1
|
Zarczynska I, Gorska-Arcisz M, Cortez AJ, Kujawa KA, Wilk AM, Skladanowski AC, Stanczak A, Skupinska M, Wieczorek M, Lisowska KM, Sadej R, Kitowska K. p38 Mediates Resistance to FGFR Inhibition in Non-Small Cell Lung Cancer. Cells 2021; 10:cells10123363. [PMID: 34943871 PMCID: PMC8699485 DOI: 10.3390/cells10123363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 12/16/2022] Open
Abstract
FGFR signalling is one of the most prominent pathways involved in cell growth and development as well as cancer progression. FGFR1 amplification occurs in approximately 20% of all squamous cell lung carcinomas (SCC), a predominant subtype of non-small cell lung carcinoma (NSCLC), indicating FGFR as a potential target for the new anti-cancer treatment. However, acquired resistance to this type of therapies remains a serious clinical challenge. Here, we investigated the NSCLC cell lines response and potential mechanism of acquired resistance to novel selective FGFR inhibitor CPL304110. We found that despite significant genomic differences between CPL304110-sensitive cell lines, their resistant variants were characterised by upregulated p38 expression/phosphorylation, as well as enhanced expression of genes involved in MAPK signalling. We revealed that p38 inhibition restored sensitivity to CPL304110 in these cells. Moreover, the overexpression of this kinase in parental cells led to impaired response to FGFR inhibition, thus confirming that p38 MAPK is a driver of resistance to a novel FGFR inhibitor. Taken together, our results provide an insight into the potential direction for NSCLC targeted therapy.
Collapse
Affiliation(s)
- Izabela Zarczynska
- Department of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (I.Z.); (M.G.-A.); (A.C.S.)
| | - Monika Gorska-Arcisz
- Department of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (I.Z.); (M.G.-A.); (A.C.S.)
| | - Alexander Jorge Cortez
- Department of Biostatistics and Bioinformatics, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeze Armii Krajowej 15, 44-102 Gliwice, Poland; (A.J.C.); (A.M.W.)
| | - Katarzyna Aleksandra Kujawa
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeze Armii Krajowej 15, 44-102 Gliwice, Poland; (K.A.K.); (K.M.L.)
| | - Agata Małgorzata Wilk
- Department of Biostatistics and Bioinformatics, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeze Armii Krajowej 15, 44-102 Gliwice, Poland; (A.J.C.); (A.M.W.)
- Department of Systems Biology and Engineering, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Andrzej Cezary Skladanowski
- Department of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (I.Z.); (M.G.-A.); (A.C.S.)
| | - Aleksandra Stanczak
- Clinical Development Department, Celon Pharma S.A., Marymoncka 15, 05-152 Kazuń Nowy, Poland; (A.S.); (M.W.)
| | - Monika Skupinska
- Preclinical Development Departament, Celon Pharma S.A., Marymoncka 15, 05-152 Kazuń Nowy, Poland;
| | - Maciej Wieczorek
- Clinical Development Department, Celon Pharma S.A., Marymoncka 15, 05-152 Kazuń Nowy, Poland; (A.S.); (M.W.)
| | - Katarzyna Marta Lisowska
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeze Armii Krajowej 15, 44-102 Gliwice, Poland; (K.A.K.); (K.M.L.)
| | - Rafal Sadej
- Department of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (I.Z.); (M.G.-A.); (A.C.S.)
- Correspondence: (R.S.); (K.K.)
| | - Kamila Kitowska
- Department of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland; (I.Z.); (M.G.-A.); (A.C.S.)
