these residues is challenging due to its strong oxidation resistance and coating within silicate inclusions. To address this issue, this study proposes an enhanced leaching process utilizing the synergistic effect of O3-catalyzed ultrasonic field in a low concentration sulfuric acid system. Results show that following a 10-minute O3 and ultrasonic treatment, the direct leaching rate of vanadium experienced a remarkable 46.7 % increase. Quenching experiments revealed a hierarchical order of active species within the reaction process:⋅OH >⋅O2-> H+, with⋅OH oxidation exhibiting the most pronounced capacity for disrupting the inclusion structure. Electron Paramagnetic Resonance analysis indicated that the highest⋅OH yield arose from the combined application of ultrasound and ozone. Kinetic investigations demonstrated that the vanadium leaching process is governed by interfacial chemical reactions. The activation energy of vanadium oxidation leaching under ultrasonic-O3 conditions was determined to be 40.41 kJ/mol, representing a 20.19 % reduction compared to ultrasonic conditions alone. Through the integration of analysis, characterization, and comparative evaluations, it was discerned that the synergistic impact of ultrasonic and ozone treatments significantly enhances the breakdown of silicate inclusions by low-concentration HF, particularly in the conversion of SiOSi bonds into SiOH bonds and SiF bonds. In summary, the refined leaching methodology incorporating ozone catalysis in conjunction with ultrasonic treatment provides a new idea for the separation and extraction of refractory residual vanadium.
Collapse
Affiliation(s)
- Haoyu Li
- College of Biological and Chemical Engineering (College of Agricultural Sciences), Panzhihua University, Panzhihua 617000, China.
| | - Chunhua Hu
- College of Biological and Chemical Engineering (College of Agricultural Sciences), Panzhihua University, Panzhihua 617000, China
| | - Xinyi He
- College of Biological and Chemical Engineering (College of Agricultural Sciences), Panzhihua University, Panzhihua 617000, China
| | - Jun Wang
- College of Biological and Chemical Engineering (College of Agricultural Sciences), Panzhihua University, Panzhihua 617000, China
| | - Shihong Tian
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
| | - Xuejun Zhu
- College of Biological and Chemical Engineering (College of Agricultural Sciences), Panzhihua University, Panzhihua 617000, China
| | - Xuehua Mao
- College of Biological and Chemical Engineering (College of Agricultural Sciences), Panzhihua University, Panzhihua 617000, China
| |
Collapse
|
2
|
Zhang H, Li S, Zhang C, Ren X, Zhou M. A critical review of ozone-based electrochemical advanced oxidation processes for water treatment: Fundamentals, stability evaluation, and application. CHEMOSPHERE 2024; 365:143330. [PMID: 39277044 DOI: 10.1016/j.chemosphere.2024.143330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/27/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
In recent years, electrochemical advanced oxidation processes (EAOPs) combined with ozonation have been widely utilized in water/wastewater treatment due to their excellent synergistic effect, high treatment efficiency, and low energy consumption. A comprehensive summary of these ozone-based EAOPs is still insufficient, though some reviews have covered these topics but either focused on a specific integrated process or provided synopses of EAOPs or ozone-based AOPs. This review presents an overview of the fundamentals of several ozone-based EAOPs, focusing on process optimization, electrode selection, and typical reactor designs. Additionally, the service life of electrodes and improvement strategies for the stability of ozone-based EAOPs that are ignored by previous reviews are discussed. Furthermore, four main application fields are summarized, including disinfection, emerging contaminants treatment, industrial wastewater treatment, and resource recovery. Finally, the summary and perspective on ozone-based EAOPs are proposed. This review provides an overall summary that would help to gain insight into the ozone-based EAOPs to improve their environmental applications.
