1
|
Kumar S, Pipliya S, Srivastav PP, Srivastava B, Battula SR, Sen R. Cold plasma processing of kiwifruit juice: Effect on physicochemical, nutritional, microstructure, rheological properties and sensory attributes. J Food Sci 2024; 89:6127-6141. [PMID: 39183687 DOI: 10.1111/1750-3841.17284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/08/2024] [Accepted: 07/18/2024] [Indexed: 08/27/2024]
Abstract
This study aimed to compare the untreated, cold plasma (CP)-optimized (30 kV/5 mm/6.7 min), CP-extreme (30 kV/2 mm/10 min), and thermally treated (TT) (90 ℃/5 min) kiwifruit juices based on the physicochemical (pH, total soluble solids (TSS), titratable acidity (TA), total color change (ΔE)), physical (particle size and rheology), microstructure (optical microscope), bioactive compounds (polyphenol, ascorbic acid, and sugar compounds), and sensory characteristics of kiwifruit juice. The pH, TSS, and TA were not significantly affected in CP and TT juice, whereas the ΔE (6.52) of TT juice lies in the range of "greatly visible." The microstructure characteristics of juice significantly changed after CP and thermal treatment. The cell and tissue disruption in CP-extreme and thermally treated juice was more than CP-optimized. The particle size of juice decreased irrespective of treatment, but the span value of CP-optimized juice was the lowest. Further, the CP treatment showed a lower consistency index, apparent viscosity, and pseudoplasticity of juice than the thermal treatment. The CP-treated juice retained bioactive and nutritional attributes more than thermally treated juice. The CP-optimized, CP-extreme, and thermal treatment reduced the sucrose content by 54, 55, and 23%, while the fructose and glucose content were increased by 17, 12, & 93%, and 17, 11 & 99%, respectively. Among the CP-treated juice, CP-optimized (71.36 mg/100g) contained a higher amount of ascorbic acid than the CP-extreme (64.36 mg/100g). Based on the similarity values in the fuzzy logic analysis, the sensory attributes of CP-optimized treated juice were superior to CP-extreme and thermal treated. PRACTICAL APPLICATION: In this era, non-thermal processing techniques are trending for retaining the nutrition and stability of juice. The old plasma (CP)-treated kiwifruit juice had better nutritional, bioactive compounds, and sensory attributes than the thermally treated juice. Further, the CP-treated juice had higher flowability and lower viscosity, making it ideal for juice processing. The conclusions drawn suggest that CP processing is a better alternative for processing kiwifruit juice than thermal processing.
Collapse
Affiliation(s)
- Sitesh Kumar
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Sunil Pipliya
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Prem Prakash Srivastav
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Brijesh Srivastava
- Department of Food Engineering & Technology, Tezpur University, Tezpur, Assam, India
| | - Satyanarayana Reddy Battula
- School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Ramkrishna Sen
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| |
Collapse
|
2
|
Xiao Z, Jin Y, Cao Y, Yao T, Fu Y, Suo D, Wang S, Chen G, Zhao X, Li R, Fan X. Ultrasound probe enhanced enzymatic hydrolysis for rapid separation of β 2-adrenergic agonists from animal urine and livestock wastewater: Applicability to biomonitoring investigation. Anal Chim Acta 2024; 1320:343020. [PMID: 39142772 DOI: 10.1016/j.aca.2024.343020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/19/2024] [Accepted: 07/23/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND An increasing number of β2-adrenergic agonists are illicitly used for growth promoting and lean meat increasing in animal husbandry in recent years, but the development of analytical methods has lagged behind these emerging drugs. RESULTS Here, we designed and developed an ultrasound probe enhanced enzymatic hydrolysis reactor for quick separation and simultaneously quantification of 22 β2-adrenergic agonists in animal urine and livestock wastewater. Owing to the enhancement of the conventional enzymatic digestion through the ultrasound acoustic probe