1
|
Yu J, Luo J, Li P, Chen X, Zhang G, Guan H. Identification of the circRNA-miRNA-mRNA Regulatory Network in Pterygium-Associated Conjunctival Epithelium. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2673890. [PMID: 36398070 PMCID: PMC9666032 DOI: 10.1155/2022/2673890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/12/2022] [Accepted: 10/21/2022] [Indexed: 10/07/2023]
Abstract
To investigate the regulatory mechanism of pterygium formation, we detected differentially expressed messenger RNAs (DE-mRNAs) and differentially expressed circular RNAs (DE-circRNAs) in pterygium-associated conjunctival epithelium (PCE) and normal conjunctival epithelium (NCE). Genome-wide mRNA and circRNA expression profiles of PCE and NCE were determined using high-throughput sequencing. Bioinformatics analyses, including Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, gene set enrichment analysis (GSEA), and protein-protein interaction (PPI) analysis, were conducted. The microRNAs (miRNAs) interacting with the hub DE-mRNAs and DE-circRNAs were predicted and verified using real-time quantitative PCR (RT-qPCR). The data showed that there were 536 DE-mRNAs (280 upregulated and 256 downregulated mRNAs) and 78 DE-circRNAs (20 upregulated and 58 downregulated circRNAs) in PCE. KEGG enrichment analysis indicated that the DE-mRNAs were mainly involved in the following biological processes: IL-17 signalling pathway, viral protein interaction with cytokine and cytokine receptor, cytokine-cytokine receptor interaction, ECM-receptor interaction, and focal adhesion. The GSEA results revealed that the epithelial mesenchymal transition (EMT) process was significantly enriched in upregulated mRNAs. The pterygium-associated circRNA-miRNA-mRNA network was established based on the top 10 DE-circRNAs, 4 validated miRNAs (upregulated miR-376a-5p and miR-208a-5p,downregulated miR-203a-3p and miR-200b-3p), and 31 DE-mRNAs. We found that miR-200b-3p, as a regulator of FN1, SDC2, and MEX3D, could be regulated by 5 upregulated circRNAs. In addition, we screened out EMT-related DE-mRNAs, including 6 upregulated DE-mRNAs and 6 downregulated DE-mRNAs. The EMT-related circRNA-miRNA-mRNA network was established with the top 10 circRNAs, 8 validated miRNAs (upregulated miR-17-5p, miR-181a-5p, and miR-106a-5p, downregulated miR-124-3p, miR-9-5p, miR-130b-5p, miR-1-3p, and miR-26b-5P), and 12 EMT-related DE-mRNAs. We found that hsa_circ_0002406 might upregulate FN1 and ADAM12 by sponging miR-26b-5p and miR-1-3p, respectively, thus promoting EMT in pterygium. Briefly, the study provides a novel viewpoint on the molecular pathological mechanisms in pterygium formation. CircRNA-miRNA-mRNA regulatory networks participate in the pathogenesis of pterygium and might become promising targets for pterygium prevention and treatment.
Collapse
Affiliation(s)
- Jianfeng Yu
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Jiawei Luo
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Pengfei Li
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Xiaojuan Chen
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Guowei Zhang
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Huaijin Guan
- Eye Institute, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| |
Collapse
|
2
|
Masola V, Franchi M, Zaza G, Atsina FM, Gambaro G, Onisto M. Heparanase regulates EMT and cancer stem cell properties in prostate tumors. Front Oncol 2022; 12:918419. [PMID: 35965510 PMCID: PMC9363836 DOI: 10.3389/fonc.2022.918419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Prostate cancer displays a certain phenotypic plasticity that allows for the transition of cells from the epithelial to the mesenchymal state. This process, known as epithelial–mesenchymal transition (EMT), is one of the factors that give the tumor cells greater invasive and migratory capacity with subsequent formation of metastases. In addition, many cancers, including prostate cancer, are derived from a cell population that shows the properties of stem cells. These cells, called cancer stem cells (CSCs) or tumor-initiating cells, not only initiate the tumor process and growth but are also able to mediate metastasis and drug resistance. However, the impact of EMT and CSCs in prostate cancer progression and patient survival is still far from fully understood. Heparanase (HPSE), the sole mammalian endoglycosidase capable of degrading heparan sulfate (HS), is also involved in prostate cancer progression. We had previously proved that HPSE regulates EMT in non-cancerous pathologies. Two prostate cancer cell lines (DU145 and PC3) were silenced and overexpressed for HPSE. Expression of EMT and stemness markers was evaluated. Results showed that the expression of several EMT markers are modified by HPSE expression in both the prostate cancer cell lines analyzed. In the same way, the stemness markers and features are also modulated by HPSE expression. Taken together, the present findings seem to prove a new mechanism of action of HPSE in sustaining prostate cancer growth and diffusion. As for other tumors, these results highlight the importance of HPSE as a potential pharmacological target in prostate cancer treatment.
Collapse
Affiliation(s)
- Valentina Masola
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- *Correspondence: Maurizio Onisto, ; Valentina Masola,
| | - Marco Franchi
- Department of Life Quality Sciences, University of Bologna, Rimini, Italy
| | - Gianluigi Zaza
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | | | - Giovanni Gambaro
- Renal Unit, Department of Medicine, University Hospital of Verona, Verona, Italy
| | - Maurizio Onisto
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- *Correspondence: Maurizio Onisto, ; Valentina Masola,
| |
Collapse
|
3
|
Tellez-Gabriel M, Tekpli X, Reine TM, Hegge B, Nielsen SR, Chen M, Moi L, Normann LS, Busund LTR, Calin GA, Mælandsmo GM, Perander M, Theocharis AD, Kolset SO, Knutsen E. Serglycin Is Involved in TGF-β Induced Epithelial-Mesenchymal Transition and Is Highly Expressed by Immune Cells in Breast Cancer Tissue. Front Oncol 2022; 12:868868. [PMID: 35494005 PMCID: PMC9047906 DOI: 10.3389/fonc.2022.868868] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/21/2022] [Indexed: 12/03/2022] Open
Abstract
Serglycin is a proteoglycan highly expressed by immune cells, in which its functions are linked to storage, secretion, transport, and protection of chemokines, proteases, histamine, growth factors, and other bioactive molecules. In recent years, it has been demonstrated that serglycin is also expressed by several other cell types, such as endothelial cells, muscle cells, and multiple types of cancer cells. Here, we show that serglycin expression is upregulated in transforming growth factor beta (TGF-β) induced epithelial-mesenchymal transition (EMT). Functional studies provide evidence that serglycin plays an important role in the regulation of the transition between the epithelial and mesenchymal phenotypes, and it is a significant EMT marker gene. We further find that serglycin is more expressed by breast cancer cell lines with a mesenchymal phenotype as well as the basal-like subtype of breast cancers. By examining immune staining and single cell sequencing data of breast cancer tissue, we show that serglycin is highly expressed by infiltrating immune cells in breast tumor tissue.