- Correspondence: (R.S.); (K.K.)
| |
Collapse
|
2
|
Sulforaphane Impact on Reactive Oxygen Species (ROS) in Bladder Carcinoma. Int J Mol Sci 2021; 22:ijms22115938. [PMID: 34073079 PMCID: PMC8197880 DOI: 10.3390/ijms22115938] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 02/06/2023] Open
Abstract
Sulforaphane (SFN) is a natural glucosinolate found in cruciferous vegetables that acts as a chemopreventive agent, but its mechanism of action is not clear. Due to antioxidative mechanisms being thought central in preventing cancer progression, SFN could play a role in oxidative processes. Since redox imbalance with increased levels of reactive oxygen species (ROS) is involved in the initiation and progression of bladder cancer, this mechanism might be involved when chemoresistance occurs. This review summarizes current understanding regarding the influence of SFN on ROS and ROS-related pathways and appraises a possible role of SFN in bladder cancer treatment.
Collapse
|
3
|
Yesilkanal AE, Yang D, Valdespino A, Tiwari P, Sabino AU, Nguyen LC, Lee J, Xie XH, Sun S, Dann C, Robinson-Mailman L, Steinberg E, Stuhlmiller T, Frankenberger C, Goldsmith E, Johnson GL, Ramos AF, Rosner MR. Limited inhibition of multiple nodes in a driver network blocks metastasis. eLife 2021; 10:e59696. [PMID: 33973518 PMCID: PMC8128439 DOI: 10.7554/elife.59696] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 04/29/2021] [Indexed: 12/14/2022] Open
Abstract
Metastasis suppression by high-dose, multi-drug targeting is unsuccessful due to network heterogeneity and compensatory network activation. Here, we show that targeting driver network signaling capacity by limited inhibition of core pathways is a more effective anti-metastatic strategy. This principle underlies the action of a physiological metastasis suppressor, Raf Kinase Inhibitory Protein (RKIP), that moderately decreases stress-regulated MAP kinase network activity, reducing output to transcription factors such as pro-metastastic BACH1 and motility-related target genes. We developed a low-dose four-drug mimic that blocks metastatic colonization in mouse breast cancer models and increases survival. Experiments and network flow modeling show limited inhibition of multiple pathways is required to overcome variation in MAPK network topology and suppress signaling output across heterogeneous tumor cells. Restricting inhibition of individual kinases dissipates surplus signal, preventing threshold activation of compensatory kinase networks. This low-dose multi-drug approach to decrease signaling capacity of driver networks represents a transformative, clinically relevant strategy for anti-metastatic treatment.
Collapse
Affiliation(s)
- Ali Ekrem Yesilkanal
- Ben May Department for Cancer Research, University of ChicagoChicagoUnited States
| | - Dongbo Yang
- Ben May Department for Cancer Research, University of ChicagoChicagoUnited States
| | - Andrea Valdespino
- Ben May Department for Cancer Research, University of ChicagoChicagoUnited States
| | - Payal Tiwari
- Ben May Department for Cancer Research, University of ChicagoChicagoUnited States
| | - Alan U Sabino
- Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina and Escola de Artes, Ciências e Humanidades; University of São PauloSão PauloBrazil
| | - Long Chi Nguyen
- Ben May Department for Cancer Research, University of ChicagoChicagoUnited States
| | - Jiyoung Lee
- Ben May Department for Cancer Research, University of ChicagoChicagoUnited States
| | - Xiao-He Xie
- Ben May Department for Cancer Research, University of ChicagoChicagoUnited States
| | - Siqi Sun
- Ben May Department for Cancer Research, University of ChicagoChicagoUnited States
| | - Christopher Dann
- Ben May Department for Cancer Research, University of ChicagoChicagoUnited States
| | | | - Ethan Steinberg
- Ben May Department for Cancer Research, University of ChicagoChicagoUnited States
| | - Timothy Stuhlmiller
- Department of Pharmacology, University of North Carolina at Chapel HillChapel HillUnited States
| | - Casey Frankenberger
- Ben May Department for Cancer Research, University of ChicagoChicagoUnited States
| | | | - Gary L Johnson
- Department of Pharmacology, University of North Carolina at Chapel HillChapel HillUnited States
