1
|
Kotzur R, Stein N, Kahlon S, Berhani O, Isaacson B, Mandelboim O. Eradication of CD48-positive tumors by selectively enhanced YTS cells harnessing the lncRNA NeST. iScience 2023; 26:107284. [PMID: 37609636 PMCID: PMC10440710 DOI: 10.1016/j.isci.2023.107284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/30/2023] [Accepted: 06/30/2023] [Indexed: 08/24/2023] Open
Abstract
Natural killer (NK) cells are currently used in clinical trials to treat tumors. However, such therapies still suffer from problems such as donor variability, reproducibility, and more, which prevent a wider use of NK cells therapeutics. Here we show a potential immunotherapy combining NK cell-mediated tumor eradiation and long non-coding (lnc) RNAs. We overexpressed the interferon (IFN) γ secretion-enhancing lncRNA nettoie Salmonella pas Theiler's (NeST) in the NK cell-like cell line YTS. YTS cells express the co-stimulatory receptor 2B4 whose main ligand is CD48. On YTS cells, 2B4 functions by direct activation. We showed that NeST overexpression in YTS cells resulted in increased IFNγ release upon interaction with CD48 (selectively enhanced (se)YTS cells). Following irradiation, the seYTS cells lost proliferation capacity but were still able to maintain their killing and IFNγ secretion capacities. Finally, we demonstrated that irradiated seYTS inhibit tumor growth in vivo. Thus, we propose seYTS cells as off-the-shelve therapy for CD48-expressing tumors.
Collapse
Affiliation(s)
- Rebecca Kotzur
- The Lautenberg Center for Immunology and Cancer Research, the Hebrew University, Medical School Hadassah Ein Karem, Israel, Jerusalem
| | - Natan Stein
- The Lautenberg Center for Immunology and Cancer Research, the Hebrew University, Medical School Hadassah Ein Karem, Israel, Jerusalem
| | - Shira Kahlon
- The Lautenberg Center for Immunology and Cancer Research, the Hebrew University, Medical School Hadassah Ein Karem, Israel, Jerusalem
| | - Orit Berhani
- The Lautenberg Center for Immunology and Cancer Research, the Hebrew University, Medical School Hadassah Ein Karem, Israel, Jerusalem
| | - Batya Isaacson
- The Lautenberg Center for Immunology and Cancer Research, the Hebrew University, Medical School Hadassah Ein Karem, Israel, Jerusalem
| | - Ofer Mandelboim
- The Lautenberg Center for Immunology and Cancer Research, the Hebrew University, Medical School Hadassah Ein Karem, Israel, Jerusalem
| |
Collapse
|
2
|
Differential expression of non-coding RNAs and association with cerebral ischemic vascular disorders; diagnostic and therapeutic opportunities. Genes Genomics 2022:10.1007/s13258-022-01281-6. [PMID: 35802344 DOI: 10.1007/s13258-022-01281-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 06/24/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Over the last few decades, research associated with the coding genome, primarily DNA and transcriptome (mRNA, rRNA, and tRNA), has changed our understanding in several aspects, including physiology, diagnostics, and therapeutics. A large proportion of the human genome that encodes proteins is essential for physiology. However, the human genome represents a significantly large proportion of non-translational, i.e., non-coding (nc) RNAs like microRNAs, siRNAs, piRNAs, lncRNAs, and circRNAs. These ncRNAs do not translate into functional proteins but are associated with several events, such as the regulation of gene expression via several mechanisms. Our understanding of ncRNAs has advanced in the last decade, such as microRNAs and siRNAs, but still, several other ncRNAs remain unexplored. The study comprehended the association of ncRNAs in cerebral ischemia. METHODS In this study searches utilizing multiple databases, PubMed, EMBASE, and Google Scholar were made. The literature survey was done on ncRNA including short and lncRNA associated with the onset, and progression of cerebral ischemia. The literature search was also made for the studies associated with the diagnostic and therapeutic role of ncRNAs for cerebral ischemia. RESULTS AND DISCUSSION Reports suggested that both short and long ncRNAs are critical players of gene expression and are hence associated with the pathophysiology of cerebral ischemia. The reports demonstrate ncRNAs precisely lncRNAs and microRNAs are not only associated with cerebral ischemia progression but also potential diagnostic and therapeutic candidates. IN CONCLUSION This review is certainly helpful to understand the interplay of ncRNAs in understanding gene expression profile and pathophysiology of cerebral ischemia. These ncRNAs molecules show potential for diagnostic and therapeutic development.