power, only 2 min was required for the comprehensively separation of β2-adrenergic agonists from the sample matrices, making it a much more desirable alternative tool for high-throughput investigation. The swine, bovine and sheep urines (n = 287), and livestock wastewater (n = 15) samples, collected from both the north and south China, were examined to demonstrate the feasibility and capability of the proposed approach. Six kinds of β2-adrenergic agonists (clenbuterol, salbutamol, ractopamine, terbutaline, clorprenaline and cimaterol) were found in animal urines, with concentrations ranged between 0.056 μg/L (terbutaline) and 5.79 μg/L (clenbuterol). Up to nine β2-adrenergic agonists were detected in wastewater samples, of which four were found in swine farms and nine in cattle/sheep farms, with concentration levels from 0.069 μg/L (tulobuterol) to 2470 μg/L (clenbuterol). SIGNIFICANCE Interestingly, since β2-adrenergic agonists are usually considered to be abused mainly in the pig farms, our data indicate that both the detection frequencies and concentrations of these agonists in the ruminant farms were higher than the pig farms. Furthermore, the findings of this work indicated that there is a widespread occurrence of β2-adrenergic agonists in livestock farms, especially for clenbuterol and salbutamol, which may pose both food safety and potential ecological risks. We recommend that stricter controls should be adopted to prevent the illegally usage of these β2-adrenergic agonists in agricultural animals, especially ruminants, and they should also be removed before discharging to the environment.
Collapse
Affiliation(s)
- Zhiming Xiao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yinji Jin
- Beijing General Station of Animal Husbandry, Beijing, 100107, China
| | - Ying Cao
- Shanghai Institute for Veterinary Drugs and Feeds Control, Shanghai, 201103, China
| | - Ting Yao
- Beijing Veterinary Drug and Feed Monitoring Center, Beijing, 102200, China
| | - Yao Fu
- Beijing General Station of Animal Husbandry, Beijing, 100107, China
| | - Decheng Suo
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shi Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Gang Chen
- Beijing Technology and Business University, Beijing, 100048, China
| | - Xinxue Zhao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Runxian Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xia Fan
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
3
|
Belošević SD, Milinčić DD, Gašić UM, Kostić AŽ, Salević-Jelić AS, Marković JM, Đorđević VB, Lević SM, Pešić MB, Nedović VA. Broccoli, Amaranth, and Red Beet Microgreen Juices: The Influence of Cold-Pressing on the Phytochemical Composition and the Antioxidant and Sensory Properties. Foods 2024; 13:757. [PMID: 38472870 DOI: 10.3390/foods13050757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
The aim of this study was to analyze in detail the phytochemical composition of amaranth (AMJ), red beet (RBJ), and broccoli (BCJ) microgreens and cold-pressed juices and to evaluate the antioxidant and sensory properties of the juices. The results showed the presence of various phenolic compounds in all samples, namely betalains in amaranth and red beet microgreens, while glucosinolates were only detected in broccoli microgreens. Phenolic acids and derivatives dominated in amaranth and broccoli microgreens, while apigenin C-glycosides were most abundant in red beet microgreens. Cold-pressing of microgreens into juice significantly altered the profiles of bioactive compounds. Various isothiocyanates were detected in BCJ, while more phenolic acid aglycones and their derivatives with organic acids (quinic acid and malic acid) were identified in all juices. Microgreen juices exhibited good antioxidant properties, especially ABTS•+ scavenging activity and ferric reducing antioxidant power. Microgreen juices had mild acidity, low sugar content, and good sensory acceptability and quality with the typical flavors of the respective microgreen species. Cold-pressed microgreen juices from AMJ, RBJ, and BCJ represent a rich source of bioactive compounds and can be characterized as novel functional products.