| | - Alexandre F Ramos
- Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina and Escola de Artes, Ciências e Humanidades; University of São PauloSão PauloBrazil
| | - Marsha R Rosner
- Ben May Department for Cancer Research, University of ChicagoChicagoUnited States
| |
Collapse
|
4
|
Cao SX, Wen CX, Sun R, Han JX, Sun YH, Xu XX, Li XM, Lian H. ErbB4 regulate extracellular dopamine through the p38 MAPK signaling pathway. Neurosci Lett 2021; 751:135830. [PMID: 33722543 DOI: 10.1016/j.neulet.2021.135830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/08/2021] [Indexed: 10/21/2022]
Abstract
ErbB4 loss-of-function in catecholaminergic neurons induces catecholamine dyshomeostasis. Despite ErbB4's significant role in neuropathology, the signaling pathways that regulate these changes are still widely unknown. In this study, we attempt to identify the downstream pathway of ErbB4 that regulates catecholamine homeostasis. The SH-SY5Y human neuroblastoma cell line was used as the in vitro model for catecholaminergic neurons. Western blotting, enzyme-linked immunosorbent assay, and pharmacological and genetic manipulations by agonist/antagonist or small interference RNA were used to investigate the relationship between ErbB4 and extracellular catecholamines. We confirmed that ErbB4 is abundantly expressed in undifferentiated and retinoic acid-differentiated catecholaminergic cells from the SH-SY5Y cell line. ErbB4 inhibition increase the ratio of phosphorylated p38 to total p38 in SH-SY5Y human neuroblastoma cells. Consistent with previous in vivo observations in mice, ErbB4 deficiency led to increases in extracellular dopamine and norepinephrine levels. However, the resulting increase in extracellular dopamine, but not norepinephrine, could be suppressed by p38 inhibitor SB202190. Our results suggest that both extracellular dopamine and norepinephrine homeostasis could be regulated by ErbB4 in human catecholaminergic cells, and ErbB4 may regulate extracellular dopamine, but not norepinephrine, through the p38 MAPK signaling pathway, thus indicating different regulatory pathways of dopamine and norepinephrine by ErbB4 in catecholaminergic neurons.
Collapse
Affiliation(s)
- Shu-Xia Cao
- Department of Neurology, Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China
| | - Chen-Xi Wen
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China; Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Rui Sun
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China; Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jia-Xuan Han
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China; Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yan-Hui Sun
- Department of Neurology, Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xin-Xin Xu
- Department of Neurology, Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Xiao-Ming Li
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China; Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Hong Lian
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Center of Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China; Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
5
|
Bolchi C, Bavo F, Appiani R, Roda G, Pallavicini M. 1,4-Benzodioxane, an evergreen, versatile scaffold in medicinal chemistry: A review of its recent applications in drug design. Eur J Med Chem 2020; 200:112419. [PMID: 32502862 DOI: 10.1016/j.ejmech.2020.112419] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/14/2020] [Accepted: 05/02/2020] [Indexed: 12/11/2022]
Abstract
1,4-Benzodioxane has long been a versatile template widely employed to design molecules endowed with diverse bioactivities. Its use spans the last decades of medicinal chemistry until today concerning many strategies of drug discovery, not excluding the most advanced ones. Here, more than fifty benzodioxane-related lead compounds, selected from recent literature, are presented showing the different approaches with which they have been developed. Agonists and antagonists at neuronal nicotinic, α1 adrenergic and serotoninergic receptor subtypes and antitumor and antibacterial agents form the most representative classes, but a variety of other biological targets are addressed by benzodioxane-containing compounds.
