1
|
Kumarasiri A, Chetty IJ, Devpura S, Pradhan D, Aref I, Elshaikh MA, Movsas B. Radiation therapy margin reduction for patients with localized prostate cancer: A prospective study of the dosimetric impact and quality of life. J Appl Clin Med Phys 2024; 25:e14198. [PMID: 37952248 DOI: 10.1002/acm2.14198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/28/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023] Open
Abstract
OBJECTIVES To investigate the impact of reducing Clinical Target Volume (CTV) to Planning Target Volume (PTV) margins on delivered radiation therapy (RT) dose and patient reported quality-of-life (QOL) for patients with localized prostate cancer. METHODS Twenty patients were included in a single institution IRB-approved prospective study. Nine were planned with reduced margins (4 mm at prostate/rectum interface, 5 mm elsewhere), and 11 with standard margins (6/10 mm). Cumulative delivered dose was calculated using deformable dose accumulation. Each daily CBCT dataset was deformed to the planning CT (pCT), dose was computed, and accumulated on the resampled pCT using a parameter-optimized, B-spline algorithm (Elastix, ITK/VTK). EPIC-26 patient reported QOL was prospectively collected pre-treatment, post-treatment, and at 2-, 6-, 12-, 18-, 24-, 36-, 48-, and 60-month follow-ups. Post -RT QOL scores were baseline corrected and standardized to a [0-100] scale using EPIC-26 methodology. Correlations between QOL scores and dosimetric parameters were investigated, and the overall QOL differences between the two groups (QOLMargin-reduced -QOLcontrol ) were calculated. RESULTS The median QOL follow-up length for the 20 patients was 48 months. Difference between delivered dose and planned dose did not reach statistical significance (p > 0.1) for both targets and organs at risk between the two groups. At 4 years post-RT, standardized mean QOLMargin-reduced -QOLcontrol were improved for Urinary Incontinence, Urinary Irritative/Obstructive, Bowel, and Sexual EPIC domains by 3.5, 14.8, 10.2, and 16.1, respectively (higher values better). The control group showed larger PTV/rectum and PTV/bladder intersection volumes (7.2 ± 5.8, 18.2 ± 8.1 cc) than the margin-reduced group (2.6 ± 1.8, 12.5 ± 8.3 cc), though the dose to these intersection volumes did not reach statistical significance (p > 0.1) between the groups. PTV/rectum intersection volume showed a moderate correlation (r = -0.56, p < 0.05) to Bowel EPIC domain. CONCLUSIONS Results of this prospective study showed that margin-reduced group exhibited clinically meaningful improvement of QOL without compromising the target dose coverage.
Collapse
Affiliation(s)
- Akila Kumarasiri
- Department of Radiation Oncology, Henry Ford Health, Detroit, Michigan, USA
| | - Indrin J Chetty
- Department of Radiation Oncology, Henry Ford Health, Detroit, Michigan, USA
| | - Suneetha Devpura
- Department of Radiation Oncology, Henry Ford Health, Detroit, Michigan, USA
| | - Deepak Pradhan
- Department of Radiation Oncology, Henry Ford Health, Detroit, Michigan, USA
| | - Ibrahim Aref
- Department of Radiation Oncology, Henry Ford Health, Detroit, Michigan, USA
| | - Mohamed A Elshaikh
- Department of Radiation Oncology, Henry Ford Health, Detroit, Michigan, USA
| | - Benjamin Movsas
- Department of Radiation Oncology, Henry Ford Health, Detroit, Michigan, USA
| |
Collapse
|
2
|
Snyder J, Smith B, Aubin JS, Shepard A, Hyer D. Simulating an intra-fraction adaptive workflow to enable PTV margin reduction in MRIgART volumetric modulated arc therapy for prostate SBRT. Front Oncol 2024; 13:1325105. [PMID: 38260830 PMCID: PMC10800949 DOI: 10.3389/fonc.2023.1325105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Purpose This study simulates a novel prostate SBRT intra-fraction re-optimization workflow in MRIgART to account for prostate intra-fraction motion and evaluates the dosimetric benefit of reducing PTV margins. Materials and methods VMAT prostate SBRT treatment plans were created for 10 patients using two different PTV margins, one with a 5 mm margin except 3 mm posteriorly (standard) and another using uniform 2 mm margins (reduced). All plans were prescribed to 36.25 Gy in 5 fractions and adapted onto each daily MRI dataset. An intra-fraction adaptive workflow was simulated for the reduced margin group by synchronizing the radiation delivery with target position from cine MRI imaging. Intra-fraction delivered dose was reconstructed and prostate DVH metrics were evaluated under three conditions for the reduced margin plans: Without motion compensation (no-adapt), with a single adapt prior to treatment (ATP), and lastly for intra-fraction re-optimization during delivery (intra). Bladder and rectum DVH metrics were compared between the standard and reduced margin plans. Results As expected, rectum V18 Gy was reduced by 4.4 ± 3.9%, D1cc was reduced by 12.2 ± 6.8% (3.4 ± 2.3 Gy), while bladder reductions were 7.8 ± 5.6% for V18 Gy, and 9.6 ± 7.3% (3.4 ± 2.5 Gy) for D1cc for the reduced margin reference plans compared to the standard PTV margin. For the intrafraction replanning approach, average intra-fraction optimization times were 40.0 ± 2.9 seconds, less than the time to deliver one of the four VMAT arcs (104.4 ± 9.3 seconds) used for treatment delivery. When accounting for intra-fraction motion, prostate V36.25 Gy was on average 96.5 ± 4.0%, 99.1 ± 1.3%, and 99.6 ± 0.4 for the non-adapt, ATP, and intra-adapt groups, respectively. The minimum dose received by the prostate was less than 95% of the prescription dose in 84%, 36%, and 10% of fractions, for the non-adapt, ATP, and intra-adapt groups, respectively. Conclusions Intra-fraction re-optimization improves prostate coverage, specifically the minimum dose to the prostate, and enables PTV margin reduction and subsequent OAR sparing. Fast re-optimizations enable uninterrupted treatment delivery.
Collapse
Affiliation(s)
- Jeffrey Snyder
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | | | | | | | | |
Collapse
|
3
|
Cheng JC, Buduhan G, Venkataraman S, Tan L, Sasaki D, Bashir B, Ahmed N, Kidane B, Sivananthan G, Koul R, Leylek A, Butler J, McCurdy B, Wong R, Kim JO. Endobronchially Implanted Real-Time Electromagnetic Transponder Beacon-Guided, Respiratory-Gated SABR for Moving Lung Tumors: A Prospective Phase 1/2 Cohort Study. Adv Radiat Oncol 2023; 8:101243. [PMID: 37408673 PMCID: PMC10318214 DOI: 10.1016/j.adro.2023.101243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/03/2023] [Indexed: 07/07/2023] Open
Abstract
Purpose Endobronchial electromagnetic transponder beacons (EMT) provide real-time, precise positional data of moving lung tumors. We report results of a phase 1/2, prospective, single-arm cohort study evaluating the treatment planning effects of EMT-guided SABR for moving lung tumors. Methods and Materials Eligible patients were adults, Eastern Cooperative Oncology Group 0 to 2, with T1-T2N0 non-small cell lung cancer or pulmonary metastasis ≤4 cm with motion amplitude ≥5 mm. Three EMTs were endobronchially implanted using navigational bronchoscopy. Four-dimensional free-breathing computed tomography simulation scans were obtained, and end-exhalation phases were used to define the gating window internal target volume. A 3-mm expansion of gating window internal target volume defined the planning target volume (PTV). EMT-guided, respiratory-gated (RG) SABR was delivered (54 Gy/3 fractions or 48 Gy/4 fractions) using volumetric modulated arc therapy. For each RG-SABR plan, a 10-phase image-guided SABR plan was generated for dosimetric comparison. PTV/organ-at-risk (OAR) metrics were tabulated and analyzed using the Wilcoxon signed-rank pair test. Treatment outcomes were evaluated using RECIST (Response Evaluation Criteria in Solid Tumours; version 1.1). Results Of 41 patients screened, 17 were enrolled and 2 withdrew from the study. Median age was 73 years, with 7 women. Sixty percent had T1/T2 non-small cell lung cancer and 40% had M1 disease. Median tumor diameter was 1.9 cm with 73% of targets located peripherally. Mean respiratory tumor motion was 1.25 cm (range, 0.53-4.04 cm). Thirteen tumors were treated with EMT-guided SABR and 47% of patients received 48 Gy in 4 fractions while 53% received 54 Gy in 3 fractions. RG-SABR yielded an average PTV reduction of 46.9% (P < .005). Lung V5, V10, V20, and mean lung dose had mean relative reductions of 11.3%, 20.3%, 31.1%, and 20.3%, respectively (P < .005). Dose to OARs was significantly reduced (P < .05) except for spinal cord. At 6 months, mean radiographic tumor volume reduction was 53.5% (P < .005). Conclusions EMT-guided RG-SABR significantly reduced PTVs of moving lung tumors compared with image-guided SABR. EMT-guided RG-SABR should be considered for tumors with large respiratory motion amplitudes or those located in close proximity to OARs.
Collapse
Affiliation(s)
- Jui Chih Cheng
- Radiation Oncology, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Gordon Buduhan
- Thoracic Surgery, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - Lawrence Tan
- Thoracic Surgery, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - David Sasaki
- Medical Physics, CancerCare Manitoba, Winnipeg, Manitoba, Canada
| | - Bashir Bashir
- Radiation Oncology, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Naseer Ahmed
- Radiation Oncology, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Biniam Kidane
- Thoracic Surgery, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Gokulan Sivananthan
- Radiation Oncology, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Rashmi Koul
- Radiation Oncology, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ahmet Leylek
- Radiation Oncology, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - James Butler
- Radiation Oncology, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Boyd McCurdy
- Medical Physics, CancerCare Manitoba, Winnipeg, Manitoba, Canada
| | - Ralph Wong
- Medical Oncology, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Julian O. Kim
- Radiation Oncology, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- CancerCare Manitoba Research Institute, Winnipeg, Manitoba, Canada
| |
Collapse
|
4
|
Arumugam S, Wong K, Do V, Sidhom M. Reducing the margin in prostate radiotherapy: optimizing radiotherapy with a general-purpose linear accelerator using an in-house position monitoring system. Front Oncol 2023; 13:1116999. [PMID: 37519807 PMCID: PMC10373585 DOI: 10.3389/fonc.2023.1116999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
Purpose To study the feasibility of optimizing the Clinical Target Volume to Planning Target Volume (CTV-PTV) margin in prostate radiotherapy(RT) with a general-purpose linear accelerator using an in-house developed position monitoring system, SeedTracker. Methods A cohort of 30 patients having definitive prostate radiotherapy treated within an ethics-approved prospective trial was considered for this study. The intrafraction prostate motion and the position deviations were measured using SeedTracker system during each treatment fraction. Using this data the CTV-PTV margin required to cover 90% of the patients with a minimum of 95% of the prescription dose to CTV was calculated using van Herk's formula. The margin calculations were performed for treatment scenarios both with and without applying the position corrections for observed position deviations. The feasibility of margin reduction with real-time monitoring was studied by assessing the delivered dose that incorporates the actual target position during treatment delivery and comparing it with the planned dose. This assessment was performed for plans generated with reduced CTV-PTV margin in the range of 7mm-3mm. Results With real-time monitoring and position corrections applied the margin of 2.0mm, 2.1mm and 2.1mm in LR, AP and SI directions were required to meet the criteria of 90% population to receive 95% of the dose prescription to CTV. Without position corrections applied for observed position deviations a margin of 3.1mm, 4.0mm and 3.0mm was required in LR, AP and SI directions to meet the same criteria. A mean ± SD reduction of 0.5 ± 1.8% and 3 ± 7% of V60 for the rectum and bladder can be achieved for every 1mm reduction of PTV margin. With position corrections applied, the CTV D99 can be delivered within -0.2 ± 0.3 Gy of the planned dose for plans with a 3mm margin. Without applying corrections for position deviations the CTV D99 was reduced by a maximum of 1.1 ± 1.1 Gy for the 3mm margin plan and there was a statistically significant difference between planned and delivered dose for 3mm and 4mm margin plans. Conclusion This study demonstrates the feasibility of reducing the margin in prostate radiotherapy with SeedTracker system without compromising the dose delivery accuracy to CTV while reducing dose to critical structures.
Collapse
Affiliation(s)
- Sankar Arumugam
- Department of Medical Physics, Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute, Sydney, NSW, Australia
- South Western Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Karen Wong
- South Western Clinical School, University of New South Wales, Sydney, NSW, Australia
- Department of Radiation Oncology, Liverpool and Macarthur Cancer Therapy Centres, Sydney, NSW, Australia
| | - Viet Do
- South Western Clinical School, University of New South Wales, Sydney, NSW, Australia
- Department of Radiation Oncology, Liverpool and Macarthur Cancer Therapy Centres, Sydney, NSW, Australia
| | - Mark Sidhom
- South Western Clinical School, University of New South Wales, Sydney, NSW, Australia
- Department of Radiation Oncology, Liverpool and Macarthur Cancer Therapy Centres, Sydney, NSW, Australia
| |
Collapse
|
5
|
Keall PJ, Brighi C, Glide-Hurst C, Liney G, Liu PZY, Lydiard S, Paganelli C, Pham T, Shan S, Tree AC, van der Heide UA, Waddington DEJ, Whelan B. Integrated MRI-guided radiotherapy - opportunities and challenges. Nat Rev Clin Oncol 2022; 19:458-470. [PMID: 35440773 DOI: 10.1038/s41571-022-00631-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2022] [Indexed: 12/25/2022]
Abstract
MRI can help to categorize tissues as malignant or non-malignant both anatomically and functionally, with a high level of spatial and temporal resolution. This non-invasive imaging modality has been integrated with radiotherapy in devices that can differentially target the most aggressive and resistant regions of tumours. The past decade has seen the clinical deployment of treatment devices that combine imaging with targeted irradiation, making the aspiration of integrated MRI-guided radiotherapy (MRIgRT) a reality. The two main clinical drivers for the adoption of MRIgRT are the ability to image anatomical changes that occur before and during treatment in order to adapt the treatment approach, and to image and target the biological features of each tumour. Using motion management and biological targeting, the radiation dose delivered to the tumour can be adjusted during treatment to improve the probability of tumour control, while simultaneously reducing the radiation delivered to non-malignant tissues, thereby reducing the risk of treatment-related toxicities. The benefits of this approach are expected to increase survival and quality of life. In this Review, we describe the current state of MRIgRT, and the opportunities and challenges of this new radiotherapy approach.