Collapse
Affiliation(s)
- Marta Tellez-Gabriel
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Xavier Tekpli
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Trine M. Reine
- Department of Interphase Genetics, Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
| | - Beate Hegge
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Stephanie R. Nielsen
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Meng Chen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Line Moi
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
- Department of Clinical Pathology, University Hospital of North Norway, Tromsø, Norway
| | - Lisa Svartdal Normann
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department of Research and Innovation, Vestre Viken Hospital Trust, Drammen, Norway
| | - Lill-Tove R. Busund
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
- Department of Clinical Pathology, University Hospital of North Norway, Tromsø, Norway
| | - George A. Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Gunhild M. Mælandsmo
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Maria Perander
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Achilleas D. Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | | | - Erik Knutsen
- Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
- Centre for Clinical Research and Education, University Hospital of North Norway, Tromsø, Norway
- *Correspondence: Erik Knutsen,
| |
Collapse
|
4
|
Interactions Networks for Primary Heart Sarcomas. Cancers (Basel) 2021; 13:cancers13153882. [PMID: 34359782 PMCID: PMC8345524 DOI: 10.3390/cancers13153882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/22/2021] [Accepted: 07/28/2021] [Indexed: 01/19/2023] Open
Abstract
Personalized medicine incorporates genetic information into medical practice so as to optimize the management of chronic diseases. In rare diseases, such as heart cancer (incidence 0.0017-0.33%), this may be elusive. Ninety-five percent of the cases are due to secondary involvementwith the neoplasm originating in the lungs, breasts, kidney, blood, or skin. The clinical manifestations of heart tumors (benign or malignant) include heart failure, hypertension, and cardiac arrhythmias of varying severity, frequently resulting in blood vessel emboli, including strokes. This study aims to explain the pathophysiology and contribute to a P4 medicine model for use by cardiologists, pathologists, and oncologists. We created six gene/protein heart-related and tumor-related targets high-confidence interactomes, which unfold the main pathways that may lead to cardiac diseases (heart failure, hypertension, coronary artery disease, arrhythmias), i.e., the sympathetic nervous system, the renin-angiotensin-aldosterone axis and the endothelin pathway, and excludes others, such as the K oxidase or cytochrome P450 pathways. We concluded that heart cancer patients could be affected by beta-adrenergic blockers, ACE inhibitors, QT-prolonging antiarrhythmic drugs, antibiotics, and antipsychotics. Interactomes may elucidate unknown pathways, adding to patient/survivor wellness during/after chemo- and/or radio-therapy.
Collapse
|
5
|
Meng F, Han X, Min Z, He X, Zhu S. Prognostic signatures associated with high infiltration of Tregs in bone metastatic prostate cancer. Aging (Albany NY) 2021; 13:17442-17461. [PMID: 34229299 PMCID: PMC8312432 DOI: 10.18632/aging.203234] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/12/2021] [Indexed: 02/06/2023]
Abstract
Metastatic cancer especially bone metastasis (BM) is the lethal end-stage of castration-resistant prostate cancer (CRPC). To understand the possible molecular mechanisms underlying the development of the distant metastasis is of potential clinical value. We sought to identify differentially expressed genes between patient-matched primary and bone metastatic CRPC tumors. Functional enrichment, protein-protein interaction networks, and survival analysis of DEGs were performed. DEGs with a prognostic value considered as candidate genes were evaluated, followed by genetic analysis of tumor infiltrating immune cells based on Wilcoxon test and immunofluorescence identification. Expression profiles analysis showed that 381 overlapping genes were screened as differentially expressed genes (DEGs), of which 16 DEGs were randomly selected to be validated and revealed that most of these genes showed a transcriptional profile similar to that seen in the datasets (Pearson’s r = 0.76). Six core genes were found to be involved in regulation of extracellular matrix receptor interaction and chemotactic activity, and four of them were significantly correlated with the survival of PCa patients with bone metastases. Immune infiltration analysis showed that the expressions levels of COL3A1, RAC1, FN1, and SDC2 in CD4+T cells were significantly higher than those in tumor cells, especially regulatory T cell infiltration was significantly increased in BM tumors. We analyzed gene expression signatures specifically associated with the development of bone metastases of CRPC patients. Characterization of genes associated with BM of mCRPC is critical for identification of predictive biomarkers and potential therapeutic targets.
Collapse
Affiliation(s)
- Fanjing Meng
- Key Laboratory of Tumor Immunity, Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Xu Han
- Key Laboratory of Tumor Immunity, Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhixue Min
- Department of Pathology, The Third People's Hospital of Zhengzhou, Zhengzhou, China
| | - Xuehui He
- Key Laboratory of Tumor Immunity, Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Sha Zhu
- Key Laboratory of Tumor Immunity, Department of Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Keller-Pinter A, Gyulai-Nagy S, Becsky D, Dux L, Rovo L. Syndecan-4 in Tumor Cell Motility. Cancers (Basel) 2021; 13:cancers13133322. [PMID: 34282767 PMCID: PMC8268284 DOI: 10.3390/cancers13133322] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Cell migration is crucial fReaor metastasis formation and a hallmark of malignancy. The primary cause of high mortality among oncology patients is the ability of cancer cells to metastasize. To form metastasis, primary tumor cells must be intrinsically able to move. The transmembrane, heparan sulfate proteoglycan syndecan-4 (SDC4) exhibits multiple functions in signal transduction by regulating Rac1 GTPase activity and consequently actin remodeling, as well as regulating focal adhesion kinase, protein kinase C-alpha and the level of intracellular calcium. By affecting several signaling pathways and biological processes, SDC4 is involved in cell migration under physiological and pathological conditions as well. In this review, we discuss the SDC4-mediated cell migration focusing on the role of SDC4 in tumor cell movement. Abstract Syndecan-4 (SDC4) is a ubiquitously expressed, transmembrane proteoglycan bearing heparan sulfate chains. SDC4 is involved in numerous inside-out and outside-in signaling processes, such as binding and sequestration of growth factors and extracellular matrix components, regulation of the activity of the small GTPase Rac1, protein kinase C-alpha, the level of intracellular calcium, or the phosphorylation of focal adhesion kinase. The ability of this proteoglycan to link the extracellular matrix and actin cytoskeleton enables SDC4 to contribute to biological functions like cell adhesion and migration, cell proliferation, cytokinesis, cellular polarity, or mechanotransduction. The multiple roles of SDC4 in tumor pathogenesis and progression has already been demonstrated; therefore, the expression and signaling of SDC4 was investigated in several tumor types. SDC4 influences tumor progression by regulating cell proliferation as well as cell migration by affecting cell-matrix adhesion and several signaling pathways. Here, we summarize the general role of SDC4 in cell migration and tumor cell motility.
Collapse
Affiliation(s)
- Aniko Keller-Pinter
- Department of Biochemistry, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary; (S.G.-N.); (D.B.); (L.D.)
- Correspondence:
| | - Szuzina Gyulai-Nagy
- Department of Biochemistry, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary; (S.G.-N.); (D.B.); (L.D.)
| | - Daniel Becsky
- Department of Biochemistry, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary; (S.G.-N.); (D.B.); (L.D.)
| | - Laszlo Dux
- Department of Biochemistry, Faculty of Medicine, University of Szeged, H-6720 Szeged, Hungary; (S.G.-N.); (D.B.); (L.D.)
| | - Laszlo Rovo
- Department of Oto-Rhino-Laryngology and Head-Neck Surgery, University of Szeged, H-6725 Szeged, Hungary;
| |
Collapse
|
7
|
Increased Cytoplasmic CD138 Expression Is Associated with Aggressive Characteristics in Prostate Cancer and Is an Independent Predictor for Biochemical Recurrence. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5845374. [PMID: 33195694 PMCID: PMC7641694 DOI: 10.1155/2020/5845374] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 09/27/2020] [Accepted: 09/30/2020] [Indexed: 01/11/2023]
Abstract
Syndecan-1 (CD138) is a transmembrane proteoglycan expressed in various normal and malignant tissues. It is of interest due to a possible prognostic effect in tumors and its role as a target for the antibody-drug conjugate indatuximab ravtansine. Here, we analyzed 17,747 prostate cancers by immunohistochemistry. Membranous and cytoplasmic CD138 staining was separately recorded. In normal prostate glands, CD138 staining was limited to basal cells. In cancers, membranous CD138 positivity was seen in 19.6% and cytoplasmic CD138 staining in 11.2% of 12,851 interpretable cases. A comparison with clinico-pathological features showed that cytoplasmic CD138 staining was more linked to unfavorable tumor features than membranous staining. Cytoplasmic CD138 immunostaining was associated with high tumor stage (p < 0.0001), high Gleason grade (p < 0.0001), nodal metastases (p < 0.0001), positive surgical margin (p < 0.0001), and biochemical recurrence (p < 0.0001). This also holds true for both V-ets avian erythroblastosis virus E26 oncogene homolog (ERG) fusion positive and ERG fusion negative tumors although the cytoplasmic CD138 expression was markedly more frequent in ERG positive than in ERG negative tumors (p < 0.0001). Comparison with 11 previously analyzed chromosomal deletions identified a conspicuous association between cytoplasmic CD138 expression and 8p deletions (p < 0.0001) suggesting a possible functional interaction of CD138 with one or several 8p genes. Multivariate analysis revealed the cytoplasmic CD138 expression as an independent prognostic parameter in all cancers and in the ERG positive subgroup. In summary, our study indicates the cytoplasmic CD138 expression as a strong and independent predictor of poor prognosis in prostate cancer. Immunohistochemical measurement of CD138 protein may thus—perhaps in combination with other parameters—become clinically useful in the future.
