1
|
Sun R, Li Y, Su R, Cai X, Kong Y, Jiang T, Cheng S, Yang H, Song L, Al-Asmari F, Sameeh MY, Lü X, Shi C. Antibacterial effect of ultrasound combined with Litsea cubeba essential oil nanoemulsion on Salmonella Typhimurium in kiwifruit juice. Int J Food Microbiol 2025; 426:110898. [PMID: 39241544 DOI: 10.1016/j.ijfoodmicro.2024.110898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/14/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
This study investigated the antibacterial effect of ultrasound (US) combined with Litsea cubeba essential oil nanoemulsion (LEON) on Salmonella Typhimurium in kiwifruit juice and effect on the quality and sensory properties of kiwifruit juice. In this study, LEON prepared by ultrasonic emulsification method had a good particle size distribution and high stability. The US+LEON treatment significantly (P < 0.05) improved antibacterial efficacy, compared to the control, and would not destroy the nutritional components containing ascorbic acid, flavonoids, total phenol and total soluble solids. Meanwhile, US+LEON treatment enhanced 2, 2-diphenyl-1-picrylhydrazyl (DPPH), 2, 2'-azino-bis-(3-ethylbenzothiazoline-6 sulfonic acid) (ABTS) radical scavenging capacity and ferric ion reducing antioxidant power (FRAP). In terms of sensory properties, US and LEON had a significant (P < 0.05) effect on the odor and overall morphology of kiwifruit juice. The enhance of antibacterial efficacy and the retention of nutrients by combined treatments shows that US+LEON is a promising antibacterial method that will provide new ideas for the processing and safety of fruit juices, and the US parameters and LEON concentration should be adjusted to reduce the effect on food sensory properties in future studies.
Collapse
Affiliation(s)
- Runyang Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Northwest A&F University ShenZhen Research Institute, Shenzhen, Guangdong 518057, China
| | - Yimeng Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Northwest A&F University ShenZhen Research Institute, Shenzhen, Guangdong 518057, China
| | - Ruiying Su
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaolin Cai
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yajing Kong
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tongyu Jiang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuai Cheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hui Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Luyi Song
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fahad Al-Asmari
- Department of Food and Nutrition Sciences, College of Agricultural and Food Sciences, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Manal Y Sameeh
- Department of chemistry, Al-Leith University College, Umm Al Qura University, Makkah 25100, Saudi Arabia
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Northwest A&F University ShenZhen Research Institute, Shenzhen, Guangdong 518057, China.
| |
Collapse
|
2
|
de Medeiros VPB, de Oliveira KÁR, Queiroga TS, de Souza EL. Development and Application of Mucilage and Bioactive Compounds from Cactaceae to Formulate Novel and Sustainable Edible Films and Coatings to Preserve Fruits and Vegetables-A Review. Foods 2024; 13:3613. [PMID: 39594029 PMCID: PMC11594268 DOI: 10.3390/foods13223613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
The accelerated ripening and senescence of fruits and vegetables is characterized by various biochemical changes that hinder the maintenance of their postharvest quality. In this context, developing edible films and coatings formulated with natural and biodegradable materials emerges as a sustainable strategy for preserving the quality parameters of these products in replacement of conventional petroleum-based packaging. Recently, plant-based polymers, including mucilage from different cactus species and/or their bioactive compounds, have been investigated to develop edible films and coatings. As the available literature indicates, the Opuntia genus stands out as the most used for mucilage extraction, with the cladode being the most exploited part of the plant. Conventional extraction methods are widely employed to obtain mucilages, which are applied to fruits and vegetables after being combined with plasticizing and cross-linking agents. In general, these films and coatings have proven effective in prolonging the shelf life and maintaining the nutritional, physical, and sensory quality of fruits and vegetables. Given their preservation potential, combining cactus mucilages with bioactive compounds, probiotics, and prebiotics represents an emerging trend in developing functional films and coatings. However, some limitations have been identified, such as the underutilization of different species and parts of the plant, the lack of standardization in extraction methods, and the absence of studies on the effects of the physicochemical properties of mucilages in the formulation and characteristics of films and coatings. Therefore, overcoming these limitations is essential for developing edible films and coatings with enhanced techno-functional properties and greater commercial viability.
