1
|
Zhao J, Zhang H, Ling Z, An Z, Xiao S, Wang P, Fu Z, Shao J, Sun Y, Fu W. A bilayer bioengineered patch with sequential dual-growth factor release to promote vascularization in bladder reconstruction. Regen Biomater 2024; 11:rbae083. [PMID: 39077683 PMCID: PMC11286312 DOI: 10.1093/rb/rbae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/15/2024] [Accepted: 06/25/2024] [Indexed: 07/31/2024] Open
Abstract
Bladder tissue engineering holds promise for addressing bladder defects resulting from congenital or acquired bladder diseases. However, inadequate vascularization significantly impacts the survival and function of engineered tissues after transplantation. Herein, a novel bilayer silk fibroin (BSF) scaffold was fabricated with the capability of vascular endothelial growth factor (VEGF) and platelet derived growth factor-BB (PDGF-BB) sequential release. The outer layer of the scaffold was composed of compact SF film with waterproofness to mimic the serosa of the bladder. The inner layer was constructed of porous SF matrix incorporated with SF microspheres (MS) loaded with VEGF and PDGF-BB. We found that the 5% (w/v) MS-incorporated scaffold exhibited a rapid release of VEGF, whereas the 0.2% (w/v) MS-incorporated scaffold demonstrated a slow and sustained release of PDGF-BB. The BSF scaffold exhibited good biocompatibility and promoted endothelial cell migration, tube formation and enhanced endothelial differentiation of adipose derived stem cells (ADSCs) in vitro. The BSF patch was constructed by seeding ADSCs on the BSF scaffold. After in vivo transplantation, not only could the BSF patch facilitate the regeneration of urothelium and smooth muscle, but more importantly, stimulate the regeneration of blood vessels. This study demonstrated that the BSF patch exhibited excellent vascularization capability in bladder reconstruction and offered a viable functional bioengineered patch for future clinical studies.
Collapse
Affiliation(s)
- Jian Zhao
- Medical School of PLA, Beijing 100853, China
- Department of Urology, The Third Medical Center, PLA General Hospital, Beijing 100039, China
- Department of Urology, 960th Hospital of PLA, Jinan 250031, China
| | - Haoqian Zhang
- Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, China
| | - Zhengyun Ling
- Department of Urology, The Third Medical Center, PLA General Hospital, Beijing 100039, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Ziyan An
- Medical School of PLA, Beijing 100853, China
- Department of Urology, The Third Medical Center, PLA General Hospital, Beijing 100039, China
| | - Shuwei Xiao
- Department of Urology, Air Force Medical Center, Beijing 100142, China
| | - Pengchao Wang
- Department of Urology, The Third Medical Center, PLA General Hospital, Beijing 100039, China
| | - Zhouyang Fu
- Department of Urology, The Third Medical Center, PLA General Hospital, Beijing 100039, China
| | - Jinpeng Shao
- Medical School of PLA, Beijing 100853, China
- Department of Urology, The Third Medical Center, PLA General Hospital, Beijing 100039, China
| | - Yanfeng Sun
- Department of Pediatrics, The Third Medical Center, PLA General Hospital, Beijing 100039, China
| | - Weijun Fu
- Department of Urology, The Third Medical Center, PLA General Hospital, Beijing 100039, China
| |
Collapse
|
2
|
Pedersen DD, Kim S, Wagner WR. Biodegradable polyurethane scaffolds in regenerative medicine: Clinical translation review. J Biomed Mater Res A 2022; 110:1460-1487. [PMID: 35481723 DOI: 10.1002/jbm.a.37394] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/07/2022] [Accepted: 04/09/2022] [Indexed: 12/14/2022]
Abstract
Early explorations of tissue engineering and regenerative medicine concepts commonly utilized simple polyesters such as polyglycolide, polylactide, and their copolymers as scaffolds. These biomaterials were deemed clinically acceptable, readily accessible, and provided processability and a generally known biological response. With experience and refinement of approaches, greater control of material properties and integrated bioactivity has received emphasis and a broadened palette of synthetic biomaterials has been employed. Biodegradable polyurethanes (PUs) have emerged as an attractive option for synthetic scaffolds in a variety of tissue applications because of their flexibility in molecular design and ability to fulfill mechanical property objectives, particularly in soft tissue applications. Biodegradable PUs are highly customizable based on their composition and processability to impart tailored mechanical and degradation behavior. Additionally, bioactive agents can be readily incorporated into these scaffolds to drive a desired biological response. Enthusiasm for biodegradable PU scaffolds has soared in recent years, leading to rapid growth in the literature documenting novel PU chemistries, scaffold designs, mechanical properties, and aspects of biocompatibility. Despite the enthusiasm in the field, there are still few examples of biodegradable PU scaffolds that have achieved regulatory approval and routine clinical use. However, there is a growing literature where biodegradable PU scaffolds are being specifically developed for a wide range of pathologies and where relevant pre-clinical models are being employed. The purpose of this review is first to highlight examples of clinically used biodegradable PU scaffolds, and then to summarize the growing body of reports on pre-clinical applications of biodegradable PU scaffolds.
Collapse
Affiliation(s)
- Drake D Pedersen
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Seungil Kim
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - William R Wagner
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
3
|
Goldenberg D, McLaughlin C, Koduru SV, Ravnic DJ. Regenerative Engineering: Current Applications and Future Perspectives. Front Surg 2021; 8:731031. [PMID: 34805257 PMCID: PMC8595140 DOI: 10.3389/fsurg.2021.731031] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/13/2021] [Indexed: 12/12/2022] Open
Abstract
Many pathologies, congenital defects, and traumatic injuries are untreatable by conventional pharmacologic or surgical interventions. Regenerative engineering represents an ever-growing interdisciplinary field aimed at creating biological replacements for injured tissues and dysfunctional organs. The need for bioengineered replacement parts is ubiquitous among all surgical disciplines. However, to date, clinical translation has been limited to thin, small, and/or acellular structures. Development of thicker tissues continues to be limited by vascularization and other impediments. Nevertheless, currently available materials, methods, and technologies serve as robust platforms for more complex tissue fabrication in the future. This review article highlights the current methodologies, clinical achievements, tenacious barriers, and future perspectives of regenerative engineering.
Collapse
Affiliation(s)
- Dana Goldenberg
- Irvin S. Zubar Plastic Surgery Research Laboratory, Penn State College of Medicine, Hershey, PA, United States
- Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, United States
| | - Caroline McLaughlin
- Irvin S. Zubar Plastic Surgery Research Laboratory, Penn State College of Medicine, Hershey, PA, United States
- Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, United States
| | - Srinivas V. Koduru
- Irvin S. Zubar Plastic Surgery Research Laboratory, Penn State College of Medicine, Hershey, PA, United States
- Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, United States
| | - Dino J. Ravnic
- Irvin S. Zubar Plastic Surgery Research Laboratory, Penn State College of Medicine, Hershey, PA, United States
- Department of Surgery, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, United States
| |
Collapse
|