Collapse
Affiliation(s)
- Paul J Keall
- ACRF Image X Institute, The University of Sydney, Sydney, New South Wales, Australia.
| | - Caterina Brighi
- ACRF Image X Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Carri Glide-Hurst
- Department of Human Oncology, University of Wisconsin, Madison, WI, USA
| | - Gary Liney
- Ingham Institute of Applied Medical Research, Sydney, New South Wales, Australia
| | - Paul Z Y Liu
- ACRF Image X Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Suzanne Lydiard
- ACRF Image X Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Chiara Paganelli
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy
| | - Trang Pham
- Faculty of Medicine and Health, The University of New South Wales, Sydney, New South Wales, Australia
| | - Shanshan Shan
- ACRF Image X Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Alison C Tree
- The Royal Marsden NHS Foundation Trust and the Institute of Cancer Research, London, UK
| | - Uulke A van der Heide
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - David E J Waddington
- ACRF Image X Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Brendan Whelan
- ACRF Image X Institute, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
6
|
Kaučić H, Kosmina D, Schwarz D, Mack A, Šobat H, Čehobašić A, Leipold V, Andrašek I, Avdičević A, Mlinarić M. Stereotactic Ablative Radiotherapy Using CALYPSO ® Extracranial Tracking for Intrafractional Tumor Motion Management-A New Potential Local Treatment for Unresectable Locally Advanced Pancreatic Cancer? Results from a Retrospective Study. Cancers (Basel) 2022; 14:cancers14112688. [PMID: 35681668 PMCID: PMC9179494 DOI: 10.3390/cancers14112688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022] Open
Abstract
(1) Background: The aim of this study was to evaluate the efficacy and safety of SABR for LAPC using Calypso® Extracranial Tracking for intrafractional, fiducial-based motion management, to present this motion management technique, as there are yet no published data on usage of Calypso® during SABR for LAPC, and to report on our clinical outcomes. (2) Methods: Fifty-four patients were treated with SABR in one, three, or five fractions, receiving median BED10 = 112.5 Gy. Thirty-eight patients received systemic treatment. End points were OS, FFLP, PFS, and toxicity. Actuarial survival analysis and univariate analysis were investigated. (3) Results: Median follow-up was 20 months. Median OS was 24 months. One-year FFLP and one-year OS were 100% and 90.7%, respectively. Median PFS was 18 months, and one-year PFS was 72.2%. Twenty-five patients (46.3%) were alive at the time of analysis, and both median FU and OS for this subgroup were 26 months. No acute/late toxicity > G2 was reported. (4) Conclusions: SABR for LAPC using Calypso® presented as an effective and safe treatment and could be a promising local therapeutic option with very acceptable toxicity, either as a single treatment or in a multimodality regimen. Dose escalation to the tumor combined with systemic treatment could yield better clinical outcomes.
Collapse
Affiliation(s)
- Hrvoje Kaučić
- Specijalna bolnica Radiochirurgia Zagreb, Ulica Dr. Franje Tuđmana 4, 10431 Sveta Nedelja, Croatia; (D.K.); (D.S.); (H.Š.); (A.Č.); (V.L.); (I.A.); (A.A.); (M.M.)
- Sveučilište Josipa Jurja Strossmayera u Osijeku—Medicinski Fakultet Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
- Correspondence: ; Tel.: +385-91-5622-191
| | - Domagoj Kosmina
- Specijalna bolnica Radiochirurgia Zagreb, Ulica Dr. Franje Tuđmana 4, 10431 Sveta Nedelja, Croatia; (D.K.); (D.S.); (H.Š.); (A.Č.); (V.L.); (I.A.); (A.A.); (M.M.)
| | - Dragan Schwarz
- Specijalna bolnica Radiochirurgia Zagreb, Ulica Dr. Franje Tuđmana 4, 10431 Sveta Nedelja, Croatia; (D.K.); (D.S.); (H.Š.); (A.Č.); (V.L.); (I.A.); (A.A.); (M.M.)
- Medicinski Fakultet Sveučilišta u Rijeci, Braće Branchetta 20/1, 51000 Rijeka, Croatia
- Sveučilište Josipa Jurja Strossmayera u Osijeku—Fakultet za Dentalnu Medicinu i Zdravstvo Osijek, Crkvena Ulica 21, 31000 Osijek, Croatia
| | - Andreas Mack
- Swiss NeuroRadiosurgery Center, Bürglistrasse 29, 8002 Zürich, Switzerland;
| | - Hrvoje Šobat
- Specijalna bolnica Radiochirurgia Zagreb, Ulica Dr. Franje Tuđmana 4, 10431 Sveta Nedelja, Croatia; (D.K.); (D.S.); (H.Š.); (A.Č.); (V.L.); (I.A.); (A.A.); (M.M.)
| | - Adlan Čehobašić
- Specijalna bolnica Radiochirurgia Zagreb, Ulica Dr. Franje Tuđmana 4, 10431 Sveta Nedelja, Croatia; (D.K.); (D.S.); (H.Š.); (A.Č.); (V.L.); (I.A.); (A.A.); (M.M.)
- Sveučilište Josipa Jurja Strossmayera u Osijeku—Medicinski Fakultet Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
| | - Vanda Leipold
- Specijalna bolnica Radiochirurgia Zagreb, Ulica Dr. Franje Tuđmana 4, 10431 Sveta Nedelja, Croatia; (D.K.); (D.S.); (H.Š.); (A.Č.); (V.L.); (I.A.); (A.A.); (M.M.)
- Sveučilište Josipa Jurja Strossmayera u Osijeku—Medicinski Fakultet Osijek, Josipa Huttlera 4, 31000 Osijek, Croatia
| | - Iva Andrašek
- Specijalna bolnica Radiochirurgia Zagreb, Ulica Dr. Franje Tuđmana 4, 10431 Sveta Nedelja, Croatia; (D.K.); (D.S.); (H.Š.); (A.Č.); (V.L.); (I.A.); (A.A.); (M.M.)
| | - Asmir Avdičević
- Specijalna bolnica Radiochirurgia Zagreb, Ulica Dr. Franje Tuđmana 4, 10431 Sveta Nedelja, Croatia; (D.K.); (D.S.); (H.Š.); (A.Č.); (V.L.); (I.A.); (A.A.); (M.M.)
| | - Mihaela Mlinarić
- Specijalna bolnica Radiochirurgia Zagreb, Ulica Dr. Franje Tuđmana 4, 10431 Sveta Nedelja, Croatia; (D.K.); (D.S.); (H.Š.); (A.Č.); (V.L.); (I.A.); (A.A.); (M.M.)
| |
Collapse
|
7
|
Harris W, Yorke E, Li H, Czmielewski C, Chawla M, Lee RP, Hotca-Cho A, McKnight D, Rimner A, Lovelock DM. Can bronchoscopically implanted anchored electromagnetic transponders be used to monitor tumor position and lung inflation during deep inspiration breath-hold lung radiotherapy? Med Phys 2022; 49:2621-2630. [PMID: 35192211 PMCID: PMC9007909 DOI: 10.1002/mp.15565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/22/2022] [Accepted: 02/05/2022] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To evaluate the efficacy of using bronchoscopically implanted anchored electromagnetic transponders (EMTs) as surrogates for 1) tumor position and 2) repeatability of lung inflation during deep-inspiration breath-hold (DIBH) lung radiotherapy. METHODS 41 patients treated with either hypofractionated (HF) or conventional (CF) lung radiotherapy on an IRB approved prospective protocol using coached DIBH were evaluated for this study. Three anchored EMTs were bronchoscopically implanted into small airways near or within the tumor. DIBH treatment was gated by tracking the EMT positions. Breath-hold cone-beam-CTs (CBCTs) were acquired prior to every HF treatment or weekly for CF patients. Retrospectively, rigid registrations between each CBCT and the breath-hold planning CT were performed to match to 1) spine 2) EMTs and 3) tumor. Absolute differences in registration between EMTs and spine were analyzed to determine surrogacy of EMTs for lung inflation. Differences in registration between EMTs and tumor were analyzed to determine surrogacy of EMTs for tumor position. The stability of the EMTs was evaluated by analyzing the difference between inter-EMT displacements recorded at treatment from that of the plan for the CF patients, as well as the geometric residual (GR) recorded at the time of treatment. RESULTS 219 CBCTs were analyzed. The average differences between EMT centroid and spine registration among all CBCTs were 0.45±0.42cm, 0.29±0.28cm, and 0.18±0.15cm in superior-inferior (SI), anterior-posterior (AP) and lateral directions, respectively. Only 59% of CBCTs had differences in registration <0.5cm for EMT centroid compared to spine, indicating that lung inflation is not reproducible from simulation to treatment. The average differences between EMT centroid and tumor registration among all CBCTs were 0.13±0.13cm, 0.14±0.13cm and 0.12±0.12cm in SI, AP and lateral directions, respectively. 95% of CBCTs resulted in <0.5cm change between EMT centroid and tumor registration, indicating that EMT positions correspond well with tumor position during treatments. Six out of the 7 recorded CF patients had average differences in inter-EMT displacements to be ≤0.26cm and average GR ≤0.22cm, indicating that the EMTs are stable throughout treatment. CONCLUSIONS Bronchoscopically implanted anchored EMTs are good surrogates for tumor position and are reliable for maintaining tumor position when tracked during DIBH treatment, as long as the tumor size and shape are stable. Large differences in registration between EMTs and spine for many treatments suggest that lung inflation achieved at simulation is often not reproduced. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Wendy Harris
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
| | - Ellen Yorke
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
| | - Henry Li
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
| | - Christian Czmielewski
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
| | - Mohit Chawla
- Department of Medicine, Pulmonary Service, Section of Interventional Pulmonology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
| | - Robert P Lee
- Department of Medicine, Pulmonary Service, Section of Interventional Pulmonology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
| | - Alexandra Hotca-Cho
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
| | - Dominique McKnight
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
| | - Andreas Rimner
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
| | - D Michael Lovelock
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065
| |
Collapse
|
8
|
Koo J, Nardella L, Degnan M, Andreozzi J, Yu HHM, Penagaricano J, Johnstone PAS, Oliver D, Ahmed K, Rosenberg SA, Wuthrick E, Diaz R, Feygelman V, Latifi K, Moros EG, Redler G. Triggered kV Imaging During Spine SBRT for Intrafraction Motion Management. Technol Cancer Res Treat 2021; 20:15330338211063033. [PMID: 34855577 PMCID: PMC8649431 DOI: 10.1177/15330338211063033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Purpose: To monitor intrafraction motion during spine stereotactic body radiotherapy(SBRT) treatment delivery with readily available technology, we implemented triggered kV imaging using the on-board imager(OBI) of a modern medical linear accelerator with an advanced imaging package. Methods: Triggered kV imaging for intrafraction motion management was tested with an anthropomorphic phantom and simulated spine SBRT treatments to the thoracic and lumbar spine. The vertebral bodies and spinous processes were contoured as the image guided radiotherapy(IGRT) structures specific to this technique. Upon each triggered kV image acquisition, 2D projections of the IGRT structures were automatically calculated and updated at arbitrary angles for display on the kV images. Various shifts/rotations were introduced in x, y, z, pitch, and yaw. Gantry-angle-based triggering was set to acquire kV images every 45°. A group of physicists/physicians(n = 10) participated in a survey to evaluate clinical efficiency and accuracy of clinical decisions on images containing various phantom shifts. This method was implemented clinically for treatment of 42 patients(94 fractions) with 15 second time-based triggering. Result: Phantom images revealed that IGRT structure accuracy and therefore utility of projected contours during triggered imaging improved with smaller CT slice thickness. Contouring vertebra superior and inferior to the treatment site was necessary to detect clinically relevant phantom rotation. From the survey, detectability was proportional to the shift size in all shift directions and inversely related to the CT slice thickness. Clinical implementation helped evaluate robustness of patient immobilization. Based on visual inspection of projected IGRT contours on planar kV images, appreciable intrafraction motion was detected in eleven fractions(11.7%). Discussion: Feasibility of triggered imaging for spine SBRT intrafraction motion management has been demonstrated in phantom experiments and implementation for patient treatments. This technique allows efficient, non-invasive monitoring of patient position using the OBI and patient anatomy as a direct visual guide.
Collapse
Affiliation(s)
- Jihye Koo
- 7831University of South Florida, 33620, USA.,25301H. Lee Moffitt Cancer Center, 33612, USA
| | | | - Michael Degnan
- 549472The Ohio State University, 43210, Columbus, OH, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | - Gage Redler
- 25301H. Lee Moffitt Cancer Center, 33612, USA
| |
Collapse
|
9
|
The rationale for MR-only delineation and planning: retrospective CT–MR registration and target volume analysis for prostate radiotherapy. JOURNAL OF RADIOTHERAPY IN PRACTICE 2021. [DOI: 10.1017/s1460396920000230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractAim:Magnetic resonance imaging (MRI) is indispensable for treatment planning in prostate radiotherapy (PR). Registration of MRI when compared to planning CT (pCT) is prone to uncertainty and this is rarely reported. In this study, we have compared three different types of registration methods to justify the direct use of MRI in PR.Methods and materials:Thirty patients treated for PR were retrospectively selected for this study and all underwent both CT and MRI. The MR scans were registered to the pCT using markers, focused and unfocussed methods and their registration are REGM, REGF, and REGNF, respectively. Registration comparison is done using the translational differences of three axes from the centre-of-mass values of gross tumour volume (GTV) generated using MRI.Results:The average difference in all three axes (x, y, z) is (1, 2·5, 2·3 mm) and (1, 3, 2·3 mm) for REGF-REFNF and REGF-REGM, respectively. MR-based GTV Volume is less in comparison to CT-based GTV and it is significantly different (p < 0·001).Findings:Image registration uncertainty is unavoidable for a regular CT–MR workflow. Additional planning target volume margin ranging from 2 to 3mm could be avoided if MR-only workflow is employed. This reduction in the margin is beneficial for small tumours treated with hypofractionation.
Collapse
|
10
|
Greco C, Stroom J, Vieira S, Mateus D, Cardoso MJ, Soares A, Pares O, Pimentel N, Louro V, Nunes B, Kociolek J, Fuks Z. Reproducibility and accuracy of a target motion mitigation technique for dose-escalated prostate stereotactic body radiotherapy. Radiother Oncol 2021; 160:240-249. [PMID: 33992627 DOI: 10.1016/j.radonc.2021.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND AND PURPOSE To quantitate the accuracy, reproducibility and prostate motion mitigation efficacy rendered by a target immobilization method used in an intermediate-risk prostate cancer dose-escalated 5×9Gy SBRT study. MATERIAL AND METHODS An air-inflated (150 cm3) endorectal balloon and Foley catheter with three electromagnetic beacon transponders (EBT) were used to mitigate and track intra-fractional target motion. A 2 mm margin was used for PTV expansion, reduced to 0 mm at the interface with critical OARs. EBT-detected ≥ 2 mm/5 s motions mandated treatment interruption and target realignment prior to completion of planned dose delivery. Geometrical uncertainties were measured with an in-house ESAPI script. RESULTS Quantitative data were obtained in 886 sessions from 189 patients. Mean PTV dose was 45.8 ± 0.4 Gy (D95 = 40.5 ± 0.4 Gy). A mean of 3.7 ± 1.7 CBCTs were acquired to reach reference position. Mean treatment time was 19.5 ± 12 min, 14.1 ± 11 and 5.4 ± 5.9 min for preparation and treatment delivery, respectively. Target motion of 0, 1-2 and >2 mm/10 min were observed in 59%, 30% and 11% of sessions, respectively. Temporary beam-on hold occurred in 7.4% of sessions, while in 6% a new reference CBCT was required to correct deviations. Hence, all sessions were completed with application of the planned dose. Treatment preparation time > 15 min was significantly associated with the need of a second reference CBCT. Overall systematic and random geometrical errors were in the order of 1 mm. CONCLUSION The prostate immobilization technique explored here affords excellent accuracy and reproducibility, enabling normal tissue dose sculpting with tight PTV margins.