Collapse
Affiliation(s)
- Hanyue Zhang
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Shasha Li
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Chaohui Zhang
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xueying Ren
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
3
|
Singh A, Majumder A, Saidulu D, Bhattacharya A, Bhatnagar A, Gupta AK. Oxidative treatment of micropollutants present in wastewater: A special emphasis on transformation products, their toxicity, detection, and field-scale investigations. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120339. [PMID: 38401495 DOI: 10.1016/j.jenvman.2024.120339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/23/2024] [Accepted: 02/08/2024] [Indexed: 02/26/2024]
Abstract
Micropollutants have become ubiquitous in aqueous environments due to the increased use of pharmaceuticals, personal care products, pesticides, and other compounds. In this review, the removal of micropollutants from aqueous matrices using various advanced oxidation processes (AOPs), such as photocatalysis, electrocatalysis, sulfate radical-based AOPs, ozonation, and Fenton-based processes has been comprehensively discussed. Most of the compounds were successfully degraded with an efficiency of more than 90%, resulting in the formation of transformation products (TPs). In this respect, degradation pathways with multiple mechanisms, including decarboxylation, hydroxylation, and halogenation, have been illustrated. Various techniques for the analysis of micropollutants and their TPs have been discussed. Additionally, the ecotoxicity posed by these TPs was determined using the toxicity estimation software tool (T.E.S.T.). Finally, the performance and cost-effectiveness of the AOPs at the pilot scale have been reviewed. The current review will help in understanding the treatment efficacy of different AOPs, degradation pathways, and ecotoxicity of TPs so formed.
Collapse
Affiliation(s)
- Adarsh Singh
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Abhradeep Majumder
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Duduku Saidulu
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Animesh Bhattacharya
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, Mikkeli FI-50130, Finland
| | - Ashok Kumar Gupta
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
4
|
Ghosh S, Sahu M. Ultrasound for the degradation of endocrine disrupting compounds in aqueous solution: A review on mechanisms, influence of operating parameters and cost estimation. CHEMOSPHERE 2024; 349:140864. [PMID: 38061558 DOI: 10.1016/j.chemosphere.2023.140864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024]
Abstract
Availability of drinking water is one of the basic humanitarian goals but remains as a grand challenge that the world is facing today. Currently, water bodies are contaminated not only with conventional pollutants but also with numerous recalcitrant pollutants, such as PPCPs, endocrine disrupting compounds, etc. These emerging pollutants require special attention because of their toxicity to living organisms, bio-resistant and can sustain even after primary and secondary treatments of wastewater. Among different treatment technologies, sonolysis is found to be an innovative and promising technique for the treatment of emerging pollutants present in aqueous solution. Sonolysis is the use of ultrasound to enhance or alter chemical reactions by the formation of free radicals and shock waves which ultimately helps in degradation of pollutants. This review summarizes several studies in the sonochemical literature, including mechanisms of sonochemical process, physical and chemical effects of ultrasound, and the influence of several process variables such as ultrasound frequency, power density, temperature and pH of the medium on degradation performance for endocrine disrupting compounds. In addition, this review highlighted techno-economic perspectives focusing on the total cost required for translating the ultrasound-based processes on a large scale. Overall, the objective of this study is to exhibit a critical review of information available in the literature to encourage and promote future research on sonolysis for the degradation of Endocrine Disrupting Compounds (EDCs).
Collapse
Affiliation(s)
- Saptarshi Ghosh
- Aerosol and Nanoparticle Technology Laboratory, Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Manoranjan Sahu
- Aerosol and Nanoparticle Technology Laboratory, Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Mumbai, 400076, India; Inter-Disciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Mumbai, 400076, India; Centre for Machine Intelligence and Data Science, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
5
|
Jiao H, Mao Q, Razzaq N, Ankri R, Cui J. Ultrasound technology assisted colloidal nanocrystal synthesis and biomedical applications. ULTRASONICS SONOCHEMISTRY 2024; 103:106798. [PMID: 38330546 PMCID: PMC10865478 DOI: 10.1016/j.ultsonch.2024.106798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 12/08/2023] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Non-invasive and high spatiotemporal resolution mythologies for the diagnosis and treatment of disease in clinical medicine promote the development of modern medicine. Ultrasound (US) technology provides a non-invasive, real-time, and cost-effective clinical imaging modality, which plays a significant role in chemical synthesis and clinical translation, especially in in vivo imaging and cancer therapy. On the one hand, the US treatment is usually accompanied by cavitation, leading to high temperature and pressure, so-called "hot spot", playing a significant role in sonochemical-based colloidal synthesis. Compared with the classical nucleation synthetic method, the sonochemical synthesis strategy presents high efficiency for the fabrication of colloidal nanocrystals due to its fast nucleation and growth procedure. On the other hand, the US is attractive for in vivo and medical treatment, with applications increasing with the development of novel contrast agents, such as the micro and nano bubbles, which are widely used in neuromodulation, with which the US can breach the blood-brain barrier temporarily and safely, opening a new door to neuromodulation and therapy. In terms of cancer treatment, sonodynamic therapy and US-assisted synergetic therapy show great effects against cancer and sonodynamic immunotherapy present unparalleled potentiality compared with other synergetic therapies. Further development of ultrasound technology can revolutionize both chemical synthesis and clinical translation by improving efficiency, precision, and accessibility while reducing environmental impact and enhancing patient care. In this paper, we review the US-assisted sonochemical synthesis and biological applications, to promote the next generation US technology-assisted applications.