Collapse
|
8
|
Proteoglycans in the Pathogenesis of Hormone-Dependent Cancers: Mediators and Effectors. Cancers (Basel) 2020; 12:cancers12092401. [PMID: 32847060 PMCID: PMC7563227 DOI: 10.3390/cancers12092401] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 12/21/2022] Open
Abstract
Hormone-dependent cancers exhibit high morbidity and mortality. In spite of advances in therapy, the treatment of hormone-dependent cancers remains an unmet health need. The tumor microenvironment (TME) exhibits unique characteristics that differ among various tumor types. It is composed of cancerous, non-cancerous, stromal, and immune cells that are surrounded and supported by components of the extracellular matrix (ECM). Therefore, the interactions among cancer cells, stromal cells, and components of the ECM determine cancer progression and response to therapy. Proteoglycans (PGs), hybrid molecules consisting of a protein core to which sulfated glycosaminoglycan chains are bound, are significant components of the ECM that are implicated in all phases of tumorigenesis. These molecules, secreted by both the stroma and cancer cells, are crucial signaling mediators that modulate the vital cellular pathways implicated in gene expression, phenotypic versatility, and response to therapy in specific tumor types. A plethora of deregulated signaling pathways contributes to the growth, dissemination, and angiogenesis of hormone-dependent cancers. Specific inputs from the endocrine and immune systems are some of the characteristics of hormone-dependent cancer pathogenesis. Importantly, the mechanisms involved in various aspects of cancer progression are executed in the ECM niche of the TME, and the PG components crucially mediate these processes. Here, we comprehensively discuss the mechanisms through which PGs affect the multifaceted aspects of hormone-dependent cancer development and progression, including cancer metastasis, angiogenesis, immunobiology, autophagy, and response to therapy.
Collapse
|
9
|
Karászi K, Vigh R, Máthé M, Fullár A, Oláh L, Füle T, Papp Z, Kovalszky I. Aberrant Expression of Syndecan-1 in Cervical Cancers. Pathol Oncol Res 2020; 26:2255-2264. [PMID: 32388727 PMCID: PMC7471205 DOI: 10.1007/s12253-020-00816-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 04/28/2020] [Indexed: 02/02/2023]
Abstract
Syndecan-1, is a transmembrane heparan/chondroitin sulfate proteoglycan necessary for cell-cell and cell-matrix interactions. Its decreased level on the cell surface correlates with poor prognosis in several tumor types. Aberrant stromal localization of syndecan-1 is also considered an unfavorable prognostic factor in various human malignancies. In the presented work the question was addressed if changes in syndecan-1 expression are related to the prognosis of cervical cancer. Immunohistochemistry for syndecan-1 extracellular domain was performed on surgical specimens of primary cervical cancer. To follow the communication between tumor cells and stromal fibroblasts, their mono-and co-cultures were studied, detecting the expression of syndecan-1, smooth muscle actin, vimentin, and desmin. Immunohistochemistry of tumorous specimens revealed that while cell surface syndecan-1 expression was reduced on cancer cells, it appeared on the surface of tumor-associated fibroblasts. Until year 7, the cohort with high cell surface syndecan-1 expression had significantly longer survival. No difference in the same time-period could be detected when stromal syndecan-1 expression was analyzed. In vitro analysis revealed, that tumor cells can induce syndecan-1 expression on fibroblast, and fibroblasts showed that fibroblast-like cells are built by two cell types: (a) syndecan-1 positive, cytokeratin negative real fibroblasts, and (b) syndecan-1 and cytokeratin positive epithelial-mesenchymal transformed tumor cells. Syndecan-1 on the surface of cancer cells appears to be a positive prognostic marker. Although syndecan-1 positive fibroblasts promote tumor cell proliferation in vitro, we failed to detect their cancer promoting effect in vivo.
Collapse
Affiliation(s)
- Katalin Karászi
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary
| | - Renáta Vigh
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary
| | - Miklós Máthé
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary
| | - Alexandra Fullár
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary
| | - Lászlóné Oláh
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary
| | - Tibor Füle
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary
| | - Zoltán Papp
- 1st Department of Obstetrics and Gynecology, Semmelweis University, H-1082, Budapest, Hungary.,Maternity Obstetrics and Gynecology Private Clinic, H-1126, Budapest, Hungary
| | - Ilona Kovalszky
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary.
| |
Collapse
|
10
|
Contreras HR, López-Moncada F, Castellón EA. Cancer stem cell and mesenchymal cell cooperative actions in metastasis progression and hormone resistance in prostate cancer: Potential role of androgen and gonadotropin‑releasing hormone receptors (Review). Int J Oncol 2020; 56:1075-1082. [PMID: 32319606 DOI: 10.3892/ijo.2020.5008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 01/09/2020] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PCa) is the leading cause of male cancer‑associated mortality worldwide. Mortality is associated with metastasis and hormone resistance. Cellular, genetic and molecular mechanisms underlying metastatic progression and hormone resistance are poorly understood. Studies have investigated the local effects of gonadotropin‑releasing hormone (GnRH) analogs (used for androgen deprivation treatments) and the presence of the GnRH receptor (GnRH‑R) on PCa cells. Furthermore, cell subpopulations with stem‑like properties, or cancer stem cells, have been isolated and characterized using a cell culture system derived from explants of human prostate tumors. In addition, the development of preclinical orthotopic models of human PCa in a nonobese diabetic/severe combined immunodeficiency mouse model of compromised immunity has enabled the establishment of a reproducible system of metastatic progression in vivo. There is increasing evidence that metastasis is a complex process involving the cooperative actions of different cancer cell subpopulations, in which cancer stem‑like cells would be responsible for the final step of colonizing premetastatic niches. It has been hypothesized that PCa cells with stemness and mesenchymal signatures act cooperatively in metastatic progression and the inhibition of stemness genes, and that overexpression of androgen receptor (AR) and GnRH‑R decreases the rate the metastasis and sensitizes tumors to hormone therapy. The aim of the present review is to analyze the evidence regarding this cooperative process and the possible influence of stem‑like cell phenotypes, AR and GnRH‑R in metastatic progression and hormone resistance. These aspects may represent an important contribution in the understanding of the mechanisms underlying metastasis and hormone resistance in PCa, and potential routes to blocking these processes, enabling the development of novel therapies that would be particularly relevant for patients with metastatic and castration‑resistant PCa.