Collapse
|
3
|
Small Non-Coding RNAs in Leukemia. Cancers (Basel) 2022; 14:cancers14030509. [PMID: 35158777 PMCID: PMC8833386 DOI: 10.3390/cancers14030509] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 12/14/2022] Open
Abstract
In 2020, more than 60,500 people were diagnosed with leukemia in the USA, and more than 23,000 died. The incidence of leukemia is still rising, and drug resistance development is a serious concern for patients' wellbeing and survival. In the past two decades, small non-coding RNAs have been studied to evaluate their functions and possible role in cancer pathogenesis. Small non-coding RNAs are short RNA molecules involved in several cellular processes by regulating the expression of genes. An increasing body of evidence collected by many independent studies shows that the expression of these molecules is tissue specific, and that their dysregulation alters the expression of genes involved in tumor development, progression and drug response. Indeed, small non-coding RNAs play a pivotal role in the onset, staging, relapse and drug response of hematological malignancies and cancers in general. These findings strongly suggest that small non-coding RNAs could function as biomarkers and possible targets for therapy. Thus, in this review, we summarize the regulatory mechanisms of small non-coding RNA expression in different types of leukemia and assess their potential clinical implications.
Collapse
|
4
|
Conti I, Varano G, Simioni C, Laface I, Milani D, Rimondi E, Neri LM. miRNAs as Influencers of Cell-Cell Communication in Tumor Microenvironment. Cells 2020; 9:cells9010220. [PMID: 31952362 PMCID: PMC7016744 DOI: 10.3390/cells9010220] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/14/2022] Open
Abstract
microRNAs (miRNAs) are small noncoding RNAs that regulate gene expression at the posttranscriptional level, inducing the degradation of the target mRNA or translational repression. MiRNAs are involved in the control of a multiplicity of biological processes, and their absence or altered expression has been associated with a variety of human diseases, including cancer. Recently, extracellular miRNAs (ECmiRNAs) have been described as mediators of intercellular communication in multiple contexts, including tumor microenvironment. Cancer cells cooperate with stromal cells and elements of the extracellular matrix (ECM) to establish a comfortable niche to grow, to evade the immune system, and to expand. Within the tumor microenvironment, cells release ECmiRNAs and other factors in order to influence and hijack the physiological processes of surrounding cells, fostering tumor progression. Here, we discuss the role of miRNAs in the pathogenesis of multicomplex diseases, such as Alzheimer’s disease, obesity, and cancer, focusing on the contribution of both intracellular miRNAs, and of released ECmiRNAs in the establishment and development of cancer niche. We also review growing evidence suggesting the use of miRNAs as novel targets or potential tools for therapeutic applications.
Collapse
Affiliation(s)
- Ilaria Conti
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (G.V.); (C.S.); (I.L.); (D.M.); (E.R.)
| | - Gabriele Varano
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (G.V.); (C.S.); (I.L.); (D.M.); (E.R.)
| | - Carolina Simioni
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (G.V.); (C.S.); (I.L.); (D.M.); (E.R.)
| | - Ilaria Laface
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (G.V.); (C.S.); (I.L.); (D.M.); (E.R.)
| | - Daniela Milani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (G.V.); (C.S.); (I.L.); (D.M.); (E.R.)
| | - Erika Rimondi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (G.V.); (C.S.); (I.L.); (D.M.); (E.R.)
| | - Luca M. Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (G.V.); (C.S.); (I.L.); (D.M.); (E.R.)
- LTTA—Electron Microscopy Center, University of Ferrara, 44121 Ferrara, Italy
- Correspondence: ; Tel.: +39-0532-455940
| |
Collapse
|
5
|
Hu Q, Li C, Wang S, Li Y, Wen B, Zhang Y, Liang K, Yao J, Ye Y, Hsiao H, Nguyen TK, Park PK, Egranov SD, Hawke DH, Marks JR, Han L, Hung MC, Zhang B, Lin C, Yang L. LncRNAs-directed PTEN enzymatic switch governs epithelial-mesenchymal transition. Cell Res 2019; 29:286-304. [PMID: 30631154 PMCID: PMC6461864 DOI: 10.1038/s41422-018-0134-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 12/07/2018] [Indexed: 02/07/2023] Open
Abstract
Despite the structural conservation of PTEN with dual-specificity phosphatases, there have been no reports regarding the regulatory mechanisms that underlie this potential dual-phosphatase activity. Here, we report that K27-linked polyubiquitination of PTEN at lysines 66 and 80 switches its phosphoinositide/protein tyrosine phosphatase activity to protein serine/threonine phosphatase activity. Mechanistically, high glucose, TGF-β, CTGF, SHH, and IL-6 induce the expression of a long non-coding RNA, GAEA (Glucose Aroused for EMT Activation), which associates with an RNA-binding E3 ligase, MEX3C, and enhances its enzymatic activity, leading to the K27-linked polyubiquitination of PTEN. The MEX3C-catalyzed PTENK27-polyUb activates its protein serine/threonine phosphatase activity and inhibits its phosphatidylinositol/protein tyrosine phosphatase activity. With this altered enzymatic activity, PTENK27-polyUb dephosphorylates the phosphoserine/threonine residues of TWIST1, SNAI1, and YAP1, leading to accumulation of these master regulators of EMT. Animals with genetic inhibition of PTENK27-polyUb, by a single nucleotide mutation generated using CRISPR/Cas9 (PtenK80R/K80R), exhibit inhibition of EMT markers during mammary gland morphogenesis in pregnancy/lactation and during cutaneous wound healing processes. Our findings illustrate an unexpected paradigm in which the lncRNA-dependent switch in PTEN protein serine/threonine phosphatase activity is important for physiological homeostasis and disease development.