Collapse
Affiliation(s)
- Carlo Greco
- The Champalimaud Centre for the Unknown, Lisbon, Portugal.
| | - Joep Stroom
- The Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Sandra Vieira
- The Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Dalila Mateus
- The Champalimaud Centre for the Unknown, Lisbon, Portugal
| | | | - Ana Soares
- The Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Oriol Pares
- The Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Nuno Pimentel
- The Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Vasco Louro
- The Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Beatriz Nunes
- The Champalimaud Centre for the Unknown, Lisbon, Portugal
| | | | - Zvi Fuks
- The Champalimaud Centre for the Unknown, Lisbon, Portugal; Memorial Sloan Kettering Cancer Center, New York, USA
| |
Collapse
|
11
|
Marcello M, Denham JW, Kennedy A, Haworth A, Steigler A, Greer PB, Holloway LC, Dowling JA, Jameson MG, Roach D, Joseph DJ, Gulliford SL, Dearnaley DP, Sydes MR, Hall E, Ebert MA. Reduced Dose Posterior to Prostate Correlates With Increased PSA Progression in Voxel-Based Analysis of 3 Randomized Phase 3 Trials. Int J Radiat Oncol Biol Phys 2020; 108:1304-1318. [PMID: 32739320 DOI: 10.1016/j.ijrobp.2020.07.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 07/13/2020] [Accepted: 07/20/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Reducing margins during treatment planning to decrease dose to healthy organs surrounding the prostate can risk inadequate treatment of subclinical disease. This study aimed to investigate whether lack of dose to subclinical disease is associated with increased disease progression by using high-quality prostate radiation therapy clinical trial data to identify anatomically localized regions where dose variation is associated with prostate-specific antigen progression (PSAP). METHODS AND MATERIALS Planned dose distributions for 683 patients of the Trans-Tasman Radiation Oncology Group 03.04 Randomized Androgen Deprivation and Radiotherapy (RADAR) trial were deformably registered onto a single exemplar computed tomography data set. These were divided into high-risk and intermediate-risk subgroups for analysis. Three independent voxel-based statistical tests, using permutation testing, Cox regression modeling, and least absolute shrinkage selection operator feature selection, were applied to identify regions where dose variation was associated with PSAP. Results from the intermediate-risk RADAR subgroup were externally validated by registering dose distributions from the RT01 (n = 388) and Conventional or Hypofractionated High Dose Intensity Modulated Radiotherapy for Prostate Cancer Trial (CHHiP) (n = 253) trials onto the same exemplar and repeating the tests on each of these data sets. RESULTS Voxel-based Cox regression revealed regions where reduced dose was correlated with increased prostate-specific androgen progression. Reduced dose in regions associated with coverage at the posterior prostate, in the immediate periphery of the posterior prostate, and in regions corresponding to the posterior oblique beams or posterior lateral beam boundary, was associated with increased PSAP for RADAR and RT01 patients, but not for CHHiP patients. Reduced dose to the seminal vesicle region was also associated with increased PSAP for RADAR intermediate-risk patients. CONCLUSIONS Ensuring adequate dose coverage at the posterior prostate and immediately surrounding posterior region (including the seminal vesicles), where aggressive cancer spread may be occurring, may improve tumor control. It is recommended that particular care be taken when defining margins at the prostate posterior, acknowledging the trade-off between quality of life due to rectal dose and the preferences of clinicians and patients.
Collapse
Affiliation(s)
- Marco Marcello
- Department of Physics, University of Western Australia, Perth, Western Australia, Australia; Department of Radiation Oncology, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia.
| | - James W Denham
- School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia
| | - Angel Kennedy
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia
| | - Annette Haworth
- School of Physics, University of Sydney, Sydney, New South Wales, Australia
| | - Allison Steigler
- Prostate Cancer Trials Group, School of Medicine and Public Health, University of Newcastle, Newcastle, New South Wales, Australia
| | - Peter B Greer
- School of Mathematical and Physical Sciences, University of Newcastle, Newcastle, New South Wales, Australia; Department of Radiation Oncology, Calvary Mater Newcastle, Newcastle, New South Wales, Australia
| | - Lois C Holloway
- Department of Medical Physics, Liverpool Cancer Centre, Sydney, New South Wales, Australia; South Western Sydney Clinical School, University of New South Wales, Sydney, New South Wales, Australia; Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales, Australia
| | - Jason A Dowling
- School of Mathematical and Physical Sciences, University of Newcastle, Newcastle, New South Wales, Australia; CSIRO, Brisbane, Queensland, Australia
| | - Michael G Jameson
- Department of Medical Physics, Liverpool Cancer Centre, Sydney, New South Wales, Australia; South Western Sydney Clinical School, University of New South Wales, Sydney, New South Wales, Australia; Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales, Australia; Cancer Research Team, Ingham Institute for Applied Medical Research, Sydney, New South Wales, Australia
| | - Dale Roach
- Department of Medical Physics, Liverpool Cancer Centre, Sydney, New South Wales, Australia; South Western Sydney Clinical School, University of New South Wales, Sydney, New South Wales, Australia; Cancer Research Team, Ingham Institute for Applied Medical Research, Sydney, New South Wales, Australia
| | - David J Joseph
- School of Surgery, University of Western Australia, Perth, Western Australia, Australia; 5D Clinics, Claremont, Perth, Western Australia, Australia; GenesisCare WA, Perth, Western Australia, Australia
| | - Sarah L Gulliford
- Radiotherapy Department, University College London Hospitals NHS Foundation Trust, London, United Kingdom; Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - David P Dearnaley
- Academic UroOncology Unit, The Institute of Cancer Research and the Royal Marsden NHS Trust, London, United Kingdom
| | - Matthew R Sydes
- MRC Clinical Trials Unit, Institute of Clinical Trials and Methodology, University College London, London, United Kingdom
| | - Emma Hall
- Clinical Trials and Statistics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Martin A Ebert
- Department of Physics, University of Western Australia, Perth, Western Australia, Australia; Department of Radiation Oncology, Sir Charles Gairdner Hospital, Perth, Western Australia, Australia; 5D Clinics, Claremont, Perth, Western Australia, Australia
| |
Collapse
|
12
|
Lin DW, Shih MC, Aronson W, Basler J, Beer TM, Brophy M, Cooperberg M, Garzotto M, Kelly WK, Lee K, McGuire V, Wang Y, Lu Y, Markle V, Nseyo U, Ringer R, Savage SJ, Sinnott P, Uchio E, Yang CC, Montgomery RB. Veterans Affairs Cooperative Studies Program Study #553: Chemotherapy After Prostatectomy for High-risk Prostate Carcinoma: A Phase III Randomized Study. Eur Urol 2020; 77:563-572. [DOI: 10.1016/j.eururo.2019.12.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 12/26/2019] [Indexed: 11/25/2022]
|
13
|
Keall P, Nguyen DT, O'Brien R, Hewson E, Ball H, Poulsen P, Booth J, Greer P, Hunter P, Wilton L, Bromley R, Kipritidis J, Eade T, Kneebone A, Hruby G, Moodie T, Hayden A, Turner S, Arumugam S, Sidhom M, Hardcastle N, Siva S, Tai KH, Gebski V, Martin J. Real-Time Image Guided Ablative Prostate Cancer Radiation Therapy: Results From the TROG 15.01 SPARK Trial. Int J Radiat Oncol Biol Phys 2020; 107:530-538. [PMID: 32234553 DOI: 10.1016/j.ijrobp.2020.03.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 01/28/2023]
Abstract
PURPOSE Kilovoltage intrafraction monitoring (KIM) is a novel software platform implemented on standard radiation therapy systems and enabling real-time image guided radiation therapy (IGRT). In a multi-institutional prospective trial, we investigated whether real-time IGRT improved the accuracy of the dose patients with prostate cancer received during radiation therapy. METHODS AND MATERIALS Forty-eight patients with prostate cancer were treated with KIM-guided SABR with 36.25 Gy in 5 fractions. During KIM-guided treatment, the prostate motion was corrected for by either beam gating with couch shifts or multileaf collimator tracking. A dose reconstruction method was used to evaluate the dose delivered to the target and organs at risk with and without real-time IGRT. Primary outcome was the effect of real-time IGRT on dose distributions. Secondary outcomes included patient-reported outcomes and toxicity. RESULTS Motion correction occurred in ≥1 treatment for 88% of patients (42 of 48) and 51% of treatments (121 of 235). With real-time IGRT, no treatments had prostate clinical target volume (CTV) D98% dose 5% less than planned. Without real-time IGRT, 13 treatments (5.5%) had prostate CTV D98% doses 5% less than planned. The prostate CTV D98% dose with real-time IGRT was closer to the plan by an average of 1.0% (range, -2.8% to 20.3%). Patient outcomes showed no change in the 12-month patient-reported outcomes compared with baseline and no grade ≥3 genitourinary or gastrointestinal toxicities. CONCLUSIONS Real-time IGRT is clinically effective for prostate cancer SABR.
Collapse
Affiliation(s)
- Paul Keall
- ACRF Image X Institute, University of Sydney, Sydney, Australia.
| | - Doan Trang Nguyen
- ACRF Image X Institute, University of Sydney, Sydney, Australia; School of Biomedical Engineering, University of Technology, Sydney, Sydney, Australia
| | - Ricky O'Brien
- ACRF Image X Institute, University of Sydney, Sydney, Australia
| | - Emily Hewson
- ACRF Image X Institute, University of Sydney, Sydney, Australia
| | - Helen Ball
- ACRF Image X Institute, University of Sydney, Sydney, Australia
| | - Per Poulsen
- Department of Oncology and Danish Center for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Jeremy Booth
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, Australia; School of Physics, University of Sydney, Sydney, Australia
| | - Peter Greer
- Department of Radiation Oncology, Calvary Mater Newcastle Hospital, Newcastle, Australia; University of Newcastle, Newcastle, Australia
| | - Perry Hunter
- Department of Radiation Oncology, Calvary Mater Newcastle Hospital, Newcastle, Australia
| | - Lee Wilton
- Department of Radiation Oncology, Calvary Mater Newcastle Hospital, Newcastle, Australia
| | - Regina Bromley
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, Australia
| | - John Kipritidis
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, Australia
| | - Thomas Eade
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, Australia; Northern Clinical School, University of Sydney, Sydney, Australia
| | - Andrew Kneebone
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, Australia; Northern Clinical School, University of Sydney, Sydney, Australia
| | - George Hruby
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, Australia; Northern Clinical School, University of Sydney, Sydney, Australia
| | - Trevor Moodie
- Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, Australia
| | - Amy Hayden
- Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, Australia
| | - Sandra Turner
- Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, Australia
| | - Sankar Arumugam
- Liverpool and Macarthur Cancer Therapy Centres, Liverpool Hospital, Sydney, Australia
| | - Mark Sidhom
- Liverpool and Macarthur Cancer Therapy Centres, Liverpool Hospital, Sydney, Australia
| | - Nicholas Hardcastle
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Australia; Institute of Medical Physics, University of Sydney, Sydney, Australia
| | - Shankar Siva
- Sir Peter MacCallum Department of Oncology, Peter MacCallum Cancer Centre, University of Melbourne, Australia
| | - Keen-Hun Tai
- Sir Peter MacCallum Department of Oncology, Peter MacCallum Cancer Centre, University of Melbourne, Australia
| | - Val Gebski
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, Australia
| | - Jarad Martin
- Department of Radiation Oncology, Calvary Mater Newcastle Hospital, Newcastle, Australia; University of Newcastle, Newcastle, Australia
| |
Collapse
|
14
|
Afzalifar A, Mowlavi AA, Mohammadi M. Performance of a linear accelerator couch positioning quality control task using an electronic portal imaging device. Radiol Phys Technol 2020; 13:195-200. [PMID: 32078138 DOI: 10.1007/s12194-020-00557-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 10/25/2022]
Abstract
Short and semi-automated quality assurance (QA) programs are becoming one of the most popular and highly demanding tasks in radiotherapy. The current research investigates the accuracy of a four degrees of freedom (4DoF) medical linear accelerator couch positioning with a fast and accurate method based on images acquired using an electronic portal imaging device (EPID). An accurate EPID QA phantom and a proper in-house code were used. A Siemens medical linear accelerator equipped with an a-Si EPID was used to acquire portal images. For verifying the mechanical performance of the EPID positioning, EPID sensitivity, and accuracy of the code response from the image processing point of view were investigated. To characterize the results, three deviations in the phantom positioning were deliberately created. The translational and rotational displacements of the treatment couch were then evaluated. The loading effect on the treatment couch was then investigated. The results of prerequisite tests, including the mechanical performance of the EPID, and the sensitivity and accuracy of the recognition codes, were assessed. The results were found to be within the tolerance range reported at AAPM TG-142. The mean deviations of the tests between expected and measured displacements by 4DoF treatment couch were found to be 0.13° ± 0.11°, 0.12 ± 0.17 mm, 0.17 ± 0.13 mm, and 0.04 ± 0.09 mm for rotational, longitudinal, lateral, and vertical shifts, respectively. The results showed that the proposed method is a reliable and fast approach to find the uncertainties occurring intreatment couch positioning.
Collapse
Affiliation(s)
- A Afzalifar
- Physics Department, School of Sciences, Hakim Sabzevari University, Sabzevar, Iran
| | - A A Mowlavi
- Physics Department, School of Sciences, Hakim Sabzevari University, Sabzevar, Iran.,ICTP, Associate Federation Scheme,, Medical Physics Field, Trieste, Italy
| | - M Mohammadi
- Department of Medical Physics, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia. .,School of Physical Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia.
| |
Collapse
|
15
|
Korpics MC, Rokni M, Degnan M, Aydogan B, Liauw SL, Redler G. Utilizing the TrueBeam Advanced Imaging Package to monitor intrafraction motion with periodic kV imaging and automatic marker detection during VMAT prostate treatments. J Appl Clin Med Phys 2020; 21:184-191. [PMID: 31981305 PMCID: PMC7075383 DOI: 10.1002/acm2.12822] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 12/18/2019] [Accepted: 12/27/2019] [Indexed: 02/01/2023] Open
Abstract
Background Fiducial markers are frequently used before treatment for image‐guided patient setup in radiation therapy (RT), but can also be used during treatment for image‐guided intrafraction motion detection. This report describes our implementation of automatic marker detection with periodic kV imaging (TrueBeam v2.5) to monitor and correct intrafraction motion during prostate RT. Methods We evaluated the reproducibility and accuracy of software fiducial detection using a phantom with 3 implanted fiducial markers. Clinical implementation for patients with intraprostatic fiducials receiving volumetric modulated arc therapy (VMAT) utilized periodic on‐board kV imaging with 10 s intervals during treatment delivery. For each image, the software automatically identified fiducial locations and determined whether their distance relative to planned locations were within a 3 mm tolerance. Motion was corrected if either ≥2 fiducials in a single image or ≥1 fiducial in sequential images were out of tolerance. Results Phantom studies demonstrated poorer performance of linear fiducials compared to collapsible fiducials, and wide variability to accurately detect fiducials across eight software settings. For any given setting, results were relatively reproducible and precise to ~0.5 mm. Across 17 patients treated with a median of 20 fractions, the software recommended a shift in 44% of fractions, and a shift was actually implemented after visual confirmation of movement greater than the 3 mm threshold in 20% of fractions. Adjustment of our approach led to improved accuracy for the latter (n = 7) patient subset. On average, table repositioning added 3.0 ± 0.3 min to patient time on table. Periodic kV imaging increased skin dose by an estimated 1 cGy per treatment arc. Conclusions Periodic kV imaging with automatic detection of motion during VMAT prostate treatments is commercially available, and can be successfully implemented to mitigate effects of intrafraction motion with careful attention to software settings.