Collapse
Affiliation(s)
- Spasoje D Belošević
- Food Biotechnology Laboratory, Department of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Danijel D Milinčić
- Food Chemistry and Biochemistry Laboratory, Department of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Uroš M Gašić
- Department of Plant Physiology, Institute for Biological Research Siniša Stanković-National Institute of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Aleksandar Ž Kostić
- Food Chemistry and Biochemistry Laboratory, Department of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Ana S Salević-Jelić
- Food Biotechnology Laboratory, Department of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Jovana M Marković
- Food Biotechnology Laboratory, Department of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Verica B Đorđević
- Department of Chemical Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Steva M Lević
- Food Biotechnology Laboratory, Department of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Mirjana B Pešić
- Food Chemistry and Biochemistry Laboratory, Department of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| | - Viktor A Nedović
- Food Biotechnology Laboratory, Department of Food Technology and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia
| |
Collapse
|
4
|
Motrescu I, Lungoci C, Ciolan MA, Jităreanu G. Non-thermal plasma (NTP) treatment of Trigonella foenum-graecum L. seeds stimulates the sprout growth and the production of nutraceutical compounds. BMC PLANT BIOLOGY 2024; 24:33. [PMID: 38183006 PMCID: PMC10770889 DOI: 10.1186/s12870-023-04710-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/26/2023] [Indexed: 01/07/2024]
Abstract
The possibility to stimulate the production of some nutraceutical properties of fenugreek (Trigonella foenum-graecum L.) sprouts by non-thermal plasma (NTP) processing of the seeds in different conditions was studied. The non-thermal plasma used in this work was a surface dielectric barrier discharge. Two types of processing were performed: direct NTP treatment and NTP with a cover treatment, to simulate the processing of packaged seeds. For all treatments, the effect of pre-soaking of the seeds was studied as well. The analyses of the seeds after processing indicated an increase of the hydrophilicity of their surface for NTP direct treatment as resulted from the water contact angle measurements, which could be due to the strong etching evidenced by scanning electron microscopy imaging. A significant (p < 0.05) increase of the seedling growth, by up to 50%, was found especially for the pre-soaked seeds. These results were correlated with the increase of chlorophyll pigments concentrations, with higher concentrations in the case of NTP direct treatment than for the NTP with cover treatments. Direct NTP treatment for 30 s of dry seeds led to the highest increase of the flavonoid concentration of about three times compared to that obtained for untreated seeds. For the polyphenols and antioxidant activity, NTP with cover treatments proved to be better, with a significant increase, especially for 90 s treatment of the pre-soaked seeds. All the results indicate the possibility of tuning the nutraceutical properties of fenugreek sprouts by NTP treatment.
Collapse
Affiliation(s)
- Iuliana Motrescu
- Ion Ionescu de la Brad Iasi University of Life Sciences, 3 Sadoveanu Alley, Iasi, 700490, Romania.
- Research Institute for Agriculture and Environment, 14 Sadoveanu Alley, Iasi, 700490, Romania.
| | - Constantin Lungoci
- Ion Ionescu de la Brad Iasi University of Life Sciences, 3 Sadoveanu Alley, Iasi, 700490, Romania
| | - Mihai Alexandru Ciolan
- Research Center on Advanced Materials and Technologies, Department of Exact and Natural Science, Institute of Interdisciplinary Research, Alexandru Ioan Cuza University of Iasi, Carol I Blvd., No. 11, Iasi, 700506, Romania
| | - Gerard Jităreanu
- Ion Ionescu de la Brad Iasi University of Life Sciences, 3 Sadoveanu Alley, Iasi, 700490, Romania
- Research Institute for Agriculture and Environment, 14 Sadoveanu Alley, Iasi, 700490, Romania
| |
Collapse
|
5
|
Martínez-Padilla LP. Rheology of liquid foods under shear flow conditions: Recently used models. J Texture Stud 2023. [PMID: 37726094 DOI: 10.1111/jtxs.12802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/17/2023] [Accepted: 08/30/2023] [Indexed: 09/21/2023]
Abstract
Proper modeling of flow or viscosity curves as a function of shear rate is a useful tool in any engineering activity. The rheology of foods depends on the composition, processing to which they have been subjected and the state of dispersion in which they are found. Liquid foods are complex biosystems, that show non-Newtonian behavior under flow conditions. This review presents models used in recent decades to describe the experimental rheological behavior of various liquid foods, ranging from Newtonian fluids to the most complex. Some non-Newtonian parameters such as those of the Ostwald-de Waele, Bingham, Herschel-Bulkley, Casson, Cross, and Carreau models are summarized. Examples of thixotropic behavior described by the Weltman and Abu-Jdayil models are also presented. In each model, explanations based on the composition and dispersion state of the food are made. This is useful in innovative processing technologies and for scientists new to the field of food rheology. An attempt is made to exemplify and group the expected behavior for most fluid foods, including some for a dysphagia diet, depending on their composition or the dispersed system formed, which will be useful for professionals who wish to compare reported rheological parameters with those obtained experimentally.