Collapse
Affiliation(s)
- Héctor R Contreras
- Laboratory of Cellular and Molecular Oncology, Department of Basic and Clinical Oncology, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Fernanda López-Moncada
- Laboratory of Cellular and Molecular Oncology, Department of Basic and Clinical Oncology, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Enrique A Castellón
- Laboratory of Cellular and Molecular Oncology, Department of Basic and Clinical Oncology, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| |
Collapse
|
11
|
Tsoyi K, Osorio JC, Chu SG, Fernandez IE, De Frias SP, Sholl L, Cui Y, Tellez CS, Siegfried JM, Belinsky SA, Perrella MA, El-Chemaly S, Rosas IO. Lung Adenocarcinoma Syndecan-2 Potentiates Cell Invasiveness. Am J Respir Cell Mol Biol 2020; 60:659-666. [PMID: 30562054 DOI: 10.1165/rcmb.2018-0118oc] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Altered expression of syndecan-2 (SDC2), a heparan sulfate proteoglycan, has been associated with diverse types of human cancers. However, the mechanisms by which SDC2 may contribute to the pathobiology of lung adenocarcinoma have not been previously explored. SDC2 levels were measured in human lung adenocarcinoma samples and lung cancer tissue microarrays using immunohistochemistry and real-time PCR. To understand the role of SDC2 in vitro, SDC2 was silenced or overexpressed in A549 lung adenocarcinoma cells. The invasive capacity of cells was assessed using Matrigel invasion assays and measuring matrix metalloproteinase (MMP) 9 expression. Finally, we assessed tumor growth and metastasis of SDC2-deficient A549 cells in a xenograft tumor model. SDC2 expression was upregulated in malignant epithelial cells and macrophages obtained from human lung adenocarcinomas. Silencing of SDC2 decreased MMP9 expression and attenuated the invasive capacity of A549 lung adenocarcinoma cells. The inhibitory effect of SDC2 silencing on MMP9 expression and cell invasion was reversed by overexpression of MMP9 and syntenin-1. SDC2 silencing attenuated NF-κB p65 subunit nuclear translocation and its binding to the MMP9 promoter, which were restored by overexpression of syntenin-1. SDC2 silencing in vivo reduced tumor mass volume and metastasis. These findings suggest that SDC2 plays an important role in the invasive properties of lung adenocarcinoma cells and that its effects are mediated by syntenin-1. Thus, inhibiting SDC2 expression or activity could serve as a potential therapeutic target to treat lung adenocarcinoma.
Collapse
Affiliation(s)
| | - Juan C Osorio
- 1 Division of Pulmonary and Critical Care Medicine, and.,2 Department of Medicine, New York Presbyterian Hospital, Weill Cornell Medical College, New York, New York
| | - Sarah G Chu
- 1 Division of Pulmonary and Critical Care Medicine, and
| | - Isis E Fernandez
- 3 Comprehensive Pneumology Centre, Hospital of the Ludwig-Maximilians University of Munich, Munich, Germany
| | | | - Lynette Sholl
- 4 Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ye Cui
- 1 Division of Pulmonary and Critical Care Medicine, and
| | | | - Jill M Siegfried
- 6 Department of Pharmacology, University of Minnesota, Minneapolis, Minnesota
| | | | | | | | - Ivan O Rosas
- 1 Division of Pulmonary and Critical Care Medicine, and.,7 Pulmonary Fibrosis Group, Lovelace Respiratory Research Institute, Albuquerque, New Mexico; and
| |
Collapse
|
12
|
Farfán N, Orellana-Serradell O, Herrera D, Chrzanowsky D, Cubillos P, Marín G, Antonio García De Herreros A, Castellón EA, Contreras HR. SNAIL expression correlates with the translocation of syndecan‑1 intracellular domain into the nucleus in prostate cancer cell lines. Int J Mol Med 2020; 45:1073-1080. [PMID: 32124938 PMCID: PMC7053857 DOI: 10.3892/ijmm.2020.4488] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/21/2020] [Indexed: 01/06/2023] Open
Abstract
Zinc finger protein SNAI1 (SNAIL) and zinc finger protein SNAI2 (SLUG) transcription factors promote epithelial-mesenchymal transition, a process through which epithelial cells acquire a mesenchymal phenotype, increasing their migratory and invasive properties. In prostate cancer (PCa) progression, increased expression levels of SNAIL and SLUG have been described. In advanced PCa, a decrease in the cell surface proteoglycan syndecan-1 (SDC-1), which has a role in cell-to-extracellular matrix adhesion, has been observed. Notably, SDC-1 nuclear location has been observed in mesenchymal cancers. The present study aimed to determine if SNAIL and SLUG may be associated with the nuclear location of SDC-1 in PCa. To determine the location of SDC-1, antibodies against its intracellular domain (ID) or extracellular domain (ED) were used in benign prostatic hyperplasia (BPH) and PCa samples with high Gleason scores. Only ID-SDC-1 was located in the cell nuclei in advanced PCa samples, but not in the BPH samples. ED-SDC-1 was located in the cell membrane and cytoplasm, exhibiting decreased levels in PCa in comparison with those in BPH. Furthermore, LNCaP and PC3 PCa cell lines with ectopic SNAIL expression exhibited nuclear ID-SDC-1. No change was observed in the ED-SDC-1 levels, and maintained its location in the cell membrane and cytoplasm. SLUG induced no change in ID-SDC-1 location. At the protein level, an association between SNAIL and nuclear ID-SDC-1 was observed. In conclusion, the results of the present study demonstrated that nuclear ID-SDC-1 localization was associated with SNAIL expression in PCa cell lines.
Collapse
Affiliation(s)
- Nancy Farfán
- Department of Basic and Clinical Oncology, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Octavio Orellana-Serradell
- Department of Basic and Clinical Oncology, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Daniela Herrera
- Department of Basic and Clinical Oncology, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Dominique Chrzanowsky
- Department of Basic and Clinical Oncology, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Paulina Cubillos
- Department of Basic and Clinical Oncology, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Gabriel Marín
- Department of Basic and Clinical Oncology, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | | | - Enrique A Castellón
- Department of Basic and Clinical Oncology, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Héctor R Contreras
- Department of Basic and Clinical Oncology, Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| |
Collapse
|
13
|
Børretzen A, Gravdal K, Haukaas SA, Beisland C, Akslen LA, Halvorsen OJ. FOXC2 expression and epithelial-mesenchymal phenotypes are associated with castration resistance, metastasis and survival in prostate cancer. JOURNAL OF PATHOLOGY CLINICAL RESEARCH 2019; 5:272-286. [PMID: 31464093 PMCID: PMC6817834 DOI: 10.1002/cjp2.142] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/05/2019] [Accepted: 08/23/2019] [Indexed: 12/14/2022]
Abstract
Epithelial–mesenchymal transition (EMT) is important for tumour cell invasion and metastasis and is a feature of aggressive carcinomas. EMT is characterised by reduced E‐cadherin and increased N‐cadherin expression (EN‐switch), and increased expression of the EMT‐regulating transcription factor Forkhead box protein C2 (FOXC2) has been associated with progression and poor prognosis in various malignancies. FOXC2 was recently highlighted as a novel therapy target in prostate cancer, but survival data on FOXC2 are lacking. This study evaluates the expression of FOXC2, E‐cadherin and N‐cadherin in different prostatic tissues focusing on EMT, clinico‐pathological phenotype, recurrence and patient survival. Tissue microarray sections from 338 radical prostatectomies (1986–2007) with long and complete follow‐up, 33 castration resistant prostate cancers, 33 non‐skeletal metastases, 13 skeletal metastases and 41 prostatic hyperplasias were stained immunohistochemically for FOXC2, E‐cadherin and N‐cadherin. FOXC2 was strongly expressed in primary carcinomas, including castration resistant tumours and metastatic lesions as compared to benign prostatic hyperplasia. A hybrid epithelial–mesenchymal phenotype, with co‐expression of E‐cadherin and N‐cadherin, was found in the majority of skeletal metastases and in a substantial proportion of castration resistant tumours. In localised carcinomas, the EN‐switch was associated with adverse clinico‐pathological variables, such as extra‐prostatic extension, high pathological stage and lymph node infiltration. In univariate survival analyses of the clinically important, large subgroup of 199 patients with Gleason score 7, high FOXC2 expression and EN‐switching were significantly associated with shorter time to clinical recurrence, skeletal metastases and cancer specific death. In multivariate Cox' survival analysis, high FOXC2 and the EN‐switch, together with Gleason grade group (GG3 versus GG2), were independent predictors of time to these end‐points. High FOXC2 gene expression (mRNA) was also related to patient outcome, validating our immunohistochemical findings. FOXC2 and factors signifying EMT or its intermediate states may prove important as biomarkers for aggressive disease and are potential novel therapy targets in prostate cancer.