Collapse
Affiliation(s)
- Qingsong Hu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Chunlai Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Shouyu Wang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Yajuan Li
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Bo Wen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yanyan Zhang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Institute of Immunology, Third Military Medical University, 400038, Chongqing, China
| | - Ke Liang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jun Yao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Youqiong Ye
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGroven Medical School, Houston, TX, 77030, USA
| | - Heidi Hsiao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Tina K Nguyen
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Peter K Park
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sergey D Egranov
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - David H Hawke
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jeffrey R Marks
- Department of Surgery, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Leng Han
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGroven Medical School, Houston, TX, 77030, USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Program in Cancer Biology, Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Bing Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Chunru Lin
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Program in Cancer Biology, Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Liuqing Yang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Program in Cancer Biology, Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
6
|
Wang Q, Barad DH, Darmon SK, Kushnir VA, Wu YG, Lazzaroni-Tealdi E, Zhang L, Albertini DF, Gleicher N. Reduced RNA expression of the FMR1 gene in women with low (CGGn<26) repeats. PLoS One 2018; 13:e0209309. [PMID: 30576349 PMCID: PMC6303073 DOI: 10.1371/journal.pone.0209309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 12/04/2018] [Indexed: 11/18/2022] Open
Abstract
Low FMR1 variants (CGGn<26) have been associated with premature ovarian aging, female infertility and poor IVF treatment success. Until now, there is little published information concerning possible molecular mechanisms for this effect. We wished to examine whether relative expression of RNA and the FMR1 gene’s fragile X mental retardation protein (FMRP) RNA isoforms differ in women with various FMR1 sub-genotypes (normal, low CGGn<26 and/or high CGGn≥34). This prospective cohort study was conducted between 2014 and 2017 in a clinical research unit of the Center for Human Reproduction in New York City. The study involved a total of 98 study subjects, including 18 young oocyte donors and 80 older infertility patients undergoing routine in vitro fertilization (IVF) cycles. The main outcome measure was RNA expression in human luteinized granulosa cells of 5 groups of FMRP isoforms. The relative expression of FMR1 RNA in human luteinized granulosa cells was measured by real-time PCR and a possible association with CGGn was explored. All 5 groups of FMRP RNA isoforms examined were found to be differentially expressed in human luteinized granulosa cells. The relative expression of four FMR1 RNA isoforms showed significant differences among 6 FMR1 sub-genotypes. Women with at least one low allele expressed significantly lower levels of all 5 sets of FRMP isoforms in comparison to the non-low group. While it would be of interest to see whether FMRP is also decreased in the low-group we recognize that in recent years it has been increasingly documented that information flow of genetics may be regulated by non-coding RNA, that is, without translation to a protein product. We, thus, conclude that various CGG expansions of FMR1 allele may lead to changes of RNA levels and ratios of distinct FMRP RNA isoforms, which could regulate the translation and/or cellular localization of FMRP, affect the expression of steroidogenic enzymes and hormonal receptors, or act in some other epigenetic process and therefore result in the ovarian dysfunction in infertility.