Collapse
Affiliation(s)
- Laura Patricia Martínez-Padilla
- Laboratorio de Propiedades Reológicas y Funcionales en Alimentos, FES Cuautitlán, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
6
|
Hussain M, Gantumur MA, Manzoor MF, Hussain K, Xu J, Aadil RM, Qayum A, Ahmad I, Zhong H, Guan R. Sustainable emerging high-intensity sonication processing to enhance the protein bioactivity and bioavailability: An updated review. ULTRASONICS SONOCHEMISTRY 2023; 97:106464. [PMID: 37271028 DOI: 10.1016/j.ultsonch.2023.106464] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/19/2023] [Accepted: 05/28/2023] [Indexed: 06/06/2023]
Abstract
High-intensity ultrasound (HIU) is considered one of the promising non-chemical eco-friendly techniques used in food processing. Recently (HIU) is known to enhance food quality, extraction of bioactive compounds and formulation of emulsions. Various foods are treated with ultrasound, including fats, bioactive compounds, and proteins. Regarding proteins, HIU induces acoustic cavitation and bubble formation, causing the unfolding and exposure of hydrophobic regions, resulting in functional, bioactive, and structural enhancement. This review briefly portrays the impact of HIU on the bioavailability and bioactive properties of proteins; the effect of HIU on protein allergenicity and anti-nutritional factors has also been discussed. HIU can enhance bioavailability and bioactive attributes in plants and animal-based proteins, such as antioxidant activity, antimicrobial activity, and peptide release. Moreover, numerous studies revealed that HIU treatment could enhance functional properties, increase the release of short-chain peptides, and decrease allergenicity. HIU could replace the chemical and heat treatments used to enhance protein bioactivity and digestibility; however, its applications are still on research and small scale, and its usage in industries is yet to be implemented.
Collapse
Affiliation(s)
- Muhammad Hussain
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, China
| | - Munkh-Amgalan Gantumur
- Food College, Northeast Agricultural University, No. 600 Changjiang St. Xian fang Dist, 150030 Harbin, China
| | - Muhammad Faisal Manzoor
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Kifayat Hussain
- Departments of Animal Nutrition, Institute of Animal and Dairy Sciences, University of Agriculture Faisalabad, Pakistan
| | - Jie Xu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, China
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Abdul Qayum
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Ishtiaq Ahmad
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hao Zhong
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, China.
| | - Rongfa Guan
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, China.