Collapse
Affiliation(s)
- Mark C Korpics
- Department of Radiation and Cellular Oncology, University of Chicago Medical Center, Chicago, IL, USA
| | - Michelle Rokni
- Department of Radiation and Cellular Oncology, University of Chicago Medical Center, Chicago, IL, USA
| | - Michael Degnan
- Department of Radiation and Cellular Oncology, University of Chicago Medical Center, Chicago, IL, USA
| | - Bulent Aydogan
- Department of Radiation and Cellular Oncology, University of Chicago Medical Center, Chicago, IL, USA
| | - Stanley L Liauw
- Department of Radiation and Cellular Oncology, University of Chicago Medical Center, Chicago, IL, USA
| | - Gage Redler
- Department of Radiation and Cellular Oncology, University of Chicago Medical Center, Chicago, IL, USA
| |
Collapse
|
16
|
Dobelbower MC, Popple RA, Minnich DJ, Nader DA, Zimmerman F, Paris GE, Herth FJ, Gompelmann D, Roeder FF, Parikh PJ, McDonald AM. Anchored Transponder Guided Lung Radiation Therapy. Pract Radiat Oncol 2020; 10:e37-e44. [DOI: 10.1016/j.prro.2019.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/30/2019] [Accepted: 08/07/2019] [Indexed: 10/26/2022]
|
17
|
Sorriento A, Porfido MB, Mazzoleni S, Calvosa G, Tenucci M, Ciuti G, Dario P. Optical and Electromagnetic Tracking Systems for Biomedical Applications: A Critical Review on Potentialities and Limitations. IEEE Rev Biomed Eng 2019; 13:212-232. [PMID: 31484133 DOI: 10.1109/rbme.2019.2939091] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Optical and electromagnetic tracking systems represent the two main technologies integrated into commercially-available surgical navigators for computer-assisted image-guided surgery so far. Optical Tracking Systems (OTSs) work within the optical spectrum to track the position and orientation, i.e., pose of target surgical instruments. OTSs are characterized by high accuracy and robustness to environmental conditions. The main limitation of OTSs is the need of a direct line-of-sight between the optical markers and the camera sensor, rigidly fixed into the operating theatre. Electromagnetic Tracking Systems (EMTSs) use electromagnetic field generator to detect the pose of electromagnetic sensors. EMTSs do not require such a direct line-of-sight, however the presence of metal or ferromagnetic sources in the operating workspace can significantly affect the measurement accuracy. The aim of the proposed review is to provide a complete and detailed overview of optical and electromagnetic tracking systems, including working principles, source of error and validation protocols. Moreover, commercial and research-oriented solutions, as well as clinical applications, are described for both technologies. Finally, a critical comparative analysis of the state of the art which highlights the potentialities and the limitations of each tracking system for a medical use is provided.
Collapse
|
18
|
Morgan SC, Hoffman K, Loblaw DA, Buyyounouski MK, Patton C, Barocas D, Bentzen S, Chang M, Efstathiou J, Greany P, Halvorsen P, Koontz BF, Lawton C, Leyrer CM, Lin D, Ray M, Sandler H. Hypofractionated Radiation Therapy for Localized Prostate Cancer: An ASTRO, ASCO, and AUA Evidence-Based Guideline. J Clin Oncol 2018; 36:JCO1801097. [PMID: 30307776 PMCID: PMC6269129 DOI: 10.1200/jco.18.01097] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Scott C. Morgan
- Scott C. Morgan, The Ottawa Hospital and University of Ottawa, Ottawa; D. Andrew Loblaw, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Karen Hoffman, MD Anderson Cancer Center, Houston, TX; Mark K. Buyyounouski, Stanford University, Stanford; Palto Alto VA Health System, Palo Alto, CA; Caroline Patton, American Society for Radiation Oncology, Arlington, VA; Daniel Barocas, Vanderbilt University Medical Center, Nashville, TN; Soren Bentzen, University of Maryland School of Medicine, Baltimore, MD; Michael Chang, Hunter Holmes McGuire VA Medical Center and Virginia Commonwealth University, Richmond, VA; Jason Efstathiou, Massachusetts General Hospital, Boston MA; Patrick Greany, Patient representative, Tallahassee, FL; Per Halvorsen, Lahey Hospital and Medical Center, Burlington, MA; Bridget F. Koontz, Duke University Medical Center, Durham, NC; Colleen Lawton, Medical College of Wisconsin, Milwaukee, WI; C. Marc Leyrer, Wake Forest University, Winston-Salem, NC; Daniel Lin, University of Washington, Seattle, WA; Michael Ray, Radiology Associates of Appleton, ThedaCare Regional Cancer Center, Appleton, WI; and Howard Sandler, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Karen Hoffman
- Scott C. Morgan, The Ottawa Hospital and University of Ottawa, Ottawa; D. Andrew Loblaw, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Karen Hoffman, MD Anderson Cancer Center, Houston, TX; Mark K. Buyyounouski, Stanford University, Stanford; Palto Alto VA Health System, Palo Alto, CA; Caroline Patton, American Society for Radiation Oncology, Arlington, VA; Daniel Barocas, Vanderbilt University Medical Center, Nashville, TN; Soren Bentzen, University of Maryland School of Medicine, Baltimore, MD; Michael Chang, Hunter Holmes McGuire VA Medical Center and Virginia Commonwealth University, Richmond, VA; Jason Efstathiou, Massachusetts General Hospital, Boston MA; Patrick Greany, Patient representative, Tallahassee, FL; Per Halvorsen, Lahey Hospital and Medical Center, Burlington, MA; Bridget F. Koontz, Duke University Medical Center, Durham, NC; Colleen Lawton, Medical College of Wisconsin, Milwaukee, WI; C. Marc Leyrer, Wake Forest University, Winston-Salem, NC; Daniel Lin, University of Washington, Seattle, WA; Michael Ray, Radiology Associates of Appleton, ThedaCare Regional Cancer Center, Appleton, WI; and Howard Sandler, Cedars-Sinai Medical Center, Los Angeles, CA
| | - D. Andrew Loblaw
- Scott C. Morgan, The Ottawa Hospital and University of Ottawa, Ottawa; D. Andrew Loblaw, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Karen Hoffman, MD Anderson Cancer Center, Houston, TX; Mark K. Buyyounouski, Stanford University, Stanford; Palto Alto VA Health System, Palo Alto, CA; Caroline Patton, American Society for Radiation Oncology, Arlington, VA; Daniel Barocas, Vanderbilt University Medical Center, Nashville, TN; Soren Bentzen, University of Maryland School of Medicine, Baltimore, MD; Michael Chang, Hunter Holmes McGuire VA Medical Center and Virginia Commonwealth University, Richmond, VA; Jason Efstathiou, Massachusetts General Hospital, Boston MA; Patrick Greany, Patient representative, Tallahassee, FL; Per Halvorsen, Lahey Hospital and Medical Center, Burlington, MA; Bridget F. Koontz, Duke University Medical Center, Durham, NC; Colleen Lawton, Medical College of Wisconsin, Milwaukee, WI; C. Marc Leyrer, Wake Forest University, Winston-Salem, NC; Daniel Lin, University of Washington, Seattle, WA; Michael Ray, Radiology Associates of Appleton, ThedaCare Regional Cancer Center, Appleton, WI; and Howard Sandler, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Mark K. Buyyounouski
- Scott C. Morgan, The Ottawa Hospital and University of Ottawa, Ottawa; D. Andrew Loblaw, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Karen Hoffman, MD Anderson Cancer Center, Houston, TX; Mark K. Buyyounouski, Stanford University, Stanford; Palto Alto VA Health System, Palo Alto, CA; Caroline Patton, American Society for Radiation Oncology, Arlington, VA; Daniel Barocas, Vanderbilt University Medical Center, Nashville, TN; Soren Bentzen, University of Maryland School of Medicine, Baltimore, MD; Michael Chang, Hunter Holmes McGuire VA Medical Center and Virginia Commonwealth University, Richmond, VA; Jason Efstathiou, Massachusetts General Hospital, Boston MA; Patrick Greany, Patient representative, Tallahassee, FL; Per Halvorsen, Lahey Hospital and Medical Center, Burlington, MA; Bridget F. Koontz, Duke University Medical Center, Durham, NC; Colleen Lawton, Medical College of Wisconsin, Milwaukee, WI; C. Marc Leyrer, Wake Forest University, Winston-Salem, NC; Daniel Lin, University of Washington, Seattle, WA; Michael Ray, Radiology Associates of Appleton, ThedaCare Regional Cancer Center, Appleton, WI; and Howard Sandler, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Caroline Patton
- Scott C. Morgan, The Ottawa Hospital and University of Ottawa, Ottawa; D. Andrew Loblaw, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Karen Hoffman, MD Anderson Cancer Center, Houston, TX; Mark K. Buyyounouski, Stanford University, Stanford; Palto Alto VA Health System, Palo Alto, CA; Caroline Patton, American Society for Radiation Oncology, Arlington, VA; Daniel Barocas, Vanderbilt University Medical Center, Nashville, TN; Soren Bentzen, University of Maryland School of Medicine, Baltimore, MD; Michael Chang, Hunter Holmes McGuire VA Medical Center and Virginia Commonwealth University, Richmond, VA; Jason Efstathiou, Massachusetts General Hospital, Boston MA; Patrick Greany, Patient representative, Tallahassee, FL; Per Halvorsen, Lahey Hospital and Medical Center, Burlington, MA; Bridget F. Koontz, Duke University Medical Center, Durham, NC; Colleen Lawton, Medical College of Wisconsin, Milwaukee, WI; C. Marc Leyrer, Wake Forest University, Winston-Salem, NC; Daniel Lin, University of Washington, Seattle, WA; Michael Ray, Radiology Associates of Appleton, ThedaCare Regional Cancer Center, Appleton, WI; and Howard Sandler, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Daniel Barocas
- Scott C. Morgan, The Ottawa Hospital and University of Ottawa, Ottawa; D. Andrew Loblaw, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Karen Hoffman, MD Anderson Cancer Center, Houston, TX; Mark K. Buyyounouski, Stanford University, Stanford; Palto Alto VA Health System, Palo Alto, CA; Caroline Patton, American Society for Radiation Oncology, Arlington, VA; Daniel Barocas, Vanderbilt University Medical Center, Nashville, TN; Soren Bentzen, University of Maryland School of Medicine, Baltimore, MD; Michael Chang, Hunter Holmes McGuire VA Medical Center and Virginia Commonwealth University, Richmond, VA; Jason Efstathiou, Massachusetts General Hospital, Boston MA; Patrick Greany, Patient representative, Tallahassee, FL; Per Halvorsen, Lahey Hospital and Medical Center, Burlington, MA; Bridget F. Koontz, Duke University Medical Center, Durham, NC; Colleen Lawton, Medical College of Wisconsin, Milwaukee, WI; C. Marc Leyrer, Wake Forest University, Winston-Salem, NC; Daniel Lin, University of Washington, Seattle, WA; Michael Ray, Radiology Associates of Appleton, ThedaCare Regional Cancer Center, Appleton, WI; and Howard Sandler, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Soren Bentzen
- Scott C. Morgan, The Ottawa Hospital and University of Ottawa, Ottawa; D. Andrew Loblaw, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Karen Hoffman, MD Anderson Cancer Center, Houston, TX; Mark K. Buyyounouski, Stanford University, Stanford; Palto Alto VA Health System, Palo Alto, CA; Caroline Patton, American Society for Radiation Oncology, Arlington, VA; Daniel Barocas, Vanderbilt University Medical Center, Nashville, TN; Soren Bentzen, University of Maryland School of Medicine, Baltimore, MD; Michael Chang, Hunter Holmes McGuire VA Medical Center and Virginia Commonwealth University, Richmond, VA; Jason Efstathiou, Massachusetts General Hospital, Boston MA; Patrick Greany, Patient representative, Tallahassee, FL; Per Halvorsen, Lahey Hospital and Medical Center, Burlington, MA; Bridget F. Koontz, Duke University Medical Center, Durham, NC; Colleen Lawton, Medical College of Wisconsin, Milwaukee, WI; C. Marc Leyrer, Wake Forest University, Winston-Salem, NC; Daniel Lin, University of Washington, Seattle, WA; Michael Ray, Radiology Associates of Appleton, ThedaCare Regional Cancer Center, Appleton, WI; and Howard Sandler, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Michael Chang
- Scott C. Morgan, The Ottawa Hospital and University of Ottawa, Ottawa; D. Andrew Loblaw, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Karen Hoffman, MD Anderson Cancer Center, Houston, TX; Mark K. Buyyounouski, Stanford University, Stanford; Palto Alto VA Health System, Palo Alto, CA; Caroline Patton, American Society for Radiation Oncology, Arlington, VA; Daniel Barocas, Vanderbilt University Medical Center, Nashville, TN; Soren Bentzen, University of Maryland School of Medicine, Baltimore, MD; Michael Chang, Hunter Holmes McGuire VA Medical Center and Virginia Commonwealth University, Richmond, VA; Jason Efstathiou, Massachusetts General Hospital, Boston MA; Patrick Greany, Patient representative, Tallahassee, FL; Per Halvorsen, Lahey Hospital and Medical Center, Burlington, MA; Bridget F. Koontz, Duke University Medical Center, Durham, NC; Colleen Lawton, Medical College of Wisconsin, Milwaukee, WI; C. Marc Leyrer, Wake Forest University, Winston-Salem, NC; Daniel Lin, University of Washington, Seattle, WA; Michael Ray, Radiology Associates of Appleton, ThedaCare Regional Cancer Center, Appleton, WI; and Howard Sandler, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Jason Efstathiou
- Scott C. Morgan, The Ottawa Hospital and University of Ottawa, Ottawa; D. Andrew Loblaw, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Karen Hoffman, MD Anderson Cancer Center, Houston, TX; Mark K. Buyyounouski, Stanford University, Stanford; Palto Alto VA Health System, Palo Alto, CA; Caroline Patton, American Society for Radiation Oncology, Arlington, VA; Daniel Barocas, Vanderbilt University Medical Center, Nashville, TN; Soren Bentzen, University of Maryland School of Medicine, Baltimore, MD; Michael Chang, Hunter Holmes McGuire VA Medical Center and Virginia Commonwealth University, Richmond, VA; Jason Efstathiou, Massachusetts General Hospital, Boston MA; Patrick Greany, Patient representative, Tallahassee, FL; Per Halvorsen, Lahey Hospital and Medical Center, Burlington, MA; Bridget F. Koontz, Duke University Medical Center, Durham, NC; Colleen Lawton, Medical College of Wisconsin, Milwaukee, WI; C. Marc Leyrer, Wake Forest University, Winston-Salem, NC; Daniel Lin, University of Washington, Seattle, WA; Michael Ray, Radiology Associates of Appleton, ThedaCare Regional Cancer Center, Appleton, WI; and Howard Sandler, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Patrick Greany
- Scott C. Morgan, The Ottawa Hospital and University of Ottawa, Ottawa; D. Andrew Loblaw, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Karen Hoffman, MD Anderson Cancer Center, Houston, TX; Mark K. Buyyounouski, Stanford University, Stanford; Palto Alto VA Health System, Palo Alto, CA; Caroline Patton, American Society for Radiation Oncology, Arlington, VA; Daniel Barocas, Vanderbilt University Medical Center, Nashville, TN; Soren Bentzen, University of Maryland School of Medicine, Baltimore, MD; Michael Chang, Hunter Holmes McGuire VA Medical Center and Virginia Commonwealth University, Richmond, VA; Jason Efstathiou, Massachusetts General Hospital, Boston MA; Patrick Greany, Patient representative, Tallahassee, FL; Per Halvorsen, Lahey Hospital and Medical Center, Burlington, MA; Bridget F. Koontz, Duke University Medical Center, Durham, NC; Colleen Lawton, Medical College of Wisconsin, Milwaukee, WI; C. Marc Leyrer, Wake Forest University, Winston-Salem, NC; Daniel Lin, University of Washington, Seattle, WA; Michael Ray, Radiology Associates of Appleton, ThedaCare Regional Cancer Center, Appleton, WI; and Howard Sandler, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Per Halvorsen