Collapse
Affiliation(s)
- Cristiano Bolchi
- Dipartimento di Scienze Farmaceutiche, Università di Milano, Via Mangiagalli 25, I-20133, Milano, Italy
| | - Francesco Bavo
- Dipartimento di Scienze Farmaceutiche, Università di Milano, Via Mangiagalli 25, I-20133, Milano, Italy
| | - Rebecca Appiani
- Dipartimento di Scienze Farmaceutiche, Università di Milano, Via Mangiagalli 25, I-20133, Milano, Italy
| | - Gabriella Roda
- Dipartimento di Scienze Farmaceutiche, Università di Milano, Via Mangiagalli 25, I-20133, Milano, Italy
| | - Marco Pallavicini
- Dipartimento di Scienze Farmaceutiche, Università di Milano, Via Mangiagalli 25, I-20133, Milano, Italy.
| |
Collapse
|
6
|
Aimjongjun S, Mahmud Z, Jiramongkol Y, Alasiri G, Yao S, Yagüe E, Janvilisri T, Lam EWF. Lapatinib sensitivity in nasopharyngeal carcinoma is modulated by SIRT2-mediated FOXO3 deacetylation. BMC Cancer 2019; 19:1106. [PMID: 31727006 PMCID: PMC6854897 DOI: 10.1186/s12885-019-6308-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/29/2019] [Indexed: 12/13/2022] Open
Abstract
Background Chemoresistance is an obstacle to the successful treatment of nasopharyngeal carcinoma (NPC). Lapatinib is a targeted tyrosine kinase inhibitor therapeutic drug also used to treat NPC, but high doses are often required to achieve a result. To investigate the mechanism for the development of Lapatinib resistance, we characterised a number of NPC cell lines to determine the role of FOXO3 and sirtuins in regulating NPC resistance. Methods Sulforhodamine B (SRB) assays, Clonogenic assays, Protein extraction, quantification and western blotting, RT qPCR, Co-immunoprecipitation assay. Results To explore novel treatment strategies, we first characterized the Lapatinib-sensitivity of a panel of NPC cell lines by SRB and clonogenic cytotoxic assays and found that the metastatic NPC (C666–1 and 5-8F) cells are highly resistant whereas the poorly metastatic lines (6-10B, TW01 and HK-1) are sensitive to Lapatinib. Western blot analysis of the Lapatinib-sensitive 6-10B and resistant 5-8F NPC cells showed that the expression of phosphorylated/inactive FOXO3 (P-FOXO3;T32), its target FOXM1 and its regulator SIRT2 correlate negatively with Lapatinib response and sensitivity, suggesting that SIRT2 mediates FOXO3 deacetylation to promote Lapatinib resistance. In agreement, clonogenic cytotoxic assays using wild-type and foxo1/3/4−/− mouse embryonic fibroblasts (MEFs) showed that FOXO1/3/4-deletion significantly attenuates Lapatinib-induced cytotoxicity, confirming that FOXO proteins are essential for mediating Lapatinib response. SRB cell viability assays using chemical SIRT inhibitors (i.e. sirtinol, Ex527, AGK2 and AK1) revealed that all SIRT inhibitors can reduce NPC cell viability, but only the SIRT2-specific inhibitors AK1 and AGK2 further enhance the Lapatinib cytotoxicity. Consistently, clonogenic assays demonstrated that the SIRT2 inhibitors AK1 and AGK2 as well as SIRT2-knockdown increase Lapatinib cytotoxicity further in both the sensitive and resistant NPC cells. Co-immunoprecipitation studies showed that besides Lapatinib treatment, SIRT2-pharmaceutical inhibition and silencing also led to an increase in FOXO3 acetylation. Importantly, SIRT2 inhibition and depletion further enhanced Lapatinib-mediated FOXO3-acetylation in NPC cells. Conclusion Collectively, our results suggest the involvement of SIRT2-mediated FOXO3 deacetylation in Lapatinib response and sensitivity, and that SIRT2 can specifically antagonise the cytotoxicity of Lapatinib through mediating FOXO3 deacetylation in both sensitive and resistant NPC cells. The present findings also propose that SIRT2 can be an important biomarker for metastatic and Lapatinib resistant NPC and that targeting the SIRT2-FOXO3 axis may provide novel strategies for treating NPC and for overcoming chemoresistance.