| |
Collapse
|
7
|
Ali M, Cheng JH, Tazeddinova D, Aadil RM, Zeng XA, Goksen G, Lorenzo JM, Esua OJ, Manzoor MF. Effect of plasma-activated water and buffer solution combined with ultrasound on fungicide degradation and quality of cherry tomato during storage. ULTRASONICS SONOCHEMISTRY 2023; 97:106461. [PMID: 37269690 DOI: 10.1016/j.ultsonch.2023.106461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/04/2023] [Accepted: 05/25/2023] [Indexed: 06/05/2023]
Abstract
The purpose of this study was to examine plasma-activated buffer solution (PABS) and plasma-activated water (PAW) combined with ultrasonication (U) treatment on the reduction of chlorothalonil fungicide and the quality of tomato fruits during storage. To obtain PAW and PABS, an atmospheric air plasma jet was used to treat buffer solution and deionized water at different treatment times (5 and 10 min). For combined treatments, fruits were submerged in PAW and PABS, then sonicated for 15 min, and individual treatment without sonication. As per the results, the maximum chlorothalonil reduction of 89.29% was detected in PAW-U10, followed by 85.43% in PABS. At the end of the storage period, the maximum reduction of 97.25% was recorded in PAW-U10, followed by 93.14% in PABS-U10. PAW, PABS, and both combined with ultrasound did not significantly affect the overall tomato fruit quality in the storage period. Our results revealed that PAW combined with sonication had a significant impact on post-harvest agrochemical degradation and retention of tomato quality than PABS. Conclusively, the integrated hurdle technologies effectively reduce agrochemical residues, which helps to lower health hazards and foodborne illnesses.
Collapse
Affiliation(s)
- Murtaza Ali
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Jun-Hu Cheng
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| | | | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Xin-An Zeng
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey
| | - Jose Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, San Cibrao das Viñas, Avd. Galicia N° 4, 32900 Ourense, Spain; Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidade de Vigo, 32004 Ourense, Spain
| | - Okon Johnson Esua
- Department of Agricultural and Food Engineering, University of Uyo, Uyo 520101, Nigeria
| | - Muhammad Faisal Manzoor
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan 528225, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
8
|
Ali M, Manzoor MF, Goksen G, Aadil RM, Zeng XA, Iqbal MW, Lorenzo JM. High-intensity ultrasonication impact on the chlorothalonil fungicide and its reduction pathway in spinach juice. ULTRASONICS SONOCHEMISTRY 2023; 94:106303. [PMID: 36731282 PMCID: PMC10040961 DOI: 10.1016/j.ultsonch.2023.106303] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 06/05/2023]
Abstract
Among different novel technologies, sonochemistry is a sustainable emerging technology for food processing, preservation, and pesticide removal. The study aimed to probe the impact of high-intensity ultrasonication on chlorothalonil fungicide degradation, reduction pathway, and bioactive availability of spinach juice. The chlorothalonil fungicide-immersed spinach juice was treated with sonication at 360 W, 480 W, and 600 W, 40 kHz, for 30 and 40 min at 30 ± 1 °C. The highest reduction of chlorothalonil fungicide residues was observed at 40 min sonication at 600 W. HPLC-MS (high-performance liquid chromatography-mass spectroscopy) analysis revealed the degradation pathway of chlorothalonil and the formation of m-phthalonitrile, 3-cyno-2,4,5,6-tetrachlorobenamide, 4-dichloroisophthalonitrile, trichloroisophtalonitrile, 4-hydoxychlorothalonil, and 2,3,4,6-tetrachlorochlorobenzonitrile as degradation products. High-intensity sonication treatments also significantly increased the bioavailability of phenolic, chlorophyll, and anthocyanins and the antioxidant activity of spinach juice. Our results proposed that sonication technology has excellent potential in degrading pesticides through free radical reactions formation and pyrolysis. Considering future perspectives, ultrasonication could be employed industrially to reduce pesticide residues from agricultural products and enhance the quality of spinach juice.
Collapse
Affiliation(s)
- Murtaza Ali
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, China; School of Food Science and Engineering, Foshan University, Foshan, China; School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Muhammad Faisal Manzoor
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, China; School of Food Science and Engineering, Foshan University, Foshan, China; School of Food Science and Engineering, South China University of Technology, Guangzhou, China.
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Xin-An Zeng
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, China; School of Food Science and Engineering, Foshan University, Foshan, China; School of Food Science and Engineering, South China University of Technology, Guangzhou, China.
| | | | - Jose Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, San Cibrao das Viñas, Avd. Galicia N° 4, 32900 Ourense, Spain; Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidade de Vigo, 32004 Ourense, Spain.
| |
Collapse
|