- Scott C. Morgan, The Ottawa Hospital and University of Ottawa, Ottawa; D. Andrew Loblaw, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Karen Hoffman, MD Anderson Cancer Center, Houston, TX; Mark K. Buyyounouski, Stanford University, Stanford; Palto Alto VA Health System, Palo Alto, CA; Caroline Patton, American Society for Radiation Oncology, Arlington, VA; Daniel Barocas, Vanderbilt University Medical Center, Nashville, TN; Soren Bentzen, University of Maryland School of Medicine, Baltimore, MD; Michael Chang, Hunter Holmes McGuire VA Medical Center and Virginia Commonwealth University, Richmond, VA; Jason Efstathiou, Massachusetts General Hospital, Boston MA; Patrick Greany, Patient representative, Tallahassee, FL; Per Halvorsen, Lahey Hospital and Medical Center, Burlington, MA; Bridget F. Koontz, Duke University Medical Center, Durham, NC; Colleen Lawton, Medical College of Wisconsin, Milwaukee, WI; C. Marc Leyrer, Wake Forest University, Winston-Salem, NC; Daniel Lin, University of Washington, Seattle, WA; Michael Ray, Radiology Associates of Appleton, ThedaCare Regional Cancer Center, Appleton, WI; and Howard Sandler, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Bridget F. Koontz
- Scott C. Morgan, The Ottawa Hospital and University of Ottawa, Ottawa; D. Andrew Loblaw, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Karen Hoffman, MD Anderson Cancer Center, Houston, TX; Mark K. Buyyounouski, Stanford University, Stanford; Palto Alto VA Health System, Palo Alto, CA; Caroline Patton, American Society for Radiation Oncology, Arlington, VA; Daniel Barocas, Vanderbilt University Medical Center, Nashville, TN; Soren Bentzen, University of Maryland School of Medicine, Baltimore, MD; Michael Chang, Hunter Holmes McGuire VA Medical Center and Virginia Commonwealth University, Richmond, VA; Jason Efstathiou, Massachusetts General Hospital, Boston MA; Patrick Greany, Patient representative, Tallahassee, FL; Per Halvorsen, Lahey Hospital and Medical Center, Burlington, MA; Bridget F. Koontz, Duke University Medical Center, Durham, NC; Colleen Lawton, Medical College of Wisconsin, Milwaukee, WI; C. Marc Leyrer, Wake Forest University, Winston-Salem, NC; Daniel Lin, University of Washington, Seattle, WA; Michael Ray, Radiology Associates of Appleton, ThedaCare Regional Cancer Center, Appleton, WI; and Howard Sandler, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Colleen Lawton
- Scott C. Morgan, The Ottawa Hospital and University of Ottawa, Ottawa; D. Andrew Loblaw, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Karen Hoffman, MD Anderson Cancer Center, Houston, TX; Mark K. Buyyounouski, Stanford University, Stanford; Palto Alto VA Health System, Palo Alto, CA; Caroline Patton, American Society for Radiation Oncology, Arlington, VA; Daniel Barocas, Vanderbilt University Medical Center, Nashville, TN; Soren Bentzen, University of Maryland School of Medicine, Baltimore, MD; Michael Chang, Hunter Holmes McGuire VA Medical Center and Virginia Commonwealth University, Richmond, VA; Jason Efstathiou, Massachusetts General Hospital, Boston MA; Patrick Greany, Patient representative, Tallahassee, FL; Per Halvorsen, Lahey Hospital and Medical Center, Burlington, MA; Bridget F. Koontz, Duke University Medical Center, Durham, NC; Colleen Lawton, Medical College of Wisconsin, Milwaukee, WI; C. Marc Leyrer, Wake Forest University, Winston-Salem, NC; Daniel Lin, University of Washington, Seattle, WA; Michael Ray, Radiology Associates of Appleton, ThedaCare Regional Cancer Center, Appleton, WI; and Howard Sandler, Cedars-Sinai Medical Center, Los Angeles, CA
| | - C. Marc Leyrer
- Scott C. Morgan, The Ottawa Hospital and University of Ottawa, Ottawa; D. Andrew Loblaw, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Karen Hoffman, MD Anderson Cancer Center, Houston, TX; Mark K. Buyyounouski, Stanford University, Stanford; Palto Alto VA Health System, Palo Alto, CA; Caroline Patton, American Society for Radiation Oncology, Arlington, VA; Daniel Barocas, Vanderbilt University Medical Center, Nashville, TN; Soren Bentzen, University of Maryland School of Medicine, Baltimore, MD; Michael Chang, Hunter Holmes McGuire VA Medical Center and Virginia Commonwealth University, Richmond, VA; Jason Efstathiou, Massachusetts General Hospital, Boston MA; Patrick Greany, Patient representative, Tallahassee, FL; Per Halvorsen, Lahey Hospital and Medical Center, Burlington, MA; Bridget F. Koontz, Duke University Medical Center, Durham, NC; Colleen Lawton, Medical College of Wisconsin, Milwaukee, WI; C. Marc Leyrer, Wake Forest University, Winston-Salem, NC; Daniel Lin, University of Washington, Seattle, WA; Michael Ray, Radiology Associates of Appleton, ThedaCare Regional Cancer Center, Appleton, WI; and Howard Sandler, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Daniel Lin
- Scott C. Morgan, The Ottawa Hospital and University of Ottawa, Ottawa; D. Andrew Loblaw, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Karen Hoffman, MD Anderson Cancer Center, Houston, TX; Mark K. Buyyounouski, Stanford University, Stanford; Palto Alto VA Health System, Palo Alto, CA; Caroline Patton, American Society for Radiation Oncology, Arlington, VA; Daniel Barocas, Vanderbilt University Medical Center, Nashville, TN; Soren Bentzen, University of Maryland School of Medicine, Baltimore, MD; Michael Chang, Hunter Holmes McGuire VA Medical Center and Virginia Commonwealth University, Richmond, VA; Jason Efstathiou, Massachusetts General Hospital, Boston MA; Patrick Greany, Patient representative, Tallahassee, FL; Per Halvorsen, Lahey Hospital and Medical Center, Burlington, MA; Bridget F. Koontz, Duke University Medical Center, Durham, NC; Colleen Lawton, Medical College of Wisconsin, Milwaukee, WI; C. Marc Leyrer, Wake Forest University, Winston-Salem, NC; Daniel Lin, University of Washington, Seattle, WA; Michael Ray, Radiology Associates of Appleton, ThedaCare Regional Cancer Center, Appleton, WI; and Howard Sandler, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Michael Ray
- Scott C. Morgan, The Ottawa Hospital and University of Ottawa, Ottawa; D. Andrew Loblaw, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Karen Hoffman, MD Anderson Cancer Center, Houston, TX; Mark K. Buyyounouski, Stanford University, Stanford; Palto Alto VA Health System, Palo Alto, CA; Caroline Patton, American Society for Radiation Oncology, Arlington, VA; Daniel Barocas, Vanderbilt University Medical Center, Nashville, TN; Soren Bentzen, University of Maryland School of Medicine, Baltimore, MD; Michael Chang, Hunter Holmes McGuire VA Medical Center and Virginia Commonwealth University, Richmond, VA; Jason Efstathiou, Massachusetts General Hospital, Boston MA; Patrick Greany, Patient representative, Tallahassee, FL; Per Halvorsen, Lahey Hospital and Medical Center, Burlington, MA; Bridget F. Koontz, Duke University Medical Center, Durham, NC; Colleen Lawton, Medical College of Wisconsin, Milwaukee, WI; C. Marc Leyrer, Wake Forest University, Winston-Salem, NC; Daniel Lin, University of Washington, Seattle, WA; Michael Ray, Radiology Associates of Appleton, ThedaCare Regional Cancer Center, Appleton, WI; and Howard Sandler, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Howard Sandler
- Scott C. Morgan, The Ottawa Hospital and University of Ottawa, Ottawa; D. Andrew Loblaw, Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Karen Hoffman, MD Anderson Cancer Center, Houston, TX; Mark K. Buyyounouski, Stanford University, Stanford; Palto Alto VA Health System, Palo Alto, CA; Caroline Patton, American Society for Radiation Oncology, Arlington, VA; Daniel Barocas, Vanderbilt University Medical Center, Nashville, TN; Soren Bentzen, University of Maryland School of Medicine, Baltimore, MD; Michael Chang, Hunter Holmes McGuire VA Medical Center and Virginia Commonwealth University, Richmond, VA; Jason Efstathiou, Massachusetts General Hospital, Boston MA; Patrick Greany, Patient representative, Tallahassee, FL; Per Halvorsen, Lahey Hospital and Medical Center, Burlington, MA; Bridget F. Koontz, Duke University Medical Center, Durham, NC; Colleen Lawton, Medical College of Wisconsin, Milwaukee, WI; C. Marc Leyrer, Wake Forest University, Winston-Salem, NC; Daniel Lin, University of Washington, Seattle, WA; Michael Ray, Radiology Associates of Appleton, ThedaCare Regional Cancer Center, Appleton, WI; and Howard Sandler, Cedars-Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
19
|
La radiothérapie externe guidée par l’imagerie dans le cancer de la prostate ; comment, quand et pourquoi ? Cancer Radiother 2018; 22:586-592. [DOI: 10.1016/j.canrad.2018.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 06/29/2018] [Indexed: 12/14/2022]
|
20
|
Impact of rectal distension on prostate CBCT-based positioning assessed with 6 degrees-of-freedom couch. Pract Radiat Oncol 2018; 8:e322-e328. [DOI: 10.1016/j.prro.2018.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/26/2018] [Accepted: 03/01/2018] [Indexed: 11/18/2022]
|
21
|
Chaurasia AR, Sun KJ, Premo C, Brand T, Tinnel B, Barczak S, Halligan J, Brown M, Macdonald D. Evaluating the potential benefit of reduced planning target volume margins for low and intermediate risk patients with prostate cancer using real-time electromagnetic tracking. Adv Radiat Oncol 2018; 3:630-638. [PMID: 30370364 PMCID: PMC6200876 DOI: 10.1016/j.adro.2018.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 06/12/2018] [Accepted: 06/28/2018] [Indexed: 10/28/2022] Open
Abstract
Purpose The aim of this study is to quantify and describe the feasibility, clinical outcomes, and patient-reported outcomes of reduced planning target volume (PTV) margins for prostate cancer treatment using real-time, continuous, intrafraction monitoring with implanted radiation frequency transponder beacons. Methods and materials For this prospective, nonrandomized trial, the Calypso localization system was used for intrafraction target localization in 31 patients with a PTV margin reduced to 2 mm in all directions. A total of 1333 fractions were analyzed with respect to movement of the prostate, pauses and interruptions, and dosimetric data. Pre- and posttreatment quality-of-life scores were tracked at baseline, during treatment, and up to 24 months after treatment. Results The mean time of daily treatment was 10 minutes, with 96.1% of all treatments falling within a 20-minute treatment window standard. On average, beacon motion exceeded 3 mm during active treatment only 1.76% of the time. The average length of treatment interruption was 34.2 seconds, with an average of 1 interruption every 3.39 fractions. The displacement or excursion of the prostate was the greatest in the superior or inferior dimension (0.11 mm and 0.09 mm, respectively) and anterior or posterior dimension (0.07 mm and 0.13 mm, respectively), followed by the left or right dimension (0.05 mm and 0.06 mm, respectively). At 6 months, patients demonstrated a smaller change in Expanded Prostate Cancer Index Composite scores than the ProtecT comparator group (decreased short-term morbidity). However, in the Bowel and Urinary domains at 12 and 24 months, there was no significant difference. Conclusions Our data confirm and support that the use of Calypso tracking with intensity modulated radiation therapy reliably provides minimal disruption to daily treatments and overall time of treatment, with the PTV only moving outside of a 3-mm margin < 2% of the time. The use of a 3-mm PTV margin provides adequate dosimetric coverage while minimizing genitourinary and gastrointestinal toxicity.
Collapse
Affiliation(s)
- Avinash R Chaurasia
- National Cancer Institute, National Institutes of Health, National Capitol Consortium Residency Program, Bethesda, Maryland
| | - Kelly J Sun
- Uniformed Services University of Health Sciences, Bethesda, Maryland
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Leiker AJ, Desai NB, Folkert MR. Rectal radiation dose-reduction techniques in prostate cancer: a focus on the rectal spacer. Future Oncol 2018; 14:2773-2788. [PMID: 29939069 DOI: 10.2217/fon-2018-0286] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer is the most common cancer in men. External beam radiotherapy by a variety of methods is a standard treatment option with excellent disease control. However, acute and late rectal side effects remain a limiting concern in intensification of therapy in higher-risk patients and in efforts to reduce treatment burden in others. A number of techniques have emerged that allow for high-radiation dose delivery to the prostate with reduced risk of rectal toxicity, including image-guided intensity-modulated radiation therapy, endorectal balloons and various forms of rectal spacers. Image-guided radiation therapy, either intensity-modulated radiation therapy or stereotactic ablative radiation therapy, in conjunction with a rectal spacer, is an efficacious means to reduce acute and long-term rectal toxicity.
Collapse
Affiliation(s)
- Andrew J Leiker
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2280 Inwood Road, Dallas, TX 75390-9303, USA
| | - Neil B Desai
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2280 Inwood Road, Dallas, TX 75390-9303, USA
| | - Michael R Folkert
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2280 Inwood Road, Dallas, TX 75390-9303, USA
| |
Collapse
|
23
|
Dang A, Kupelian PA, Cao M, Agazaryan N, Kishan AU. Image-guided radiotherapy for prostate cancer. Transl Androl Urol 2018; 7:308-320. [PMID: 30050792 PMCID: PMC6043755 DOI: 10.21037/tau.2017.12.37] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Intensity-modulated radiotherapy (IMRT) has become the standard radiotherapy technology utilized for the treatment of prostate cancer, as it permits the delivery of highly conformal radiation dose distributions. Image-guided radiotherapy (IGRT) is an essential companion to IMRT that allows the treatment team to account for daily changes in target anatomy and positioning. In the present review, we will discuss the different sources of geometric uncertainty and review the rationale behind using IGRT in the treatment of prostate cancer. We will then describe commonly employed IGRT techniques and review their benefits and drawbacks. Additionally, we will review the evidence suggesting a potential clinical benefit to utilizing IGRT.
Collapse
Affiliation(s)
- Audrey Dang
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Patrick A Kupelian
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Minsong Cao
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Nzhde Agazaryan
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Amar U Kishan
- Department of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| |
Collapse
|
24
|
Electromagnetic-Guided MLC Tracking Radiation Therapy for Prostate Cancer Patients: Prospective Clinical Trial Results. Int J Radiat Oncol Biol Phys 2018. [PMID: 29534898 DOI: 10.1016/j.ijrobp.2018.01.098] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
PURPOSE To report on the primary and secondary outcomes of a prospective clinical trial of electromagnetic-guided multileaf collimator (MLC) tracking radiation therapy for prostate cancer. METHODS AND MATERIALS Twenty-eight men with prostate cancer were treated with electromagnetic-guided MLC tracking with volumetric modulated arc therapy. A total of 858 fractions were delivered, with the dose per fraction ranging from 2 to 13.75 Gy. The primary outcome was feasibility, with success determined if >95% of fractions were successfully delivered. The secondary outcomes were (1) the improvement in beam-target geometric alignment, (2) the improvement in dosimetric coverage of the prostate and avoidance of critical structures, and (3) no acute grade ≥3 genitourinary or gastrointestinal toxicity. RESULTS All 858 planned fractions were successfully delivered with MLC tracking, demonstrating the primary outcome of feasibility (P < .001). MLC tracking improved the beam-target geometric alignment from 1.4 to 0.90 mm (root-mean-square error). MLC tracking improved the dosimetric coverage of the prostate and reduced the daily variation in dose to critical structures. No acute grade ≥3 genitourinary or gastrointestinal toxicity was observed. CONCLUSIONS Electromagnetic-guided MLC tracking radiation therapy for prostate cancer is feasible. The patients received improved geometric targeting and delivered dose distributions that were closer to those planned than they would have received without electromagnetic-guided MLC tracking. No significant acute toxicity was observed.