Collapse
Affiliation(s)
- Astrid Børretzen
- Centre for Cancer Biomarkers CCBIO, and Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Karsten Gravdal
- Centre for Cancer Biomarkers CCBIO, and Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Svein A Haukaas
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Urology, Haukeland University Hospital, Bergen, Norway
| | - Christian Beisland
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Urology, Haukeland University Hospital, Bergen, Norway
| | - Lars A Akslen
- Centre for Cancer Biomarkers CCBIO, and Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Ole J Halvorsen
- Centre for Cancer Biomarkers CCBIO, and Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Pathology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
14
|
Orellana-Serradell O, Herrera D, Castellon EA, Contreras HR. The transcription factor ZEB1 promotes an aggressive phenotype in prostate cancer cell lines. Asian J Androl 2019; 20:294-299. [PMID: 29271397 PMCID: PMC5952486 DOI: 10.4103/aja.aja_61_17] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
It has been reported that one of the factors that promotes tumoral progression is the abnormal activation of the epithelial-mesenchymal transition program. This process is associated with tumoral cells acquiring invasive and malignant properties and has the transcription factor zinc finger E-box-binding homeobox 1 (ZEB1) as one of its main activators. However, the role of ZEB1 in promoting malignancy in prostate cancer (PCa) is still unclear. Here, we report that ZEB1 expression correlates with Gleason score in PCa samples and that expression of ZEB1 regulates epithelial-mesenchymal transition and malignant characteristics in PCa cell lines. The results showed that ZEB1 expression is higher in samples of higher malignancy and that overexpression of ZEB1 was able to induce epithelial-mesenchymal transition by upregulating the mesenchymal marker Vimentin and downregulating the epithelial marker E-Cadherin. On the contrary, ZEB1 silencing repressed Vimentin expression and upregulated E-Cadherin. ZEB1 expression conferred enhanced motility and invasiveness and a higher colony formation capacity to 22Rv1 cells whereas DU145 cells with ZEB1 silencing showed a decrease in those same properties. The results showed that ZEB1 could be a key promoter of tumoral progression toward advanced stages of PCa.
Collapse
Affiliation(s)
- Octavio Orellana-Serradell
- Department of Basic and Clinical Oncology, Faculty of Medicine, University of Chile, Independencia, Santiago 8380453, Chile
| | - Daniela Herrera
- Department of Basic and Clinical Oncology, Faculty of Medicine, University of Chile, Independencia, Santiago 8380453, Chile
| | - Enrique A Castellon
- Department of Basic and Clinical Oncology, Faculty of Medicine, University of Chile, Independencia, Santiago 8380453, Chile
| | - Hector R Contreras
- Department of Basic and Clinical Oncology, Faculty of Medicine, University of Chile, Independencia, Santiago 8380453, Chile
| |
Collapse
|
15
|
The transcriptional factor ZEB1 represses Syndecan 1 expression in prostate cancer. Sci Rep 2018; 8:11467. [PMID: 30065348 PMCID: PMC6068163 DOI: 10.1038/s41598-018-29829-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 07/12/2018] [Indexed: 12/11/2022] Open
Abstract
Syndecan 1 (SDC-1) is a cell surface proteoglycan with a significant role in cell adhesion, maintaining epithelial integrity. SDC1 expression is inversely related to aggressiveness in prostate cancer (PCa). During epithelial to mesenchymal transition (EMT), loss of epithelial markers is mediated by transcriptional repressors such as SNAIL, SLUG, or ZEB1/2 that bind to E-box promoter sequences of specific genes. The effect of these repressors on SDC-1 expression remains unknown. Here, we demonstrated that SNAIL, SLUG and ZEB1 expressions are increased in advanced PCa, contrarily to SDC-1. SNAIL, SLUG and ZEB1 also showed an inversion to SDC-1 in prostate cell lines. ZEB1, but not SNAIL or SLUG, represses SDC-1 as demonstrated by experiments of ectopic expression in epithelial prostate cell lines. Inversely, expression of ZEB1 shRNA in PCa cell line increased SDC-1 expression. The effect of ZEB1 is transcriptional since ectopic expression of this gene represses SDC-1 promoter activity and ZEB1 binds to the SDC-1 promoter as detected by ChIP assays. An epigenetic mark associated to transcription repression H3K27me3 was bound to the same sites that ZEB1. In conclusion, this study identifies ZEB1 as a key repressor of SDC-1 during PCa progression and point to ZEB1 as a potentially diagnostic marker for PCa.
Collapse
|
16
|
Mytilinaiou M, Nikitovic D, Berdiaki A, Kostouras A, Papoutsidakis A, Tsatsakis AM, Tzanakakis GN. Emerging roles of syndecan 2 in epithelial and mesenchymal cancer progression. IUBMB Life 2017; 69:824-833. [PMID: 28940845 DOI: 10.1002/iub.1678] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/29/2017] [Indexed: 01/04/2023]
Abstract
Syndecan 2 (SDC2) belongs to a four-member family of evolutionary conserved small type I transmembrane proteoglycans consisting of a protein core to which glycosaminoglycan chains are covalently attached. SDC2 is a cell surface heparan sulfate proteoglycan, which is increasingly drawing attention for its distinct characteristics and its participation in numerous cell functions, including those related to carcinogenesis. Increasing evidence suggests that the role of SDC2 in cancer pathogenesis is dependent on cancer tissue origin rendering its use as a biomarker/therapeutic target feasible. This mini review discusses the mechanisms, through which SDC2, in a distinct manner, modulates complex signalling networks to affect cancer progression. © 2017 IUBMB Life, 69(11):824-833, 2017.