Collapse
Affiliation(s)
- Qi Wang
- The Center for Human Reproduction, New York, NY, United States of America
| | - David H. Barad
- The Center for Human Reproduction, New York, NY, United States of America
- The Foundation for Reproductive Medicine, New York, NY, United States of America
- * E-mail:
| | - Sarah K. Darmon
- The Center for Human Reproduction, New York, NY, United States of America
| | - Vitaly A. Kushnir
- The Center for Human Reproduction, New York, NY, United States of America
- Department of Obstetrics and Gynecology, Wake Forest University, Winston Salem, NC, United States of America
| | - Yan-Guang Wu
- The Center for Human Reproduction, New York, NY, United States of America
| | | | - Lin Zhang
- The Center for Human Reproduction, New York, NY, United States of America
| | - David F. Albertini
- The Center for Human Reproduction, New York, NY, United States of America
- Department of Molecular and Integrative Physiology, University of Kansas Hospital, Kansas City, KS, United States of America
| | - Norbert Gleicher
- The Center for Human Reproduction, New York, NY, United States of America
- The Foundation for Reproductive Medicine, New York, NY, United States of America
- Stem Cell and Molecular Embryology Laboratory, the Rockefeller University, New York, NY, United States of America
- Department of Obstetrics and Gynecology, Vienna University School of Medicine, Vienna, Austria
| |
Collapse
|
7
|
Abstract
Prostate cancer still represents a major health problem for men worldwide. Due to the specific limitation of the currently used clinical biomarkers for prostate cancer, there is a need to identify new and more accurate prostate-specific biomarkers, both for diagnosis and prediction. Small noncoding species of RNAs called microRNAs (miRNAs) have emerged as possible biomarkers in cancer tissues as well as biological fluids, including for prostate cancer. Moreover, it has been shown that miRNAs could be used as therapeutic targets in different cancer types, including prostate cancer, playing an important role in improving diagnosis and prognosis; and miRNAs have the potential to be clinically useful as predictors of response to personalized cancer therapy and as predictors of prognosis. The analysis of miRNAs in prostate tissue is rather straightforward and has been routinely done on fresh tissue. In addition, due to the more stable nature of miRNAs, they are amenable to be analyzed in archived formalin fixed paraffin embedded tissue as well, and also in serum, plasma and urine, using various analytical platforms including microarrays, next generation sequencing and real time PCR. Moreover, although the existence or prostasomes (microvesicles secreted by prostate cells including prostate cancer cells) has been known for years and they were studied as a source of biomarkers for prostate cancer, only recently it has been described that these vesicles also contain miRNAs that could be used as biomarkers in prostate cancer. This chapter underscores the feasibility of current technologies for miRNA analysis and their importance in prostate cancer biology. Moreover, elucidating the specific alteration of miRNA expression and how to modulate it in prostate tissue will open new avenues for developing therapeutic strategies for prostate cancer treatment.
Collapse
Affiliation(s)
- Ovidiu Balacescu
- Department of Functional Genomics, Proteomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Cluj-Napoca, Romania
| | | | - Catalin Marian
- Department of Biochemistry and Pharmacology, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania.
| |
Collapse
|
8
|
Ni WJ, Leng XM. Dynamic miRNA-mRNA paradigms: New faces of miRNAs. Biochem Biophys Rep 2015; 4:337-341. [PMID: 29124222 PMCID: PMC5669400 DOI: 10.1016/j.bbrep.2015.10.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 10/20/2015] [Accepted: 10/26/2015] [Indexed: 12/20/2022] Open
Abstract
More and more evidences suggested that the flow of genetic information can be spatially and temporally regulated by non-coding RNAs (ncRNAs), such as microRNAs (miRNAs). Although biogenesis and function of miRNAs have been well detailed, elucidation of the dynamic interplays between miRNAs and mRNAs have just begun. Here, we highlighted that the miRNA-mRNA interactions which could take place in different cellular locations. During dynamic interactions, miRNA binding sites included not only 3'UTRs, but also 5'UTRs and CDSs. Under different physiological or pathological conditions, miRNAs could switch from translational inhibition to activation. Dynamic miRNA-mRNA paradigms which suggested a novel tip of the iceberg beneath the gene regulation network will provide clues for function studies of other ncRNAs.
Collapse
Affiliation(s)
- Wen-Juan Ni
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Henan 453100, People's Republic of China
| | - Xiao-Min Leng
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Henan 453100, People's Republic of China
| |
Collapse
|
9
|
Bhaskaran M, Mohan M. MicroRNAs: history, biogenesis, and their evolving role in animal development and disease. Vet Pathol 2014; 51:759-74. [PMID: 24045890 PMCID: PMC4013251 DOI: 10.1177/0300985813502820] [Citation(s) in RCA: 393] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The discovery of microRNAs (miRNAs) in 1993 followed by developments and discoveries in small RNA biology have redefined the biological landscape by significantly altering the longstanding dogmas that defined gene regulation. These small RNAs play a significant role in modulation of an array of physiological and pathological processes ranging from embryonic development to neoplastic progression. Unique miRNA signatures of various inherited, metabolic, infectious, and neoplastic diseases have added a new dimension to the studies that look at their pathogenesis and highlight their potential to be reliable biomarkers. Also, altering miRNA functionality and the development of novel in vivo delivery systems to achieve targeted modulation of specific miRNA function are being actively pursued as novel approaches for therapeutic intervention in many diseases. Here we review the current body of knowledge on the role of miRNAs in development and disease and discuss future implications.
Collapse
Affiliation(s)
- M Bhaskaran
- Infectious Disease Aerobiology, Division of Microbiology, Tulane National Primate Research Center, Covington, LA, USA
| | - M Mohan
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, USA
| |
Collapse
|