Collapse
|
25
|
Keall P, Nguyen DT, O'Brien R, Booth J, Greer P, Poulsen P, Gebski V, Kneebone A, Martin J. Stereotactic prostate adaptive radiotherapy utilising kilovoltage intrafraction monitoring: the TROG 15.01 SPARK trial. BMC Cancer 2017; 17:180. [PMID: 28270121 PMCID: PMC5341369 DOI: 10.1186/s12885-017-3164-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 03/02/2017] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND This paper describes the multi-institutional prospective phase II clinical trial, SPARK: Stereotactic Prostate Adaptive Radiotherapy utilizing Kilovoltage Intrafraction Monitoring (KIM). KIM is a real-time image guided radiotherapy technology being developed and clinically pioneered for prostate cancer treatment in Australia. It has potential for widespread use for target radiotherapy treatment of cancers of the pelvis, thorax and abdomen. METHODS In the SPARK trial we will measure the cancer targeting accuracy and patient outcomes for 48 prostate cancer patients who will be treated in five treatment sessions as opposed to the conventional 40 sessions. The reduced number of treatment sessions is enabled by the KIM's increased cancer targeting accuracy. DISCUSSION Real-time imaging in radiotherapy has the potential to decrease the time taken during cancer treatment and reduce the imaging dose required. With the imaging being acquired during the treatment, and the analysis being automated, there is potential for improved throughput. The SPARK trial will be conducted under the auspices of the Trans-Tasman Radiation Oncology Group (TROG). TRIAL REGISTRATION This trial was registered on ClinicalTrials.gov on 09 March 2015. The identifier is: NCT02397317.
Collapse
Affiliation(s)
- Paul Keall
- Radiation Physics Laboratory, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia.
| | - Doan Trang Nguyen
- Radiation Physics Laboratory, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Ricky O'Brien
- Radiation Physics Laboratory, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Jeremy Booth
- Department of Radiation Oncology, Northern Sydney Cancer Centre, Sydney, NSW, Australia
| | - Peter Greer
- Department of Radiation Oncology, Calvary Mater Newcastle, Newcastle, NSW, Australia
| | - Per Poulsen
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Val Gebski
- University of Sydney NHMRC Clinical Trials Centre, Sydney, NSW, Australia
| | - Andrew Kneebone
- Department of Radiation Oncology, Northern Sydney Cancer Centre, Sydney, NSW, Australia
| | - Jarad Martin
- Department of Radiation Oncology, Calvary Mater Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
26
|
Oates R, Jones D, Foroudi F, Gill S, Ramachandran P, Schneider M, Lim Joon M, Kron T. Geographical miss of the prostate during image-guided radiotherapy with a 6-mm posterior expansion margin. J Med Radiat Sci 2016; 64:97-105. [PMID: 27860454 PMCID: PMC5454331 DOI: 10.1002/jmrs.186] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/09/2016] [Accepted: 06/13/2016] [Indexed: 12/25/2022] Open
Abstract
Introduction Our department commonly uses a planning target volume (PTV) expansion of 6 mm posterior and 1 cm in all other directions when treating prostate cancer patients with image‐guided radiotherapy (IGRT). This study aimed to test the adequacy of this PTV expansion by assessing geographical miss of the prostate on post‐treatment cone‐beam CT (CBCT) and identify those at risk of geographical miss. Methods Twenty‐two prostate cancer patients receiving IGRT with implanted fiducial markers underwent daily pre‐treatment orthogonal kV imaging followed by a post‐treatment CBCT for a total of 432 fractions. The prostate was outlined on all CBCTs. For each imaging set, the volume of geographic miss was measured by subtracting the PTV from the planning CT and prostate volume on the post‐treatment CBCT. Results The prostate volume moved outside the PTV by >0.01 cc in 9% of fractions (39/432). This occurred in 13 (59%) of 22 patients. Large prostates >40 cc and >50 cc had significantly more geographical miss events (both P < 0.001). Changes in rectal filling appear to be responsible for prostate motion/deformation in 82% (32/39) of fractions. Conclusions Our analysis suggests that, despite IGRT, prostate PTV margins are not adequate in some patients, particularly those with large prostates. PTV margins may be reduced in some other patients. Prostate rotation and deformation play an important role in setting margins and may not always be represented accurately by fiducial marker displacements. Individualised and adaptive margins for prostate cancer patients should be a priority for future research.
Collapse
Affiliation(s)
- Richard Oates
- Radiation Therapy Services, Peter MacCallum Cancer Centre, Bendigo, Australia.,Medical Imaging & Radiation Sciences, Monash University, Melbourne, Australia
| | - Daryl Jones
- Radiation Therapy Services, Peter MacCallum Cancer Centre, Bendigo, Australia
| | - Farshad Foroudi
- Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia
| | - Suki Gill
- Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | | | - Michal Schneider
- Medical Imaging & Radiation Sciences, Monash University, Melbourne, Australia
| | - Michael Lim Joon
- Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Tomas Kron
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Australia.,Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Australia
| |
Collapse
|
27
|
Lee JY, Daignault-Newton S, Heath G, Scarlett S, Sanda MG, Chang P, Regan MM, Michalski JM, Sandler HM, Feng FY, Kuban DA, Zietman AL, Ciezki JP, Kaplan ID, Crociani C, McLaughlin WP, Mantz CA, Finkelstein SE, Suy S, Collins SP, Garin O, Ferrer M, Hamstra DA, Spratt DE. Multinational Prospective Study of Patient-Reported Outcomes After Prostate Radiation Therapy: Detailed Assessment of Rectal Bleeding. Int J Radiat Oncol Biol Phys 2016; 96:770-777. [DOI: 10.1016/j.ijrobp.2016.07.038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 07/26/2016] [Accepted: 07/28/2016] [Indexed: 10/21/2022]
|
28
|
Oates R, Brown A, Tan A, Foroudi F, Lim Joon M, Schneider M, Herschtal A, Kron T. Real-time Image-guided Adaptive-predictive Prostate Radiotherapy using Rectal Diameter as a Predictor of Motion. Clin Oncol (R Coll Radiol) 2016; 29:180-187. [PMID: 27780695 DOI: 10.1016/j.clon.2016.09.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 09/13/2016] [Accepted: 09/19/2016] [Indexed: 11/28/2022]
Abstract
AIMS To investigate a relationship between maximum rectal diameter (MRD) on pre-treatment cone beam computed tomography (CBCT) and intra-fraction prostate motion, in the context of an adaptive image-guided radiotherapy (IGRT) method. MATERIALS AND METHODS The MRD was measured on 2125 CBCTs from 55 retrospective patient datasets and related to prostate displacement from intra-fraction imaging. A linear regression model was developed to determine a threshold MRD associated with a high probability of small prostate displacement. Standard and reduced adaptive margin plans were created to compare rectum and bladder normal tissue complication probability (NTCP) with each method. RESULTS A per-protocol analysis carried out on 1910 fractions from 51 patients showed with 90% confidence that for a MRD≤3 cm, prostate displacement will be ≤5 mm and that for a MRD≤3.5 cm, prostate displacement will be ≤5.5 mm. In the first scenario, if adaptive therapy was used instead of standard therapy, median reductions in NTCP for rectum and bladder were 0.5% (from 9.5% to 9%) and 1.3% (from 6.6% to 5.3%), respectively. In the second scenario, the NTCP for rectum and bladder would have median reductions of 1.1% and 2.6%, respectively. CONCLUSIONS We have identified a potential method for adaptive prostate IGRT based upon predicting small prostate intra-fraction motion by measuring MRD on pre-treatment CBCT.
Collapse
Affiliation(s)
- R Oates
- Radiation Therapy Services, Peter MacCallum Cancer Centre, Bendigo, Victoria, Australia; Medical Imaging & Radiation Sciences, Monash University, Melbourne, Victoria, Australia.
| | - A Brown
- Radiation Oncology, Townsville Cancer Centre, Townsville, Queensland, Australia
| | - A Tan
- Radiation Oncology, Townsville Cancer Centre, Townsville, Queensland, Australia; College of Medicine and Dentistry, James Cook University, Queensland, Australia
| | - F Foroudi
- Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - M Lim Joon
- Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - M Schneider
- Medical Imaging & Radiation Sciences, Monash University, Melbourne, Victoria, Australia
| | - A Herschtal
- Biostatistics and Clinical Trials, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - T Kron
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia; Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| |
Collapse
|
29
|
Abstract
We reviewed the literature on the use of margins in radiotherapy of patients with prostate cancer, focusing on different options for image guidance (IG) and technical issues. The search in PubMed database was limited to include studies that involved external beam radiotherapy of the intact prostate. Post-prostatectomy studies, brachytherapy and particle therapy were excluded. Each article was characterized according to the IG strategy used: positioning on external marks using room lasers, bone anatomy and soft tissue match, usage of fiducial markers, electromagnetic tracking and adapted delivery. A lack of uniformity in margin selection among institutions was evident from the review. In general, introduction of pre- and in-treatment IG was associated with smaller planning target volume (PTV) margins, but there was a lack of definitive experimental/clinical studies providing robust information on selection of exact PTV values. In addition, there is a lack of comparative research regarding the cost-benefit ratio of the different strategies: insertion of fiducial markers or electromagnetic transponders facilitates prostate gland localization but at a price of invasive procedure; frequent pre-treatment imaging increases patient in-room time, dose and labour; online plan adaptation should improve radiation delivery accuracy but requires fast and precise computation. Finally, optimal protocols for quality assurance procedures need to be established.
Collapse
Affiliation(s)
- Slav Yartsev
- 1 London Regional Cancer Program, London Health Sciences Centre, London, ON, Canada.,2 Departments of Oncology and Medical Biophysics, Western University, London, ON, Canada
| | - Glenn Bauman
- 1 London Regional Cancer Program, London Health Sciences Centre, London, ON, Canada.,2 Departments of Oncology and Medical Biophysics, Western University, London, ON, Canada
| |
Collapse
|
30
|
Keall PJ, Ng JA, Juneja P, O'Brien RT, Huang CY, Colvill E, Caillet V, Simpson E, Poulsen PR, Kneebone A, Eade T, Booth JT. Real-Time 3D Image Guidance Using a Standard LINAC: Measured Motion, Accuracy, and Precision of the First Prospective Clinical Trial of Kilovoltage Intrafraction Monitoring–Guided Gating for Prostate Cancer Radiation Therapy. Int J Radiat Oncol Biol Phys 2016; 94:1015-21. [DOI: 10.1016/j.ijrobp.2015.10.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 09/14/2015] [Accepted: 10/02/2015] [Indexed: 10/22/2022]
|
31
|
Nicholls L, Gorayski P, Poulsen M, Plank AW, Schick K, Pham T, Khoo ELH. Maintaining prostate contouring consistency following an educational intervention. J Med Radiat Sci 2016; 63:155-60. [PMID: 27648279 PMCID: PMC5016611 DOI: 10.1002/jmrs.168] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 01/17/2016] [Accepted: 02/09/2016] [Indexed: 11/30/2022] Open
Abstract
Introduction The aim of this study was to assess variation in prostate contouring 12 months following a structured interactive educational intervention (EI) and to test the hypothesis that EIs positively impact on prostate contouring accuracy and consistency long term. Methods A common set of computed tomography (CT) and magnetic resonance imaging (MRI) data sets were used to assess prostate contouring consistency before, immediately after and 12 months following an EI. No further EIs were provided after the initial EI. Contour variation was assessed using the volume ratio (VR), defined as the ratio of the encompassing volume to common volume. Results Of the original five radiation oncologists (ROs) at baseline, four completed all assessments, and one was unavailable at 12 months follow‐up. At 12 months, mean VR deteriorated by 3.2% on CT and 1.9% on MRI compared to immediately post EI. Overall, compared to the pre‐EI baseline VR, an improvement of 11.4% and 10.8% was demonstrated on CT and MRI, respectively. Conclusion Good retention of applied knowledge 12 months following an EI on prostate contouring was demonstrated. This study advocates for EIs to be included as part of continuing medical education to reduce contour variation among ROs and improve knowledge retention long term.
Collapse
Affiliation(s)
- Luke Nicholls
- Radiation Oncology Centres Cairns Queensland Australia; School of Medicine University of Queensland St. Lucia Queensland Australia
| | - Peter Gorayski
- School of Medicine University of Queensland St. Lucia Queensland Australia; Radiation Oncology Centres Springfield Queensland Australia
| | - Michael Poulsen
- School of Medicine University of Queensland St. Lucia Queensland Australia; Radiation Oncology Centres St Andrew's Cancer Care Centre Toowoomba Queensland Australia
| | - Ashley W Plank
- Oncology Research Australia St Andrew's Hospital Toowoomba Queensland Australia
| | - Karlissa Schick
- Radiation Oncology Centres St Andrew's Cancer Care Centre Toowoomba Queensland Australia
| | - Thuy Pham
- Radiation Oncology Centres St Andrew's Cancer Care Centre Toowoomba Queensland Australia
| | - Eric L H Khoo
- Radiation Oncology Centres St Andrew's Cancer Care Centre Toowoomba Queensland Australia
| |
Collapse
|
32
|
|
33
|
Evans JR, Zhao S, Daignault S, Sanda MG, Michalski J, Sandler HM, Kuban DA, Ciezki J, Kaplan ID, Zietman AL, Hembroff L, Feng FY, Suy S, Skolarus TA, McLaughlin PW, Wei JT, Dunn RL, Finkelstein SE, Mantz CA, Collins SP, Hamstra DA. Patient-reported quality of life after stereotactic body radiotherapy (SBRT), intensity modulated radiotherapy (IMRT), and brachytherapy. Radiother Oncol 2015; 116:179-84. [DOI: 10.1016/j.radonc.2015.07.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/08/2015] [Indexed: 01/26/2023]
|
34
|
Wallace D, Ng JA, Keall PJ, O'Brien RT, Poulsen PR, Juneja P, Booth JT. Determining appropriate imaging parameters for kilovoltage intrafraction monitoring: an experimental phantom study. Phys Med Biol 2015; 60:4835-47. [PMID: 26057776 DOI: 10.1088/0031-9155/60/12/4835] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Kilovoltage intrafraction monitoring (KIM) utilises the kV imager during treatment for real-time tracking of prostate fiducial markers. However, its effectiveness relies on sufficient image quality for the fiducial tracking task. To guide the performance characterisation of KIM under different clinically relevant conditions, the effect of different kV parameters and patient size on image quality, and quantification of MV scatter from the patient to the kV detector panel were investigated in this study. Image quality was determined for a range of kV acquisition frame rates, kV exposure, MV dose rates and patient sizes. Two methods were used to determine image quality; the ratio of kV signal through the patient to the MV scatter from the patient incident on the kilovoltage detector, and the signal-to-noise ratio (SNR). The effect of patient size and frame rate on MV scatter was evaluated in a homogeneous CIRS pelvis phantom and marker segmentation was determined utilising the Rando phantom with embedded markers. MV scatter incident on the detector was shown to be dependent on patient thickness and frame rate. The segmentation code was shown to be successful for all frame rates above 3 Hz for the Rando phantom corresponding to a kV to MV ratio of 0.16 and an SNR of 1.67. For a maximum patient dimension less than 36.4 cm the conservative kV parameters of 5 Hz at 1 mAs can be used to reduce dose while retaining image quality, where the current baseline kV parameters of 10 Hz at 1 mAs is shown to be adequate for marker segmentation up to a patient dimension of 40 cm. In conclusion, the MV scatter component of image quality noise for KIM has been quantified. For most prostate patients, use of KIM with 10 Hz imaging at 1 mAs is adequate however image quality can be maintained and imaging dose reduced by altering existing acquisition parameters.