Collapse
Affiliation(s)
- Sathid Aimjongjun
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK.,Graduate Program in Molecular Medicine, Multidisciplinary Unit, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Zimam Mahmud
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK
| | - Yannasittha Jiramongkol
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK
| | - Glowi Alasiri
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK
| | - Shang Yao
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK
| | - Ernesto Yagüe
- Graduate Program in Molecular Medicine, Multidisciplinary Unit, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Tavan Janvilisri
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK.
| |
Collapse
|
7
|
Astolfi A, Kudolo M, Brea J, Manni G, Manfroni G, Palazzotti D, Sabatini S, Cecchetti F, Felicetti T, Cannalire R, Massari S, Tabarrini O, Loza MI, Fallarino F, Cecchetti V, Laufer SA, Barreca ML. Discovery of potent p38α MAPK inhibitors through a funnel like workflow combining in silico screening and in vitro validation. Eur J Med Chem 2019; 182:111624. [PMID: 31445234 DOI: 10.1016/j.ejmech.2019.111624] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/05/2019] [Accepted: 08/12/2019] [Indexed: 01/31/2023]
Abstract
This work describes the rational discovery of novel chemotypes of p38α MAPK inhibitors using a funnel approach consisting of several computer-aided drug discovery methods and biological experiments. Among the identified hits, four compounds belonging to different chemical families showed IC50 values lower than 10 μM. In particular, the 1,4-benzodioxane derivative 5 turned out to be a potent and efficient p38α MAPK inhibitor having IC50 = 0.07 μM, and LEexp and LipE values of 0.38 and 4.8, respectively; noteworthy, the compound had also a promising kinase selectivity profile and the capability to suppress p38α MAPK effects in human immune cells. Overall, the collected findings highlight that the applied strategy has been successful in generating chemical novelty in the inhibitor kinase field, providing suitable chemical candidates for further inhibitor optimization.
Collapse
Affiliation(s)
- Andrea Astolfi
- Department of Pharmaceutical Sciences, "Department of Excellence 2018-2022", University of Perugia, Via del Liceo 1, 06123, Perugia, Italy
| | - Mark Kudolo
- Department of Pharmaceutical & Medicinal Chemistry, Institute of Pharmacy, Eberhard-Karls University Tuebingen, Auf der Morgenstelle 8, 72076, Tuebingen, Germany
| | - Jose Brea
- CIMUS Research Center, University of Santiago de Compostela, Avda de Barcelona s/n, Planta 3, Despacho1, 15782, Santiago de Compostela, Spain
| | - Giorgia Manni
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli, 06100, Perugia, Italy
| | - Giuseppe Manfroni
- Department of Pharmaceutical Sciences, "Department of Excellence 2018-2022", University of Perugia, Via del Liceo 1, 06123, Perugia, Italy
| | - Deborah Palazzotti
- Department of Pharmaceutical Sciences, "Department of Excellence 2018-2022", University of Perugia, Via del Liceo 1, 06123, Perugia, Italy
| | - Stefano Sabatini
- Department of Pharmaceutical Sciences, "Department of Excellence 2018-2022", University of Perugia, Via del Liceo 1, 06123, Perugia, Italy
| | - Federica Cecchetti
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli, 06100, Perugia, Italy
| | - Tommaso Felicetti
- Department of Pharmaceutical Sciences, "Department of Excellence 2018-2022", University of Perugia, Via del Liceo 1, 06123, Perugia, Italy
| | - Rolando Cannalire
- Department of Pharmaceutical Sciences, "Department of Excellence 2018-2022", University of Perugia, Via del Liceo 1, 06123, Perugia, Italy
| | - Serena Massari
- Department of Pharmaceutical Sciences, "Department of Excellence 2018-2022", University of Perugia, Via del Liceo 1, 06123, Perugia, Italy
| | - Oriana Tabarrini
- Department of Pharmaceutical Sciences, "Department of Excellence 2018-2022", University of Perugia, Via del Liceo 1, 06123, Perugia, Italy
| | - Maria Isabel Loza
- CIMUS Research Center, University of Santiago de Compostela, Avda de Barcelona s/n, Planta 3, Despacho1, 15782, Santiago de Compostela, Spain
| | - Francesca Fallarino
- Department of Experimental Medicine, University of Perugia, Piazzale Gambuli, 06100, Perugia, Italy
| | - Violetta Cecchetti
- Department of Pharmaceutical Sciences, "Department of Excellence 2018-2022", University of Perugia, Via del Liceo 1, 06123, Perugia, Italy
| | - Stefan A Laufer
- Department of Pharmaceutical & Medicinal Chemistry, Institute of Pharmacy, Eberhard-Karls University Tuebingen, Auf der Morgenstelle 8, 72076, Tuebingen, Germany
| | - Maria Letizia Barreca
- Department of Pharmaceutical Sciences, "Department of Excellence 2018-2022", University of Perugia, Via del Liceo 1, 06123, Perugia, Italy.