Collapse
Affiliation(s)
| | | | | | - Evandro Leite de Souza
- Department of Nutrition, Health Sciences Center, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (V.P.B.d.M.); (K.Á.R.d.O.); (T.S.Q.)
| |
Collapse
|
3
|
Zhu Y, Dong C, Chi F, Gu X, Liu L, Yang L. Effects of Cactus Polysaccharide on Pasting, Rheology, Structural Properties, In Vitro Digestibility, and Freeze-Thaw Stability of Rice Starch. Foods 2024; 13:2420. [PMID: 39123611 PMCID: PMC11311433 DOI: 10.3390/foods13152420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
This study combined rice starch (RS) with cactus polysaccharide (CP) at different composites (0.6%, 1.2%, 1.8%, 2.4%, and 3.0%, w/w), and analyzed the variations in the complex gelatinization properties, rheological properties, thermal properties, structural properties, digestibility, and freeze-thaw stability. As a result, the pasting parameters (p < 0.05) and storage modulus (G') together with the loss modulus (G″) decreased as the CP concentration increased; meanwhile, the RS and the CP-RS gels were pseudoplastic fluids. As revealed by differential scanning calorimetry (DSC), incorporating CP into the starch elevated the starch gelatinization temperature while decreasing gelatinization enthalpy, revealing that CP effectively retarded long-term retrogradation in RS. The gel microstructure and crystallization type altered after adding CP. Typically, CP inclusion could enhance the proportion of resistant starch and slowly digestible starch (SDS), thereby slowing RS hydrolysis. Concurrently, adding CP promoted the RS freeze-thaw stability. These findings could potentially aid in the innovation of CP-based food products.
Collapse
Affiliation(s)
- Yahui Zhu
- College of Food Science, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China; (Y.Z.)
- College of Food Science, The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Nyingchi 860000, China
| | - Chuang Dong
- College of Food Science, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China; (Y.Z.)
- College of Food Science, The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Nyingchi 860000, China
| | - Fumin Chi
- College of Food Science, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China; (Y.Z.)
- College of Food Science, The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Nyingchi 860000, China
| | - Xuedong Gu
- College of Food Science, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China; (Y.Z.)
- College of Food Science, The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Nyingchi 860000, China
| | - Lei Liu
- College of Food Science, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China; (Y.Z.)
- College of Food Science, The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Nyingchi 860000, China
| | - Lin Yang
- College of Food Science, Tibet Agriculture & Animal Husbandry University, Nyingchi 860000, China; (Y.Z.)
- College of Food Science, The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Nyingchi 860000, China
| |
Collapse
|
4
|
Ruan S, Zhu T, Zuo C, Peng J, Liu L, Lan W, Pan L, Tu K. Storage Properties and Shelf-Life Prediction of Fresh-Cut Radishes Treated by Photodynamic Technology. Foods 2024; 13:2367. [PMID: 39123557 PMCID: PMC11311309 DOI: 10.3390/foods13152367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Fresh-cut radishes are susceptible to quality loss and microbial contamination during storage, resulting in a short shelf life. This study investigated the effects of photodynamic technology (PDT) on fresh-cut radishes stored at 4 °C for 10 d and developed appropriate models to predict the shelf life. Results showed that curcumin-mediated PDT maintained sensory acceptability, color, and firmness, decreased weight loss, and increased ascorbic acid and total phenolics of samples by inactivating polyphenol oxidase and peroxidase, resulting in improved antioxidant capacity and quality. The total bacteria count in samples was significantly (p < 0.05) reduced by 2.01 log CFU g-1 after PDT and their shelf life was extended by 6 d compared to the control. To accurately predict the shelf life, the kinetic models based on microbial growth were established, while weight loss, b* value, firmness, and ascorbic acid were selected as representative attributes for developing quality-based prediction models through correlation analysis. Modeling results showed prediction models based on ascorbic acid best fitted PDT-treated samples, while the modified Gompertz model based on bacteria growth was the best for control and samples treated by sodium hypochlorite. This study suggests that PDT is promising in extending the shelf life of fresh-cut radishes, and using critical indexes to establish the prediction model can provide a more reliable shelf-life estimation.