Collapse
Affiliation(s)
- D Wallace
- School of Physics, University of Sydney, NSW 2006, Australia
| | | | | | | | | | | | | |
Collapse
|
35
|
Contreras JA, Wilder RB, Mellon EA, Strom TJ, Fernandez DC, Biagioli MC. Quality of life after high-dose-rate brachytherapy monotherapy for prostate cancer. Int Braz J Urol 2015; 41:40-5. [PMID: 25928509 PMCID: PMC4752055 DOI: 10.1590/s1677-5538.ibju.2015.01.07] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 05/22/2014] [Indexed: 11/28/2022] Open
Abstract
Purpose There is little information in the literature on health-related quality of life (HRQOL) changes due to high-dose-rate (HDR) brachytherapy monotherapy for prostate cancer. Materials and Methods We conducted a prospective study of HRQOL changes due to HDR brachytherapy monotherapy for low risk or favorable intermediate risk prostate cancer. Sixty-four of 84 (76%) patients who were treated between February 2011 and April 2013 completed 50 questions comprising the Expanded Prostate Cancer Index Composite (EPIC) before treatment and 6 and/or 12 months after treatment. Results Six months after treatment, there was a significant decrease (p<0.05) in EPIC urinary, bowel, and sexual scores, including urinary overall, urinary function, urinary bother, urinary irritative, bowel overall, bowel bother, sexual overall, and sexual bother scores. By one year after treatment, EPIC urinary, bowel, and sexual scores had increased and only the bowel overall and bowel bother scores remained significantly below baseline values. Conclusions HDR brachytherapy monotherapy is well-tolerated in patients with low and favorable intermediate risk prostate cancer. EPIC urinary and sexual domain scores returned to close to baseline 12 months after HDR brachytherapy.
Collapse
Affiliation(s)
| | - Richard B Wilder
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Eric A Mellon
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Tobin J Strom
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | | | | |
Collapse
|
36
|
Bittner N, Butler WM, Kurko BS, Merrick GS. Effect of metal hip prosthesis on the accuracy of electromagnetic localization tracking. Pract Radiat Oncol 2015; 5:43-8. [DOI: 10.1016/j.prro.2014.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/12/2014] [Accepted: 03/22/2014] [Indexed: 12/01/2022]
|
37
|
|
38
|
Franz AM, Haidegger T, Birkfellner W, Cleary K, Peters TM, Maier-Hein L. Electromagnetic tracking in medicine--a review of technology, validation, and applications. IEEE TRANSACTIONS ON MEDICAL IMAGING 2014; 33:1702-1725. [PMID: 24816547 DOI: 10.1109/tmi.2014.2321777] [Citation(s) in RCA: 199] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Object tracking is a key enabling technology in the context of computer-assisted medical interventions. Allowing the continuous localization of medical instruments and patient anatomy, it is a prerequisite for providing instrument guidance to subsurface anatomical structures. The only widely used technique that enables real-time tracking of small objects without line-of-sight restrictions is electromagnetic (EM) tracking. While EM tracking has been the subject of many research efforts, clinical applications have been slow to emerge. The aim of this review paper is therefore to provide insight into the future potential and limitations of EM tracking for medical use. We describe the basic working principles of EM tracking systems, list the main sources of error, and summarize the published studies on tracking accuracy, precision and robustness along with the corresponding validation protocols proposed. State-of-the-art approaches to error compensation are also reviewed in depth. Finally, an overview of the clinical applications addressed with EM tracking is given. Throughout the paper, we report not only on scientific progress, but also provide a review on commercial systems. Given the continuous debate on the applicability of EM tracking in medicine, this paper provides a timely overview of the state-of-the-art in the field.
Collapse
|
39
|
Chen RC, Chang P, Vetter RJ, Lukka H, Stokes WA, Sanda MG, Watkins-Bruner D, Reeve BB, Sandler HM. Recommended patient-reported core set of symptoms to measure in prostate cancer treatment trials. J Natl Cancer Inst 2014; 106:dju132. [PMID: 25006192 DOI: 10.1093/jnci/dju132] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The National Cancer Institute (NCI) Symptom Management and Health-Related Quality of Life Steering Committee convened four working groups to recommend core sets of patient-reported outcomes to be routinely incorporated in clinical trials. The Prostate Cancer Working Group included physicians, researchers, and a patient advocate. The group's process included 1) a systematic literature review to determine the prevalence and severity of symptoms, 2) a multistakeholder meeting sponsored by the NCI to review the evidence and build consensus, and 3) a postmeeting expert panel synthesis of findings to finalize recommendations. Five domains were recommended for localized prostate cancer: urinary incontinence, urinary obstruction and irritation, bowel-related symptoms, sexual dysfunction, and hormonal symptoms. Four domains were recommended for advanced prostate cancer: pain, fatigue, mental well-being, and physical well-being. Additional domains for consideration include decisional regret, satisfaction with care, and anxiety related to prostate cancer. These recommendations have been endorsed by the NCI for implementation.
Collapse
Affiliation(s)
- Ronald C Chen
- Affiliations of authors: Department of Radiation Oncology (RCC, WAS), and Department of Health Policy and Management, Gillings School of Global Public Health (BBR), Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC (RCC, WAS); Division of Urology, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (PC); Mayo Clinic, Rochester, MN (RJV); Juravinski Cancer Centre and McMaster University, Hamilton, Ontario, Canada (HL); Department of Urology (MGS), and Nell Hodgson Woodruff School of Nursing (DW-G), Emory University, Atlanta, GA; Department of Radiation Oncology, Cedars Sinai Medical Center, Los Angeles, CA (HMS).
| | - Peter Chang
- Affiliations of authors: Department of Radiation Oncology (RCC, WAS), and Department of Health Policy and Management, Gillings School of Global Public Health (BBR), Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC (RCC, WAS); Division of Urology, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (PC); Mayo Clinic, Rochester, MN (RJV); Juravinski Cancer Centre and McMaster University, Hamilton, Ontario, Canada (HL); Department of Urology (MGS), and Nell Hodgson Woodruff School of Nursing (DW-G), Emory University, Atlanta, GA; Department of Radiation Oncology, Cedars Sinai Medical Center, Los Angeles, CA (HMS)
| | - Richard J Vetter
- Affiliations of authors: Department of Radiation Oncology (RCC, WAS), and Department of Health Policy and Management, Gillings School of Global Public Health (BBR), Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC (RCC, WAS); Division of Urology, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (PC); Mayo Clinic, Rochester, MN (RJV); Juravinski Cancer Centre and McMaster University, Hamilton, Ontario, Canada (HL); Department of Urology (MGS), and Nell Hodgson Woodruff School of Nursing (DW-G), Emory University, Atlanta, GA; Department of Radiation Oncology, Cedars Sinai Medical Center, Los Angeles, CA (HMS)
| | - Himansu Lukka
- Affiliations of authors: Department of Radiation Oncology (RCC, WAS), and Department of Health Policy and Management, Gillings School of Global Public Health (BBR), Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC (RCC, WAS); Division of Urology, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (PC); Mayo Clinic, Rochester, MN (RJV); Juravinski Cancer Centre and McMaster University, Hamilton, Ontario, Canada (HL); Department of Urology (MGS), and Nell Hodgson Woodruff School of Nursing (DW-G), Emory University, Atlanta, GA; Department of Radiation Oncology, Cedars Sinai Medical Center, Los Angeles, CA (HMS)
| | - William A Stokes
- Affiliations of authors: Department of Radiation Oncology (RCC, WAS), and Department of Health Policy and Management, Gillings School of Global Public Health (BBR), Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC (RCC, WAS); Division of Urology, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (PC); Mayo Clinic, Rochester, MN (RJV); Juravinski Cancer Centre and McMaster University, Hamilton, Ontario, Canada (HL); Department of Urology (MGS), and Nell Hodgson Woodruff School of Nursing (DW-G), Emory University, Atlanta, GA; Department of Radiation Oncology, Cedars Sinai Medical Center, Los Angeles, CA (HMS)
| | - Martin G Sanda
- Affiliations of authors: Department of Radiation Oncology (RCC, WAS), and Department of Health Policy and Management, Gillings School of Global Public Health (BBR), Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC (RCC, WAS); Division of Urology, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (PC); Mayo Clinic, Rochester, MN (RJV); Juravinski Cancer Centre and McMaster University, Hamilton, Ontario, Canada (HL); Department of Urology (MGS), and Nell Hodgson Woodruff School of Nursing (DW-G), Emory University, Atlanta, GA; Department of Radiation Oncology, Cedars Sinai Medical Center, Los Angeles, CA (HMS)
| | - Deborah Watkins-Bruner
- Affiliations of authors: Department of Radiation Oncology (RCC, WAS), and Department of Health Policy and Management, Gillings School of Global Public Health (BBR), Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC (RCC, WAS); Division of Urology, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (PC); Mayo Clinic, Rochester, MN (RJV); Juravinski Cancer Centre and McMaster University, Hamilton, Ontario, Canada (HL); Department of Urology (MGS), and Nell Hodgson Woodruff School of Nursing (DW-G), Emory University, Atlanta, GA; Department of Radiation Oncology, Cedars Sinai Medical Center, Los Angeles, CA (HMS)
| | - Bryce B Reeve
- Affiliations of authors: Department of Radiation Oncology (RCC, WAS), and Department of Health Policy and Management, Gillings School of Global Public Health (BBR), Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC (RCC, WAS); Division of Urology, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (PC); Mayo Clinic, Rochester, MN (RJV); Juravinski Cancer Centre and McMaster University, Hamilton, Ontario, Canada (HL); Department of Urology (MGS), and Nell Hodgson Woodruff School of Nursing (DW-G), Emory University, Atlanta, GA; Department of Radiation Oncology, Cedars Sinai Medical Center, Los Angeles, CA (HMS)
| | - Howard M Sandler
- Affiliations of authors: Department of Radiation Oncology (RCC, WAS), and Department of Health Policy and Management, Gillings School of Global Public Health (BBR), Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC (RCC, WAS); Division of Urology, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (PC); Mayo Clinic, Rochester, MN (RJV); Juravinski Cancer Centre and McMaster University, Hamilton, Ontario, Canada (HL); Department of Urology (MGS), and Nell Hodgson Woodruff School of Nursing (DW-G), Emory University, Atlanta, GA; Department of Radiation Oncology, Cedars Sinai Medical Center, Los Angeles, CA (HMS)
| |
Collapse
|
40
|
Hoppe BS, Michalski JM, Mendenhall NP, Morris CG, Henderson RH, Nichols RC, Mendenhall WM, Williams CR, Regan MM, Chipman JJ, Crociani CM, Sandler HM, Sanda MG, Hamstra DA. Comparative effectiveness study of patient-reported outcomes after proton therapy or intensity-modulated radiotherapy for prostate cancer. Cancer 2014; 120:1076-82. [PMID: 24382757 PMCID: PMC4103169 DOI: 10.1002/cncr.28536] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 11/21/2013] [Accepted: 11/25/2013] [Indexed: 11/07/2022]
Abstract
BACKGROUND Data continue to emerge on the relative merits of different treatment modalities for prostate cancer. The objective of this study was to compare patient-reported quality-of-life (QOL) outcomes after proton therapy (PT) and intensity-modulated radiation therapy (IMRT) for prostate cancer. METHODS A comparison was performed of prospectively collected QOL data using the Expanded Prostate Cancer Index Composite (EPIC) questionnaire. QOL data were collected during the first 2 years after treatment for men who received PT and IMRT. PT was delivered to 1243 men at a single center at doses from 76 grays (Gy) to 82 Gy. IMRT was delivered to 204 men who were included in the Prostate Cancer Outcomes and Satisfaction with Treatment Quality Assessment (PROSTQA) study in doses from 75.6 Gy to 79.4 Gy. The Wilcoxon rank-sum test was used to compare EPIC outcomes by modality using baseline-adjusted scores at different time points. Individual questions were assessed by converting to binary outcomes and testing with generalized estimating equations. RESULTS No differences were observed in summary score changes for bowel, urinary incontinence, urinary irritative/obstructive, and sexual domains between the 2 cohorts. However, more men who received IMRT reported moderate/big problems with rectal urgency (P = 0.02) and frequent bowel movements (P = 0.05) than men who received PT. CONCLUSIONS There were no differences in QOL summary scores between the IMRT and PT cohorts during early follow-up (up to 2-years). Response to individual questions suggests possible differences in specific bowel symptoms between the 2 cohorts. These outcomes highlight the need for further comparative studies of PT and IMRT.
Collapse
Affiliation(s)
- Bradford S Hoppe
- University of Florida Proton Therapy Institute, Jacksonville, Florida
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Wen N, Kumarasiri A, Nurushev T, Burmeister J, Xing L, Liu D, Glide-Hurst C, Kim J, Zhong H, Movsas B, Chetty IJ. An assessment of PTV margin based on actual accumulated dose for prostate cancer radiotherapy. Phys Med Biol 2013; 58:7733-44. [PMID: 24140847 DOI: 10.1088/0031-9155/58/21/7733] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The purpose of this work is to present the results of a margin reduction study involving dosimetric and radiobiologic assessment of cumulative dose distributions, computed using an image guided adaptive radiotherapy based framework. Eight prostate cancer patients, treated with 7-9, 6 MV, intensity modulated radiation therapy (IMRT) fields, were included in this study. The workflow consists of cone beam CT (CBCT) based localization, deformable image registration of the CBCT to simulation CT image datasets (SIM-CT), dose reconstruction and dose accumulation on the SIM-CT, and plan evaluation using radiobiological models. For each patient, three IMRT plans were generated with different margins applied to the CTV. The PTV margin for the original plan was 10 mm and 6 mm at the prostate/anterior rectal wall interface (10/6 mm) and was reduced to: (a) 5/3 mm, and (b) 3 mm uniformly. The average percent reductions in predicted tumor control probability (TCP) in the accumulated (actual) plans in comparison to the original plans over eight patients were 0.4%, 0.7% and 11.0% with 10/6 mm, 5/3 mm and 3 mm uniform margin respectively. The mean increase in predicted normal tissue complication probability (NTCP) for grades 2/3 rectal bleeding for the actual plans in comparison to the static plans with margins of 10/6, 5/3 and 3 mm uniformly was 3.5%, 2.8% and 2.4% respectively. For the actual dose distributions, predicted NTCP for late rectal bleeding was reduced by 3.6% on average when the margin was reduced from 10/6 mm to 5/3 mm, and further reduced by 1.0% on average when the margin was reduced to 3 mm. The average reduction in complication free tumor control probability (P+) in the actual plans in comparison to the original plans with margins of 10/6, 5/3 and 3 mm was 3.7%, 2.4% and 13.6% correspondingly. The significant reduction of TCP and P+ in the actual plan with 3 mm margin came from one outlier, where individualizing patient treatment plans through margin adaptation based on biological models, might yield higher quality treatments.