| |
Collapse
|
8
|
Lu JJ, Su YW, Wang CJ, Li DF, Zhou L. Semaphorin 4D promotes the proliferation and metastasis of bladder cancer by activating the PI3K/AKT pathway. TUMORI JOURNAL 2019; 105:231-242. [PMID: 30674231 PMCID: PMC6566455 DOI: 10.1177/0300891618811280] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 09/27/2018] [Indexed: 12/21/2022]
Abstract
The present study aimed to investigate the role of semaphorin 4D (Sema4D) in bladder cancer cell proliferation and metastasis in vivo and in vitro. Effects of Sema4D modulation on cancer cell viability and clonogenic abilities were assessed by MTT assay and colony formation assay. Cell apoptosis, cell cycle analysis, transwell assays, and wound-healing assays were also assayed. A mouse model of bladder cancer was established to observe the tumorigenesis in vivo. Our data showed that Sema4D was 4-fold upregulated in clinical bladder cancer tissues relative to noncancerous ones and differentially expressed in bladder cancer cell lines. Knockdown of Sema4D in bladder cancer T24 and 5637 cells significantly decreased cell proliferation, clonogenic potential, and motility. On the contrary, overexpression of Sema4D in bladder cancer SV-HUC-1 cells significantly increased cell viability and motility. Concordantly, knockdown of Sema4D impaired while overexpression of Sema4D promoted bladder cancer cell growth rates in xenotransplanted mice. Cell cycle was arrested by modulation of Sema4D. Cell apoptotic rates and the mitochondrial membrane potentials were consistently increased upon knockdown of Sema4D in T24 cells and 5637 cells. Western blotting revealed that epithelial-mesenchymal transition was promoted by Sema4D. The PI3K/AKT pathway was activated upon Sema4D overexpression in SV-HUC-1 cells, while it was inactivated by knockdown of Sema4D in T24 cells. All these data suggest that Sema4D promotes cell proliferation and metastasis in bladder cancer in vivo and in vitro. The oncogenic behavior of Sema4D is achieved by activating the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Jian-jun Lu
- Department of Urinary Surgery, Ningbo Beilun District People ’s Hospital, Ningbo, China
| | - Yao-wu Su
- Department of Urinary Surgery, Ningbo Beilun District People ’s Hospital, Ningbo, China
| | - Chao-jun Wang
- Department of Urinary Surgery, The First Affiliated Hospital Zhejiang University, Zhejiang, China
| | - Di-feng Li
- Department of Urinary Surgery, Ningbo Beilun District People ’s Hospital, Ningbo, China
| | - Liang Zhou
- Department of Urinary Surgery, Ningbo Beilun District People ’s Hospital, Ningbo, China
| |
Collapse
|
9
|
Ku KE, Choi N, Oh SH, Kim WS, Suh W, Sung JH. Src inhibition induces melanogenesis in human G361 cells. Mol Med Rep 2019; 19:3061-3070. [PMID: 30816523 PMCID: PMC6423603 DOI: 10.3892/mmr.2019.9958] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 02/08/2019] [Indexed: 01/08/2023] Open
Abstract
The Src kinase family (SKF) includes non-receptor tyrosine kinases that interact with many cellular cytosolic, nuclear and membrane proteins, and is involved in the progression of cellular transformation and oncogenic activity. However, there is little to no evidence on the effect of SKF or its inhibitors on melanogenesis. Therefore, the present study investigated whether C-terminal Src kinase inhibition can induce melanogenesis and examined the associated signaling pathways and mRNA expression of melanogenic proteins. First, whether stimulators of melanogenesis, such as ultraviolet B and α-melanocyte-stimulating hormone, can dephosphorylate Src