Collapse
Affiliation(s)
- Sijia Ruan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Tong Zhu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Changzhou Zuo
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Peng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Liwang Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Weijie Lan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Leiqing Pan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Kang Tu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
5
|
Eftekhari A, Salehi F, Gohari Ardabili A, Aghajani N. Effects of basil seed and guar gums coatings on sensory attributes and quality of dehydrated orange slices using osmotic-ultrasound method. Int J Biol Macromol 2023; 253:127056. [PMID: 37758104 DOI: 10.1016/j.ijbiomac.2023.127056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 10/02/2023]
Abstract
In this work, the effects of gum coating (basil seed and guar gums), ultrasonic power, sonication time, and sucrose concentration on the osmosis dehydration parameters (water loss, solid gain, and rehydration rate), sensory attributes, color changes, and surface shrinkage of dehydrated orange slices using osmotic-ultrasound method were studied. The moisture loss and sucrose gain increased when the ultrasonic duration and sucrose level increased. The edible coating reduced solids absorption, with the lowest sucrose absorption in the basil seed gum-coated slices. Also, the coating increased rehydration rate of dried orange slices, with the highest rehydration ratio in the basil seed gum-coated slices (225.91 %). Edible coating with basil seeds gum improved the sensorial attributes of dried orange slices. The total color difference (ΔE) and surface shrinkage of osmotic dehydrated, dried, and rehydrated orange slices decreased with edible coating pretreatment and increasing in the sonication intensity. As the ultrasound duration enhanced from 5 to 15 min, the average surface shrinkage values of dried and rehydrated orange slices increased from 22.74 % to 26.36 %, and 12.18 % to 15.50 %, respectively. The current work confirmed that the gum coating has the potential to enhance appearance quality and sensorial attributes of osmotic-ultrasound dehydrated orange slices.
Collapse
Affiliation(s)
- Ahmadreza Eftekhari
- Department of Food Science and Technology, Bu-Ali Sina University, Hamedan, Iran
| | - Fakhreddin Salehi
- Department of Food Science and Technology, Bu-Ali Sina University, Hamedan, Iran.
| | | | - Narjes Aghajani
- Department of Food Science and Technology, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
6
|
Wang Z, Wang W, Li W, Yang R, Li Y, Zhang L, Zhang M, Li X. Effects of Near-Freezing Temperature Combined with Jujube Polysaccharides Treatment on Proteomic Analysis of 'Diaogan' Apricot ( Prunus armeniaca L.). Foods 2023; 12:4504. [PMID: 38137308 PMCID: PMC10742872 DOI: 10.3390/foods12244504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
This study involved the extraction of polysaccharides from jujube for application in apricot storage. Although near-freezing temperature (NFT) storage is commonly employed for preserving fresh fruit, its effectiveness is somewhat limited. Incorporating jujube polysaccharides was proposed to augment the preservative effect on apricots. Our findings demonstrated that the combined use of NFT and jujube polysaccharides can maintain fruit color, and effectively inhibit decay. Additionally, Tandem Mass Tag (TMT) quantitative proteomic technology was utilized to analyze protein variations in 'Diaogan' apricots during storage. This dual approach not only markedly lowered the activity of polyphenol cell wall-degrading enzymes (p < 0.05) but also revealed 1054 differentially expressed proteins (DEPs), which are related to sugar and energy metabolism, stress response and defense, lipid metabolism, and cell wall degradation. The changes in DEPs indicated that the combined use of NFT and jujube polysaccharides could accelerate the conversion of malic acid to oxaloacetic acid and regulate antioxidant ability, potentially extending the storage lifespan of apricot fruit.
Collapse
Affiliation(s)
| | - Wei Wang
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China
| | | | | | | | | | | | | |
Collapse
|