Collapse
Affiliation(s)
- Ning Wen
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI 48202, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Schmidhalter D, Fix MK, Wyss M, Schaer N, Munro P, Scheib S, Kunz P, Manser P. Evaluation of a new six degrees of freedom couch for radiation therapy. Med Phys 2013; 40:111710. [DOI: 10.1118/1.4823789] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
43
|
Litzenberg DW, Gallagher I, Masi KJ, Lee C, Prisciandaro JI, Hamstra DA, Ritter T, Lam KL. A measurement technique to determine the calibration accuracy of an electromagnetic tracking system to radiation isocenter. Med Phys 2013; 40:081711. [PMID: 23927308 DOI: 10.1118/1.4813910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To present and characterize a measurement technique to quantify the calibration accuracy of an electromagnetic tracking system to radiation isocenter. METHODS This technique was developed as a quality assurance method for electromagnetic tracking systems used in a multi-institutional clinical hypofractionated prostate study. In this technique, the electromagnetic tracking system is calibrated to isocenter with the manufacturers recommended technique, using laser-based alignment. A test patient is created with a transponder at isocenter whose position is measured electromagnetically. Four portal images of the transponder are taken with collimator rotations of 45° 135°, 225°, and 315°, at each of four gantry angles (0°, 90°, 180°, 270°) using a 3×6 cm2 radiation field. In each image, the center of the copper-wrapped iron core of the transponder is determined. All measurements are made relative to this transponder position to remove gantry and imager sag effects. For each of the 16 images, the 50% collimation edges are identified and used to find a ray representing the rotational axis of each collimation edge. The 16 collimator rotation rays from four gantry angles pass through and bound the radiation isocenter volume. The center of the bounded region, relative to the transponder, is calculated and then transformed to tracking system coordinates using the transponder position, allowing the tracking system's calibration offset from radiation isocenter to be found. All image analysis and calculations are automated with inhouse software for user-independent accuracy. Three different tracking systems at two different sites were evaluated for this study. RESULTS The magnitude of the calibration offset was always less than the manufacturer's stated accuracy of 0.2 cm using their standard clinical calibration procedure, and ranged from 0.014 to 0.175 cm. On three systems in clinical use, the magnitude of the offset was found to be 0.053±0.036, 0.121±0.023, and 0.093±0.013 cm. CONCLUSIONS The method presented here provides an independent technique to verify the calibration of an electromagnetic tracking system to radiation isocenter. The calibration accuracy of the system was better than the 0.2 cm accuracy stated by the manufacturer. However, it should not be assumed to be zero, especially for stereotactic radiation therapy treatments where planning target volume margins are very small.
Collapse
Affiliation(s)
- Dale W Litzenberg
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109-5010, USA.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Pearlstein KA, Chen RC. Comparing Dosimetric, Morbidity, Quality of Life, and Cancer Control Outcomes After 3D Conformal, Intensity-Modulated, and Proton Radiation Therapy for Prostate Cancer. Semin Radiat Oncol 2013; 23:182-90. [DOI: 10.1016/j.semradonc.2013.01.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
45
|
Jereczek-Fossa BA, Santoro L, Zerini D, Fodor C, Vischioni B, Dispinzieri M, Bossi-Zanetti I, Gherardi F, Bonora M, Caputo M, Vavassori A, Cambria R, Garibaldi C, Cattani F, Matei DV, Musi G, De Cobelli O, Orecchia R. Image Guided Hypofractionated Radiotherapy and Quality of Life for Localized Prostate Cancer: Prospective Longitudinal Study in 337 Patients. J Urol 2013; 189:2099-103. [DOI: 10.1016/j.juro.2013.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 01/02/2013] [Indexed: 10/27/2022]
Affiliation(s)
- Barbara A. Jereczek-Fossa
- Department of Radiation Oncology, European Institute of Oncology, Milan, Italy
- University of Milan, Milan, Italy
| | - Luigi Santoro
- Department of Epidemiology and Biostatistics, European Institute of Oncology, Milan, Italy
| | - Dario Zerini
- Department of Radiation Oncology, European Institute of Oncology, Milan, Italy
| | - Cristiana Fodor
- Department of Radiation Oncology, European Institute of Oncology, Milan, Italy
| | | | - Michela Dispinzieri
- Department of Radiation Oncology, European Institute of Oncology, Milan, Italy
- University of Milan, Milan, Italy
| | - Isa Bossi-Zanetti
- Department of Radiation Oncology, European Institute of Oncology, Milan, Italy
- University of Milan, Milan, Italy
| | - Federica Gherardi
- Department of Radiation Oncology, European Institute of Oncology, Milan, Italy
- University of Milan, Milan, Italy
| | - Maria Bonora
- Department of Radiation Oncology, European Institute of Oncology, Milan, Italy
- University of Milan, Milan, Italy
| | - Mariangela Caputo
- Department of Radiation Oncology, European Institute of Oncology, Milan, Italy
- University of Milan, Milan, Italy
| | - Andrea Vavassori
- Department of Radiation Oncology, European Institute of Oncology, Milan, Italy
| | - Raffaella Cambria
- Department of Medical Physics, European Institute of Oncology, Milan, Italy
| | - Cristina Garibaldi
- Department of Medical Physics, European Institute of Oncology, Milan, Italy
| | - Federica Cattani
- Department of Medical Physics, European Institute of Oncology, Milan, Italy
| | - Deliu V. Matei
- Department of Urology, European Institute of Oncology, Milan, Italy
| | - Gennaro Musi
- Department of Urology, European Institute of Oncology, Milan, Italy
| | - Ottavio De Cobelli
- Department of Urology, European Institute of Oncology, Milan, Italy
- University of Milan, Milan, Italy
| | - Roberto Orecchia
- Department of Radiation Oncology, European Institute of Oncology, Milan, Italy
- University of Milan, Milan, Italy
- Centro Nazionale di Adroterapia Oncologica, Pavia, Italy
| |
Collapse
|
46
|
De Los Santos J, Popple R, Agazaryan N, Bayouth JE, Bissonnette JP, Bucci MK, Dieterich S, Dong L, Forster KM, Indelicato D, Langen K, Lehmann J, Mayr N, Parsai I, Salter W, Tomblyn M, Yuh WTC, Chetty IJ. Image guided radiation therapy (IGRT) technologies for radiation therapy localization and delivery. Int J Radiat Oncol Biol Phys 2013; 87:33-45. [PMID: 23664076 DOI: 10.1016/j.ijrobp.2013.02.021] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 02/14/2013] [Accepted: 02/16/2013] [Indexed: 12/27/2022]
Affiliation(s)
- Jennifer De Los Santos
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Gray PJ, Paly JJ, Yeap BY, Sanda MG, Sandler HM, Michalski JM, Talcott JA, Coen JJ, Hamstra DA, Shipley WU, Hahn SM, Zietman AL, Bekelman JE, Efstathiou JA. Patient-reported outcomes after 3-dimensional conformal, intensity-modulated, or proton beam radiotherapy for localized prostate cancer. Cancer 2013; 119:1729-35. [PMID: 23436283 PMCID: PMC3759976 DOI: 10.1002/cncr.27956] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 12/08/2012] [Accepted: 12/11/2012] [Indexed: 12/25/2022]
Abstract
BACKGROUND Recent studies have suggested differing toxicity patterns for patients with prostate cancer who receive treatment with 3-dimensional conformal radiotherapy (3DCRT), intensity-modulated radiotherapy (IMRT), or proton beam therapy (PBT). METHODS The authors reviewed patient-reported outcomes data collected prospectively using validated instruments that assessed bowel and urinary quality of life (QOL) for patients with localized prostate cancer who received 3DCRT (n = 123), IMRT (n = 153) or PBT (n = 95). Clinically meaningful differences in mean QOL scores were defined as those exceeding half the standard deviation of the baseline mean value. Changes from baseline were compared within groups at the first post-treatment follow-up (2-3 months from the start of treatment) and at 12 months and 24 months. RESULTS At the first post-treatment follow-up, patients who received 3DCRT and IMRT, but not those who received PBT, reported a clinically meaningful decrement in bowel QOL. At 12 months and 24 months, all 3 cohorts reported clinically meaningful decrements in bowel QOL. Patients who received IMRT reported clinically meaningful decrements in the domains of urinary irritation/obstruction and incontinence at the first post-treatment follow-up. At 12 months, patients who received PBT, but not those who received IMRT or 3DCRT, reported a clinically meaningful decrement in the urinary irritation/obstruction domain. At 24 months, none of the 3 cohorts reported clinically meaningful changes in urinary QOL. CONCLUSIONS Patients who received 3DCRT, IMRT, or PBT reported distinct patterns of treatment-related QOL. Although the timing of toxicity varied between the cohorts, patients reported similar modest QOL decrements in the bowel domain and minimal QOL decrements in the urinary domains at 24 months. Prospective randomized trials are needed to further examine these differences.
Collapse
Affiliation(s)
| | - Jonathan J. Paly
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Beow Y. Yeap
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Martin G. Sanda
- Division of Urologic Surgery, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Howard. M. Sandler
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, California
| | - Jeff M. Michalski
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | | | - John J. Coen
- Hartford Radiation Oncology Associates, Hartford, Connecticut
| | - Daniel A. Hamstra
- Department of Radiation Oncology, University of Michigan Medical Center, Ann Arbor, Michigan
| | - William U. Shipley
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Stephen M. Hahn
- Department of Radiation Oncology, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Anthony L. Zietman
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Justin E. Bekelman
- Department of Radiation Oncology, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Jason A. Efstathiou
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
48
|
Multi-institutional prospective evaluation of bowel quality of life after prostate external beam radiation therapy identifies patient and treatment factors associated with patient-reported outcomes: the PROSTQA experience. Int J Radiat Oncol Biol Phys 2013; 86:546-53. [PMID: 23561651 DOI: 10.1016/j.ijrobp.2013.01.036] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 01/29/2013] [Accepted: 01/31/2013] [Indexed: 11/21/2022]
Abstract
PURPOSE To evaluate patients treated with external beam radiation therapy as part of the multicenter Prostate Cancer Outcomes and Satisfaction with Treatment Quality Assessment (PROSTQA), to identify factors associated with posttreatment patient-reported bowel health-related quality of life (HRQOL). METHODS AND MATERIALS Pretreatment characteristics and treatment details among 292 men were evaluated using a general linear mixed model for their association with measured HRQOL by the Expanded Prostate Cancer Index Composite instrument through 2 years after enrollment. RESULTS Bowel HRQOL had a median score of 100 (interquartile range 91.7-100) pretreatment and 95.8 (interquartile range 83.3-100) at 2 years, representing new moderate/big problems in 11% for urgency, 7% for frequency, 4% for bloody stools, and 8% for an overall bowel problems. Baseline bowel score was the strongest predictor for all 2-year endpoints. In multivariable models, a volume of rectum ≥25% treated to 70 Gy (V70) yielded a clinically significant 9.3-point lower bowel score (95% confidence interval [CI] 16.8-1.7, P=.015) and predicted increased risks for moderate to big fecal incontinence (P=.0008). No other radiation therapy treatment-related variables influenced moderate to big changes in rectal HRQOL. However, on multivariate analyses V70 ≥25% was associated with increases in small, moderate, or big problems with the following: incontinence (3.9-fold; 95% CI 1.1-13.4, P=.03), rectal bleeding (3.6-fold; 95% CI 1.3-10.2, P=.018), and bowel urgency (2.9-fold; 95% CI 1.1-7.6, P=.026). Aspirin use correlated with a clinically significant 4.7-point lower bowel summary score (95% CI 9.0-0.4, P=.03) and an increase in small, moderate, or big problems with bloody stools (2.8-fold; 95% CI 1.2-6.4, P=.018). Intensity modulated radiation therapy was associated with higher radiation therapy doses to the prostate and lower doses to the rectum but did not independently correlate with bowel HRQOL. CONCLUSION After contemporary dose-escalated external beam radiation therapy up to 11% of patients have newly identified moderate/big problems with bowel HRQOL 2 years after treatment. Bowel HRQOL is related to baseline function, rectal V70, and aspirin use. Finally, our findings validate the commonly utilized cut-point of rectal V70 ≥25% as having significant impact on patient-reported outcomes.
Collapse
|
49
|
Conde-Moreno AJ, Ferrer-Albiach C, Zabaleta-Meri M, Juan-Senabre XJ, Santos-Serra A. The contribution of the cone beam Kv CT (CBKvCT) to the reduction in toxicity of prostate cancer treatment with external 3D radiotherapy. Clin Transl Oncol 2012; 14:853-63. [PMID: 23054750 DOI: 10.1007/s12094-012-0871-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 01/12/2012] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Show that verification through cone beam Kv CT (CBKvCT) in a series of patients treated with 3D external radiotherapy (3DRT) for prostate cancer (PC) is related to a reduction in acute and late toxicity levels. MATERIALS AND METHOD A retrospective, non-randomized study of two homogeneous groups of patients treated between 2005 and 2008, 46 were verified using electronic portal devices (EPIDs) and 48 through CBKvCT. They received 3DRT for localized PC (T1-T3N0M0) and were prescribed the same doses. Treatment was simulated and planned with the same criteria with the same equipment with a median follow-up time of 24 months (12-54 months). Urinary and gastrointestinal toxicity was determined using Common Toxicity Criteria scale, version 4 and RTOG scales. Statistical analysis of data was performed where p < 0.005 being significative. RESULTS AND DISCUSSION With an overall median follow-up time of 24 months, the levels of proctitis were, respectively, 19.56, 15.21 and 15.2 % in the first group, compared with 4.17, 2.08 and 8.33 % in the second. Statistically, less total and late proctitis, late rectal bleeding, anal fissure, total and acute haematuria, total and acute urinary frequency and total urinary incontinence was observed. No statistically significant evidence of a lowering in toxicity neither in terms of acute and late dysuria nor of a relationship to the TNM, Gleason or PSA or in the grade of stability. CONCLUSION Verification through CBKvCT in this series is associated with a statistically significant lowering toxicity. This justifies its use. Greater monitoring would be necessary to assess the impact of verification at the level of biochemical control.
Collapse
Affiliation(s)
- Antonio José Conde-Moreno
- Radiation Oncology Department, Instituto Oncológico, Consorcio Hospitalario Provincial de Castellón, Av. Dr. Clarà, 19, 12002, Castellón de la Plana, Spain.
| | | | | | | | | |
Collapse
|
50
|
Ng JA, Booth JT, Poulsen PR, Fledelius W, Worm ES, Eade T, Hegi F, Kneebone A, Kuncic Z, Keall PJ. Kilovoltage intrafraction monitoring for prostate intensity modulated arc therapy: first clinical results. Int J Radiat Oncol Biol Phys 2012; 84:e655-61. [PMID: 22975613 DOI: 10.1016/j.ijrobp.2012.07.2367] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 06/26/2012] [Accepted: 07/21/2012] [Indexed: 11/15/2022]
Abstract
PURPOSE Most linear accelerators purchased today are equipped with a gantry-mounted kilovoltage X-ray imager which is typically used for patient imaging prior to therapy. A novel application of the X-ray system is kilovoltage intrafraction monitoring (KIM), in which the 3-dimensional (3D) tumor position is determined during treatment. In this paper, we report on the first use of KIM in a prospective clinical study of prostate cancer patients undergoing intensity modulated arc therapy (IMAT). METHODS AND MATERIALS Ten prostate cancer patients with implanted fiducial markers undergoing conventionally fractionated IMAT (RapidArc) were enrolled in an ethics-approved study of KIM. KIM involves acquiring kV images as the gantry rotates around the patient during treatment. Post-treatment, markers in these images were segmented to obtain 2D positions. From the 2D positions, a maximum likelihood estimation of a probability density function was used to obtain 3D prostate trajectories. The trajectories were analyzed to determine the motion type and the percentage of time the prostate was displaced ≥ 3, 5, 7, and 10 mm. Independent verification of KIM positional accuracy was performed using kV/MV triangulation. RESULTS KIM was performed for 268 fractions. Various prostate trajectories were observed (ie, continuous target drift, transient excursion, stable target position, persistent excursion, high-frequency excursions, and erratic behavior). For all patients, 3D displacements of ≥ 3, 5, 7, and 10 mm were observed 5.6%, 2.2%, 0.7% and 0.4% of the time, respectively. The average systematic accuracy of KIM was measured at 0.46 mm. CONCLUSIONS KIM for prostate IMAT was successfully implemented clinically for the first time. Key advantages of this method are (1) submillimeter accuracy, (2) widespread applicability, and (3) a low barrier to clinical implementation. A disadvantage is that KIM delivers additional imaging dose to the patient.
Collapse
Affiliation(s)
- Jin Aun Ng
- Radiation Physics Laboratory, Sydney Medical School and Institute of Medical Physics, School of Physics, University of Sydney, New South Wales, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|