Collapse
Affiliation(s)
- Haorong Jiao
- The Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Industrial Park, Suzhou 215123, Jiangsu, China
| | - Qiulian Mao
- The Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Industrial Park, Suzhou 215123, Jiangsu, China
| | - Noman Razzaq
- The Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Industrial Park, Suzhou 215123, Jiangsu, China
| | - Rinat Ankri
- The Biomolecular and Nanophotonics Lab, Ariel University, 407000, P.O.B. 3, Ariel, Israel.
| | - Jiabin Cui
- The Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Industrial Park, Suzhou 215123, Jiangsu, China.
| |
Collapse
|
6
|
Kumar A, Sharma M, Amari A, Vaish R. Sonocatalytic induced dye degradation and antibacterial performance of SrTiO 3 nanoparticles embedded cotton fabric. ENVIRONMENTAL RESEARCH 2024; 240:117541. [PMID: 37914006 DOI: 10.1016/j.envres.2023.117541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 10/11/2023] [Accepted: 10/28/2023] [Indexed: 11/03/2023]
Abstract
In the present work, a pigment paste was prepared by adding strontium titanate (SrTiO3) nanoparticles (NPs) particles to a water and adhesive binder paste. Screen printing was utilized to embed the cotton fabric with the prepared pigment paste. Sonocatalytic induced antibacterial and dye mineralization abilities were evaluated for the printed fabric. The produced samples were examined for efficacy against the pathogens E. coli and S. aureus. The prepared SrTiO3 embedded cotton fabric inhibited (after 2 h) E. coli and S. aureus by 99.3% and 96.09%, respectively. The coated fabric was able to reduce pathogens by more than 92% even after 15 washing cycles. The Rhodamine B (RhB) dye was mineralized by 53% in 210 min by STO printed fabric as opposed to about 8% by pristine cotton. The results revealed that the intrinsic properties of cotton including tensile, abrasion, and air permeability remained unaffected by the printing of STO-NPs onto fabric.
Collapse
Affiliation(s)
- Amit Kumar
- School of Engineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175005, India; Department of Textile Engineering, Jawaharlal Nehru Government Engineering College Sundernagar, Mandi, Himachal Pradesh, 175018, India
| | - Moolchand Sharma
- School of Engineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175005, India; Department of Metallurgical and Materials Engineering, Punjab Engineering College, 160012, Chandigarh, India
| | - Abdelfattah Amari
- Department of Chemical Engineering, College of Engineering, King Khalid University, Abha, 61411, Saudi Arabia
| | - Rahul Vaish
- School of Engineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175005, India.
| |
Collapse
|
7
|
Wang G, Cheng H. Recyclable MXene-bridged Z-scheme NiFe 2O 4/MXene/Bi 2WO 6 heterojunction with enhanced charge separation for efficient sonocatalytic removal of ciprofloxacin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165833. [PMID: 37517721 DOI: 10.1016/j.scitotenv.2023.165833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
Sonocatalysis has emerged as a promising technology for addressing environmental pollution issues. However, the efficacy of sonocatalytic processes is primarily hindered by challenges related to the sluggish flow rate of photogenerated electrons. This study presents a novel approach to address this issue by developing an improved Z-scheme NiFe2O4/MXene/Bi2WO6 (NMB) composite that exhibits exceptional sonocatalytic activity for ciprofloxacin (CIP) degradation. In particular, the NiFe2O4/MXene (5 wt%)/Bi2WO6 composite could achieve high CIP (at 10 mg/L) degradation efficiency (97.39 %) after 60 min of ultrasonic irradiation. The exceptional sonocatalytic activity of the composite was attributed to the synergistic interaction of the Z-scheme heterojunction charge transfer route and the electron mediator of Ti3C2-MXene, which enhances light collection capacity, separates photogenerated carriers efficiently, and improves redox activity of the composite. The scavenging experiments reveal that the sonocatalytic degradation of CIP was driven by holes (h+), hydroxyl radicals (•OH), and superoxide anion radicals (•O2-), with the former playing a dominant role. The results of reuse experiments demonstrate the outstanding sonocatalytic stability of the catalyst, as well as its uncomplicated recovery. The developed NMB Z-scheme composite shows promise for sonocatalytic treatment of antibiotics in industrial wastewaters, particularly those with high turbidity and/or low transparency. The findings also open up avenues for developing efficient and cost-effective sonocatalysts with good recyclability and remarkable performance.