protein was evaluated, and the results revealed that SU6656 and PP2 inhibited the phosphorylation of Src in G361 cells. Src inhibition by these chemical inhibitors induced melanogenesis in G361 cells and upregulated the mRNA expression levels of melanogenesis-associated genes encoding microphthalmia-associated transcription factor, tyrosinase-related protein 1 (TRP1), TRP2, and tyrosinase. In addition, Src inhibition by small interfering RNA induced melanogenesis and upregulated the mRNA expression levels of melanogenesis-associated genes. As the p38 mitogen-activated protein kinase (MAPK) and cyclic adenosine monophosphate response element binding (CREB) pathways serve key roles in melanogenesis, the present study further examined whether Src mediates melanogenesis via these pathways. As expected, Src inhibition via SU6656 or PP2 administration induced the phosphorylation of p38 or CREB, as determined by western blotting analysis, and increased the levels of phosphorylated p38 or CREB, as determined by immunofluorescence staining. In addition, the induced pigmentation and melanin content of G361 cells by Src inhibitors was significantly inhibited by p38 or CREB inhibitors. Taken together, these data indicate that Src is associated with melanogenesis, and Src inhibition induces melanogenesis via the MAPK and CREB pathways in G361 cells.
Collapse
Affiliation(s)
- Kyung-Eun Ku
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Republic of Korea
| | - Nahyun Choi
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Republic of Korea
| | - Sang-Ho Oh
- Department of Dermatology, Severance Hospital and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Won-Serk Kim
- Department of Dermatology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea
| | - Wonhee Suh
- College of Pharmacy, Chung‑Ang University, Seoul 06974, Republic of Korea
| | - Jong-Hyuk Sung
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Republic of Korea
| |
Collapse
|
10
|
Zhou Q, Jin P, Liu J, Wang F, Xi S. HER2 and Src co-regulate proliferation, migration and transformation by downstream signaling pathways in arsenite-treated human uroepithelial cells. Metallomics 2018; 10:1141-1159. [DOI: 10.1039/c8mt00131f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
HER2 mediate proliferation, migration and transformation by multiple downstream signaling pathways in arsenite-treated human uroepithelial cells.
Collapse
Affiliation(s)
- Qing Zhou
- Department of Environmental and Occupational Health
- Liaoning Provincial Key Laboratory of Arsenic Biological Effect and Poisoning
- School of Public Health, China Medical University
- Shenyang
- P. R. China
| | - Peiyu Jin
- Department of Environmental and Occupational Health
- Liaoning Provincial Key Laboratory of Arsenic Biological Effect and Poisoning
- School of Public Health, China Medical University
- Shenyang
- P. R. China
| | - Jieyu Liu
- Department of Environmental and Occupational Health
- Liaoning Provincial Key Laboratory of Arsenic Biological Effect and Poisoning
- School of Public Health, China Medical University
- Shenyang
- P. R. China
| | - Fei Wang
- Department of Environmental and Occupational Health
- Liaoning Provincial Key Laboratory of Arsenic Biological Effect and Poisoning
- School of Public Health, China Medical University
- Shenyang
- P. R. China
| | - Shuhua Xi
- Department of Environmental and Occupational Health
- Liaoning Provincial Key Laboratory of Arsenic Biological Effect and Poisoning
- School of Public Health, China Medical University
- Shenyang
- P. R. China
| |
Collapse
|