Collapse
Affiliation(s)
- Maria Mytilinaiou
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| | - Dragana Nikitovic
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| | - Aikaterini Berdiaki
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| | - Antonis Kostouras
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| | - Antonis Papoutsidakis
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| | - Aristidis M Tsatsakis
- Laboratory of Toxicology, School of Medicine, University of Crete, Heraklion, Greece
| | - George N Tzanakakis
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| |
Collapse
|
17
|
Tzanakakis G, Kavasi RM, Voudouri K, Berdiaki A, Spyridaki I, Tsatsakis A, Nikitovic D. Role of the extracellular matrix in cancer-associated epithelial to mesenchymal transition phenomenon. Dev Dyn 2017; 247:368-381. [PMID: 28758355 DOI: 10.1002/dvdy.24557] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/20/2017] [Accepted: 07/08/2017] [Indexed: 12/14/2022] Open
Abstract
The epithelial to mesenchymal transition (EMT) program is a crucial component in the processes of morphogenesis and embryonic development. The transition of epithelial to mesenchymal phenotype is associated with numerous structural and functional changes, including loss of cell polarity and tight cell-cell junctions, the acquisition of invasive abilities, and the expression of mesenchymal proteins. The switch between the two phenotypes is involved in human pathology and is crucial for cancer progression. Extracellular matrices (ECMs) are multi-component networks that surround cells in tissues. These networks are obligatory for cell survival, growth, and differentiation as well as tissue organization. Indeed, the ECM suprastructure, in addition to its supportive role, can process and deliver a plethora of signals to cells, which ultimately regulate their behavior. Importantly, the ECM derived signals are critically involved in the process of EMT during tumorigenesis. This review discusses the multilayer interaction between the ECM and the EMT process, focusing on contributions of discrete mediators, a strategy that may identify novel potential target molecules. Developmental Dynamics 247:368-381, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- George Tzanakakis
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| | - Rafaela-Maria Kavasi
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| | - Kallirroi Voudouri
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| | - Aikaterini Berdiaki
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| | - Ioanna Spyridaki
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, School of Medicine, University of Crete, Heraklion, Greece
| | - Dragana Nikitovic
- Laboratory of Anatomy-Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| |
Collapse
|
18
|
Pisamai S, Rungsipipat A, Kalpravidh C, Suriyaphol G. Gene expression profiles of cell adhesion molecules, matrix metalloproteinases and their tissue inhibitors in canine oral tumors. Res Vet Sci 2017; 113:94-100. [DOI: 10.1016/j.rvsc.2017.09.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 08/06/2017] [Accepted: 09/07/2017] [Indexed: 12/15/2022]
|
19
|
Sharpe B, Alghezi DA, Cattermole C, Beresford M, Bowen R, Mitchard J, Chalmers AD. A subset of high Gleason grade prostate carcinomas contain a large burden of prostate cancer syndecan-1 positive stromal cells. Prostate 2017; 77:1312-1324. [PMID: 28744948 DOI: 10.1002/pros.23391] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 06/26/2017] [Indexed: 01/02/2023]
Abstract
BACKGROUND There is a pressing need to identify prognostic and predictive biomarkers for prostate cancer to aid treatment decisions in both early and advanced disease settings. Syndecan-1, a heparan sulfate proteoglycan, has been previously identified as a potential prognostic biomarker by multiple studies at the tissue and serum level. However, other studies have questioned its utility. METHODS Anti-Syndecan-1 immunohistochemistry was carried out on 157 prostate tissue samples (including cancerous, adjacent normal tissue, and non-diseased prostate) from three independent cohorts of patients. A population of Syndecan-1 positive stromal cells was identified and the number and morphological parameters of these cells quantified. The identity of the Syndecan-1-positive stromal cells was assessed by multiplex immunofluorescence using a range of common cell lineage markers. Finally, the burden of Syndecan-1 positive stromal cells was tested for association with clinical parameters. RESULTS We identified a previously unreported cell type which is marked by Syndecan-1 expression and is found in the stroma of prostate tumors and adjacent normal tissue but not in non-diseased prostate. We call these cells Prostate Cancer Syndecan-1 Positive (PCSP) cells. Immunofluorescence analysis revealed that the PCSP cell population did not co-stain with markers of common prostate epithelial, stromal, or immune cell populations. However, morphological analysis revealed that PCSP cells are often elongated and displayed prominent lamellipodia, suggesting they are an unidentified migratory cell population. Analysis of clinical parameters showed that PCSP cells were found with a frequency of 20-35% of all tumors evaluated, but were not present in non-diseased normal tissue. Interestingly, a subset of primary Gleason 5 prostate tumors had a high burden of PCSP cells. CONCLUSIONS The current study identifies PCSP cells as a novel, potentially migratory cell type, which is marked by Syndecan-1 expression and is found in the stroma of prostate carcinomas, adjacent normal tissue, but not in non-diseased prostate. A subset of poor prognosis high Gleason grade 5 tumors had a particularly high PCSP cell burden, suggesting an association between this unidentified cell type and tumor aggressiveness.
Collapse
Affiliation(s)
- Benjamin Sharpe
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Dhafer A Alghezi
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Thi Qar University, Dhi Qar, Iraq
| | - Claire Cattermole
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Mark Beresford
- Department of Oncology, Royal United Hospital, Bath, United Kingdom
| | - Rebecca Bowen
- Department of Oncology, Royal United Hospital, Bath, United Kingdom
| | - John Mitchard
- Department of Cellular Pathology, Royal United Hospital, Bath, United Kingdom
| | - Andrew D Chalmers
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| |
Collapse
|
20
|
Szarvas T, Reis H, Vom Dorp F, Tschirdewahn S, Niedworok C, Nyirady P, Schmid KW, Rübben H, Kovalszky I. Soluble syndecan-1 (SDC1) serum level as an independent pre-operative predictor of cancer-specific survival in prostate cancer. Prostate 2016; 76:977-85. [PMID: 27062540 DOI: 10.1002/pros.23186] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/22/2016] [Indexed: 11/08/2022]
Abstract
BACKGROUND PSA-screening detects many cases of clinically non-aggressive prostate cancer (PC) leading to significant overtreatment. Therefore, pre-operatively available prognostic biomarkers are needed to help therapy decisions. Syndecan-1 (SDC1) is a promising prognostic tissue marker in several cancers including PC but serum levels of shedded SDC1-ectodomain (sSDC1) have not been assessed in PC. METHODS A total of 150 patients with PC were included in this study (n = 99 serum samples, n = 103 paraffin-embedded samples (FFPE), n = 52 overlap). SDC1 protein expression and cellular localization was evaluated by immunohistochemistry (IHC), while sSDC1 serum concentrations were measured by ELISA. Serum sSDC1 levels were compared to those of MMP7, which is known to be a protease involved in SDC1 ectodomain-shedding. Clinico-pathological and follow-up data were collected and correlated with SDC1 tissue and serum levels. Disease (PC)-specific (DSS) and overall-survival (OS) were primary endpoints. RESULTS Median follow-up was 167 months in the serum- and 146 months in the FFPE-group. SDC1-reactivity was higher in non-neoplastic prostate glands compared to PC. In addition, cytoplasmatic, but not membranous SDC1 expression was enhanced in PC patients with higher Gleason-score >6 PC (P = 0.016). Soluble SDC1-levels were higher in patients with Gleason-score >6 (P = 0.043) and metastatic disease (P = 0.022) as well as in patients with progressed disease treated with palliative transurethral resection (P = 0.002). In addition, sSDC1 levels were associated with higher MMP7 serum concentration (P = 0.005). In univariable analyses, only sSDC1-levels exhibited a trend to unfavorable DSS (P = 0.077). In a multivariable pre-operative model, high pre-operative sSDC1-level (>123 ng/ml) proved to be an independent marker of adverse OS (P = 0.048) and DSS (P = 0.020). CONCLUSIONS The present study does not confirm the prognostic relevance of SDC1-IHC. The significant higher sSDC1 serum levels in advanced cases of PC, suggest that SDC1 shedding might be involved in PC progression. Additionally, high sSDC1-level proved to be an independent factor of adverse OS and DSS in a multivariable pre-operative model, making evaluation of sSDC1-levels a promising tool for pre-operative risk-stratification and/or therapy monitoring. Prostate 76:977-985, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tibor Szarvas
- Department of Urology, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
- Department of Urology, Semmelweis University, Budapest, Hungary