Collapse
Affiliation(s)
- Guowei Wang
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Hefa Cheng
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China.
| |
Collapse
|
8
|
Mojiri A, Zhou JL, Ozaki N, KarimiDermani B, Razmi E, Kasmuri N. Occurrence of per- and polyfluoroalkyl substances in aquatic environments and their removal by advanced oxidation processes. CHEMOSPHERE 2023; 330:138666. [PMID: 37068615 DOI: 10.1016/j.chemosphere.2023.138666] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/15/2023] [Accepted: 04/10/2023] [Indexed: 05/14/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS), one of the main categories of emerging contaminants, are a family of fluorinated organic compounds of anthropogenic origin. PFAS can endanger the environment and human health because of their wide application in industries, long-term persistence, unique properties, and bioaccumulation potential. This study sought to explain the accumulation of different PFAS in water bodies. In aquatic environments, PFAS concentrations range extensively from <0.03 (groundwater; Melbourne, Australia) to 51,000 ng/L (Groundwater, Sweden). Additionally, bioaccumulation of PFAS in fish and water biota has been stated to range from 0.2 (Burbot, Lake Vättern, Sweden) to 13,900 ng/g (Bluegill samples, U.S.). Recently, studies have focused on PFAS removal from aqueous solutions; one promising technique is advanced oxidation processes (AOPs), including microwaves, ultrasound, ozonation, photocatalysis, UV, electrochemical oxidation, the Fenton process, and hydrogen peroxide-based and sulfate radical-based systems. The removal efficiency of PFAS ranges from 3% (for MW) to 100% for UV/sulfate radical as a hybrid reactor. Therefore, a hybrid reactor can be used to efficiently degrade and remove PFAS. Developing novel, efficient, cost-effective, and sustainable AOPs for PFAS degradation in water treatment systems is a critical area of research.
Collapse
Affiliation(s)
- Amin Mojiri
- Department of Civil and Environmental Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, 739-8527, Hiroshima, Japan.
| | - John L Zhou
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Noriatsu Ozaki
- Department of Civil and Environmental Engineering, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashihiroshima, 739-8527, Hiroshima, Japan
| | - Bahareh KarimiDermani
- Department of Geological Sciences, Hydrogeology, University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Elham Razmi
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Norhafezah Kasmuri
- School of Civil Engineering, College of Engineering, Universiti Teknologi MARA (UiTM), Shah Alam, 40450, Selangor, Malaysia
| |
Collapse
|
9
|
Wang T, Qu H, Ravindra AV, Ma S, Hu J, Zhang H, Le T, Zhang L. Treatment of complex sulfur-containing solutions in ammonia desulfurization ammonium sulfate production by ultrasonic-assisted ozone technology. ULTRASONICS SONOCHEMISTRY 2023; 95:106386. [PMID: 37003211 PMCID: PMC10457592 DOI: 10.1016/j.ultsonch.2023.106386] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/10/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
In this work, the cause of abnormal color in ammonium sulfate products formed by flue gas desulfurization is revealed by investigating the conversion relationship between different sulfur-containing ions and their behavior in a sulfuric acid medium. Both thiosulfate (S2O32-) and sulfite (SO32- & HSO3-) impurities affect the quality of ammonium sulfate. The S2O32- is the main reason for the yellowing of the product due to the formation of sulfur impurities in concentrated sulfuric acid. To address the yellowing of ammonium sulfate products, a unified technology (US/O3), using ozone (O3) and ultrasonic waves (US) simultaneously, is exploited to remove both thiosulfate and sulfite impurities from the mother liquor. The effect of different reaction parameters on the degree of removal of thiosulfate and sulfite is investigated. The synergistic effect of ultrasound and ozone on ion oxidation is further explored and demonstrated by the comparative