| | - Henning Reis
- Faculty of Medicine, Institute of Pathology, University Duisburg-Essen, Essen, Germany
| | - Frank Vom Dorp
- Department of Urology, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
| | - Stephan Tschirdewahn
- Department of Urology, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
| | - Christian Niedworok
- Department of Urology, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
| | - Peter Nyirady
- Department of Urology, Semmelweis University, Budapest, Hungary
| | - Kurt W Schmid
- Faculty of Medicine, Institute of Pathology, University Duisburg-Essen, Essen, Germany
| | - Herbert Rübben
- Department of Urology, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
| | - Ilona Kovalszky
- First Institute of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| |
Collapse
|
21
|
Shirai K, Hagiwara N, Horigome T, Hirose Y, Kadono N, Hirai Y. Extracellularly Extruded Syntaxin-4 Binds to Laminin and Syndecan-1 to Regulate Mammary Epithelial Morphogenesis. J Cell Biochem 2016; 118:686-698. [PMID: 27463539 DOI: 10.1002/jcb.25661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 07/26/2016] [Indexed: 12/21/2022]
Abstract
Epithelial morphogenesis in the mammary gland proceeds as a consequence of complex cell behaviors including apoptotic cell death and epithelial-mesenchymal transition (EMT); the extracellular matrix (ECM) protein laminin is crucially involved. Syntaxins mediate intracellular vesicular fusion, yet certain plasmalemmal members have been shown to possess latent extracellular functions. In this study, the extracellular subpopulation of syntaxin-4, extruded in response to the induction of differentiation or apoptosis in mammary epithelial cells, was detected. Using a tetracycline-repressive transcriptional system and clonal mammary epithelial cells, SCp2, we found that the expression of cell surface syntaxin-4 elicits EMT-like cell behaviors. Intriguingly, these cells did not up-regulate key transcription factors associated with the canonical EMT such as snail, slug, or twist, and repressed translation of E-cadherin. Concurrently, the cells completely evaded the cellular aggregation/rounding triggered by a potent EMT blocker laminin-111. We found that the recombinant form of syntaxin-4 not only bound to laminin but also latched onto the glycosaminoglycan (GAG) side chains of syndecan-1, a laminin receptor that mediates epithelial morphogenesis. Thus, temporal extracellular extrusion of syntaxin-4 emerged as a novel regulatory element for laminin-induced mammary epithelial cell behaviors. J. Cell. Biochem. 118: 686-698, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kota Shirai
- Department of Biomedical Chemistry, Kwansei Gakuin University. 2-1, Gakuen, Sanda, 669-1337, Japan
| | - Natsumi Hagiwara
- Department of Biomedical Chemistry, Kwansei Gakuin University. 2-1, Gakuen, Sanda, 669-1337, Japan
| | - Tomoatsu Horigome
- Department of Biomedical Chemistry, Kwansei Gakuin University. 2-1, Gakuen, Sanda, 669-1337, Japan
| | - Yuina Hirose
- Department of Biomedical Chemistry, Kwansei Gakuin University. 2-1, Gakuen, Sanda, 669-1337, Japan
| | - Nanako Kadono
- Department of Biomedical Chemistry, Kwansei Gakuin University. 2-1, Gakuen, Sanda, 669-1337, Japan
| | - Yohei Hirai
- Department of Biomedical Chemistry, Kwansei Gakuin University. 2-1, Gakuen, Sanda, 669-1337, Japan
| |
Collapse
|
22
|
Premasekharan G, Gilbert E, Okimoto RA, Hamirani A, Lindquist KJ, Ngo VT, Roy R, Hough J, Edwards M, Paz R, Foye A, Sood R, Copren KA, Gubens M, Small EJ, Bivona TG, Collisson EA, Friedlander TW, Paris PL. An improved CTC isolation scheme for pairing with downstream genomics: Demonstrating clinical utility in metastatic prostate, lung and pancreatic cancer. Cancer Lett 2016; 380:144-52. [PMID: 27343980 DOI: 10.1016/j.canlet.2016.06.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 12/29/2022]
Abstract
Improvements in technologies to yield purer circulating tumor cells (CTCs) will enable a broader range of clinical applications. We have previously demonstrated the use of a commercially available cell-adhesion matrix (CAM) assay to capture invasive CTCs (iCTCs). To improve the purity of the isolated iCTCs, here we used fluorescence-activated cell sorting (FACS) in combination with the CAM assay (CAM + FACS). Our results showed an increase of median purity from the CAM assay to CAM + FACS for the spiked-in cell lines and patient samples analyzed from three different metastatic cancer types: castration resistant prostate cancer (mCRPC), non-small cell lung cancer (mNSCLC) and pancreatic ductal adenocarcinoma cancer (mPDAC). Copy number profiles for spiked-in mCRPC cell line and mCRPC patient iCTCs were similar to expected mCRPC profiles and a matched biopsy. A somatic epidermal growth factor receptor (EGFR) mutation specific to mNSCLC was observed in the iCTCs recovered from EGFR(+) mNSCLC cell lines and patient samples. Next-generation sequencing (NGS) of spiked-in pancreatic cancer cell line and mPDAC patient iCTCs showed mPDAC common mutations. CAM + FACS iCTC enrichment enables multiple downstream genomic characterizations across different tumor types.
Collapse
Affiliation(s)
- Gayatri Premasekharan
- Department of Urology, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Elizabeth Gilbert
- Department of Urology, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Ross A Okimoto
- Division of Hematology & Oncology, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Ashiya Hamirani
- Department of Urology, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Karla J Lindquist
- Department of Urology, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Vy T Ngo
- Department of Urology, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Ritu Roy
- Computational Biology Core, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Jeffrey Hough
- Division of Hematology & Oncology, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Matthew Edwards
- Division of Hematology & Oncology, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Rosa Paz
- Division of Hematology & Oncology, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Adam Foye
- Division of Hematology & Oncology, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Riddhi Sood
- Genome Analysis Core, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Kirsten A Copren
- Genome Analysis Core, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Matthew Gubens
- Division of Hematology & Oncology, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Eric J Small
- Division of Hematology & Oncology, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Trever G Bivona
- Division of Hematology & Oncology, University of California, San Francisco (UCSF), San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Eric A Collisson
- Division of Hematology & Oncology, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Terence W Friedlander
- Division of Hematology & Oncology, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Pamela L Paris
- Department of Urology, University of California, San Francisco (UCSF), San Francisco, CA, USA; Division of Hematology & Oncology, University of California, San Francisco (UCSF), San Francisco, CA, USA.
| |
Collapse
|
23
|
Suhovskih AV, Kashuba VI, Klein G, Grigorieva EV. Prostate cancer cells specifically reorganize epithelial cell-fibroblast communication through proteoglycan and junction pathways. Cell Adh Migr 2016; 11:39-53. [PMID: 27111714 DOI: 10.1080/19336918.2016.1182292] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Microenvironment and stromal fibroblasts are able to inhibit tumor cell proliferation both through secreted signaling molecules and direct cell-cell interactions but molecular mechanisms of these effects remain unclear. In this study, we investigated a role of cell-cell contact-related molecules (protein ECM components, proteoglycans (PGs) and junction-related molecules) in intercellular communications between the human TERT immortalized fibroblasts (BjTERT fibroblasts) and normal (PNT2) or cancer (LNCaP, PC3, DU145) prostate epithelial cells. It was shown that BjTERT-PNT2 cell coculture resulted in significant decrease of both BjTERT and PNT2 proliferation rates and reorganization of transcriptional activity of cell-cell contact-related genes in both cell types. Immunocytochemical staining revealed redistribution of DCN and LUM in PNT2 cells and significant increase of SDC1 at the intercellular contact zones between BjTERT and PNT2 cells, suggesting active involvement of the PGs in cell-cell contacts and contact inhibition of cell proliferation. Unlike to PNT2 cells, PC3 cells did not respond to BjTERT in terms of PGs expression, moderately increased transcriptional activity of junctions-related genes (especially tight junction) and failed to establish PC3-BjTERT contacts. At the same time, PC3 cells significantly down-regulated junctions-related genes (especially focal adhesions and adherens junctions) in BjTERT fibroblasts resulting in visible preference for homotypic PC3-PC3 over heterotypic PC3-BjTERT contacts and autonomous growth of PC3 clones. Taken together, the results demonstrate that an instructing role of fibroblasts to normal prostate epithelial cells is revoked by cancer cells through deregulation of proteoglycans and junction molecules expression and overall disorganization of fibroblast-cancer cell communication.