experiments with O3 and US/O3. Under the optimized conditions, the thiosulfate and sulfite concentration in the solution is 2.07 and 5.93 g/L, respectively, and the degree of removal is 91.39 and 90.83%, respectively. The product obtained after evaporation and crystallization is pure white and meets the national standard requirements for ammonium sulfate products. Under the same conditions, the US/O3 process has apparent advantages, such as saving reaction time compared with the O3 process alone. Introducing an ultrasonically intensified field improves the generation of oxidation radicals ·OH, 1O2, and ·O2- in the solution. Furthermore, the effectiveness of different oxidation components in the decolorization process is studied by adding other radical shielding agents using the US/O3 process supplemented with EPR analysis. The order of the different oxidation components is O3(86.04%) > 1O2(6.53%) > •OH(4.45%) > •O2-(2.97%) for the oxidation of thiosulfate, and it is O3(86.28%) > •OH(7.49%) > 1O2(4.99%) > •O2-(1.25%) for the oxidation of sulfite.
Collapse
Affiliation(s)
- Tian Wang
- State Key Laboratory of Complex Non-ferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Hongtao Qu
- Yunnan Chihong Zinc and Germanium Co., Ltd., Qujing 655011, Yunnan, China
| | - A V Ravindra
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu 603203, India
| | - Shaobin Ma
- Yunnan Chihong Zinc and Germanium Co., Ltd., Qujing 655011, Yunnan, China
| | - Jue Hu
- State Key Laboratory of Complex Non-ferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Hong Zhang
- Yunnan Chihong Zinc and Germanium Co., Ltd., Qujing 655011, Yunnan, China
| | - Thiquynhxuan Le
- State Key Laboratory of Complex Non-ferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China.
| | - Libo Zhang
- State Key Laboratory of Complex Non-ferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China.
| |
Collapse
|
10
|
Zhang H, Wang B, Tang P, Lu Y, Gao C. Degradation of dibutyl phthalate by ozonation in the ultrasonic cavitation-rotational flow interaction coupled-field: performance and mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:23225-23236. [PMID: 36319926 DOI: 10.1007/s11356-022-23225-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Dibutyl phthalate (DBP) is present in hydraulic fracturing flowback and produced water. Degradation of DBP in aqueous by means of ozonation in ultrasonic cavitation-rotational flow interaction coupled-field (UC-RF coupled-field) was studied. The effect of ozone dosage, ozone intake flow, operating temperature, initial pH, DBP initial concentration, liquid flow rate, and ultrasonic power on the DBP removal was investigated. Results indicated that the DBP degradation rate was strongly influenced by the liquid flow rate and the ultrasonic power over the range investigated. HCO3- and Cl- revealed an inhibitory effect on the DBP removal. SO42- seemed to have no effect on DBP removal. The ozone utilization efficiencies in the UC-RF coupled-field were 2.77 and 1.13 times higher than those in the conventional microporous aeration (CMA) and rotating-flow microbubble aeration (RFMA), respectively. The DBP degradation rate was diminished in the presence of tert-butyl alcohol. Cavitation bubbles are considered as innumerable microreactors. Degradation of DBP by direct ozonation, hydroxyl radical (·OH) oxidation, high pressure, and high-temperature pyrolysis was demonstrated. Finally, a possible degradation pathway of DBP is obtained on the basis of the main reaction intermediates.
Collapse
Affiliation(s)
- Huan Zhang
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, People's Republic of China
| | - Bing Wang
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, People's Republic of China.
| | - Pan Tang
- Sichuan Changning Natural Gas Development Company, Limited, Chengdu, 610501, People's Republic of China
| | - Yuting Lu
- Sichuan Chuangang Gas Company, Limited, Chengdu, 610501, People's Republic of China
| | - Chunyang Gao
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, People's Republic of China
| |
Collapse
|