Collapse
Affiliation(s)
- Anastasia V Suhovskih
- a MTC, Karolinska Institute , Stockholm , Sweden.,b Institute of Molecular Biology and Biophysics , Novosibirsk , Russia
| | - Vladimir I Kashuba
- a MTC, Karolinska Institute , Stockholm , Sweden.,c Institute of Molecular Biology and Genetics , Kiev , Ukraine
| | - George Klein
- a MTC, Karolinska Institute , Stockholm , Sweden
| | - Elvira V Grigorieva
- a MTC, Karolinska Institute , Stockholm , Sweden.,b Institute of Molecular Biology and Biophysics , Novosibirsk , Russia
| |
Collapse
|
24
|
Adeniran AJ, Humphrey PA. Morphologic Updates in Prostate Pathology. Surg Pathol Clin 2015; 8:539-60. [PMID: 26612214 DOI: 10.1016/j.path.2015.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In the past several years, modifications have been made to the original Gleason system with resultant therapeutic and prognostic implications. Several morphologic variants of prostatic adenocarcinoma have also been described. Prostate pathology has also evolved over the years with the discovery and utility of new immunohistochemical stains. The topics discussed in this update include the Gleason grading system, prognostic grade grouping, variants of prostatic adenocarcinoma, and the application of immunohistochemistry to prostate pathology.
Collapse
Affiliation(s)
- Adebowale J Adeniran
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, LH 108, New Haven, CT 06520, USA.
| | - Peter A Humphrey
- Department of Pathology, Yale University School of Medicine, 310 Cedar Street, LH 108, New Haven, CT 06520, USA
| |
Collapse
|
25
|
Syndecan-1 in Cancer: Implications for Cell Signaling, Differentiation, and Prognostication. DISEASE MARKERS 2015; 2015:796052. [PMID: 26420915 PMCID: PMC4569789 DOI: 10.1155/2015/796052] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/16/2015] [Indexed: 11/17/2022]
Abstract
Syndecan-1, a cell surface heparan sulfate proteoglycan, is critically involved in the differentiation and prognosis of various tumors. In this review, we highlight the synthesis, cellular interactions, and the signalling pathways regulated by syndecan-1. The basal syndecan-1 level is also crucial for understanding the sequential changes involving malignant transformation, tumor progression, and advanced or disseminated cancer stages. Moreover, we focus on the cellular localization of this proteoglycan as cell membrane anchored and/or shed, soluble syndecan-1 with stromal or nuclear accumulation and how this may carry different, highly tissue specific prognostic information for individual tumor types.
Collapse
|
26
|
Farnedi A, Rossi S, Bertani N, Gulli M, Silini EM, Mucignat MT, Poli T, Sesenna E, Lanfranco D, Montebugnoli L, Leonardi E, Marchetti C, Cocchi R, Ambrosini-Spaltro A, Foschini MP, Perris R. Proteoglycan-based diversification of disease outcome in head and neck cancer patients identifies NG2/CSPG4 and syndecan-2 as unique relapse and overall survival predicting factors. BMC Cancer 2015; 15:352. [PMID: 25935541 PMCID: PMC4429505 DOI: 10.1186/s12885-015-1336-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 04/22/2015] [Indexed: 01/07/2023] Open
Abstract
Background Tumour relapse is recognized to be the prime fatal burden in patients affected by head and neck squamous cell carcinoma (HNSCC), but no discrete molecular trait has yet been identified to make reliable early predictions of tumour recurrence. Expression of cell surface proteoglycans (PGs) is frequently altered in carcinomas and several of them are gradually emerging as key prognostic factors. Methods A PG expression analysis at both mRNA and protein level, was pursued on primary lesions derived from 173 HNSCC patients from whom full clinical history and 2 years post-surgical follow-up was accessible. Gene and protein expression data were correlated with clinical traits and previously proposed tumour relapse markers to stratify high-risk patient subgroups. Results HNSCC lesions were indeed found to exhibit a widely aberrant PG expression pattern characterized by a variable expression of all PGs and a characteristic de novo transcription/translation of GPC2, GPC5 and NG2/CSPG4 respectively in 36%, 72% and 71% on 119 cases. Importantly, expression of NG2/CSPG4, on neoplastic cells and in the intralesional stroma (Hazard Ratio [HR], 6.76, p = 0.017) was strongly associated with loco-regional relapse, whereas stromal enrichment of SDC2 (HR, 7.652, p = 0.007) was independently tied to lymphnodal infiltration and disease-related death. Conversely, down-regulated SDC1 transcript (HR, 0.232, p = 0.013) uniquely correlated with formation of distant metastases. Altered expression of PGs significantly correlated with the above disease outcomes when either considered alone or in association with well-established predictors of poor prognosis (i.e. T classification, previous occurrence of precancerous lesions and lymphnodal metastasis). Combined alteration of all three PGs was found to be a reliable predictor of shorter survival. Conclusions An unprecedented PG-based prognostic portrait is unveiled that incisively diversifies disease course in HNSCC patients beyond the currently known clinical and molecular biomarkers. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1336-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Farnedi
- Department of Biomedical and Neuromotor Sciences, Section of Anatomic Pathology, University of Bologna, Bellaria Hospital, Bologna, Italy.
| | - Silvia Rossi
- COMT - Centre for Molecular Translational Oncology & Department of Life Sciences, University of Parma, Parma, Italy.
| | - Nicoletta Bertani
- COMT - Centre for Molecular Translational Oncology & Department of Life Sciences, University of Parma, Parma, Italy.
| | - Mariolina Gulli
- Department of Life Sciences, Division of Genetics and Environmental Biotechnology, University of Parma, Parma, Italy.
| | - Enrico Maria Silini
- COMT - Centre for Molecular Translational Oncology & Department of Life Sciences, University of Parma, Parma, Italy. .,Department of Pathology and Laboratory Medicine, University of Parma, Parma, Italy.
| | - Maria Teresa Mucignat
- S.O.C. of Experimental Oncology 2, The National Tumour Institute Aviano - CRO-IRCCS, Aviano, Pordenone, Italy.
| | - Tito Poli
- Maxillofacial Surgery Section, Head and Neck Department, University of Parma, Parma, Italy.
| | - Enrico Sesenna
- Maxillofacial Surgery Section, Head and Neck Department, University of Parma, Parma, Italy.
| | - Davide Lanfranco
- Maxillofacial Surgery Section, Head and Neck Department, University of Parma, Parma, Italy.
| | - Lucio Montebugnoli
- Unit of Maxillo-Facial Surgery, Department of Oral Sciences, University of Bologna, Bellaria Hospital, Bologna, Italy.
| | - Elisa Leonardi
- Department of Biomedical and Neuromotor Sciences, Section of Anatomic Pathology, University of Bologna, Bellaria Hospital, Bologna, Italy.
| | - Claudio Marchetti
- Department of Biomedical and Neuromotor Sciences, Unit of Maxillo-Facial Surgery, University of Bologna, S. Orsola Hospital, Bologna, Italy.
| | - Renato Cocchi
- Unit of Maxillo-facial Surgery at Bellaria Hospital, Bologna, Italy. .,Unit of Maxillo-facial Surgery, "Casa Sollievo della Sofferenza", San Giovanni in Rotondo, Italy.
| | - Andrea Ambrosini-Spaltro
- Department of Biomedical and Neuromotor Sciences, Section of Anatomic Pathology, University of Bologna, Bellaria Hospital, Bologna, Italy.
| | - Maria Pia Foschini
- Department of Biomedical and Neuromotor Sciences, Section of Anatomic Pathology, University of Bologna, Bellaria Hospital, Bologna, Italy.
| | - Roberto Perris
- COMT - Centre for Molecular Translational Oncology & Department of Life Sciences, University of Parma, Parma, Italy. .,S.O.C. of Experimental Oncology 2, The National Tumour Institute Aviano - CRO-IRCCS, Aviano, Pordenone, Italy.
| |
Collapse
|
27
|
Kim SY, Choi EJ, Yun JA, Jung ES, Oh ST, Kim JG, Kang WK, Lee SH. Syndecan-1 expression is associated with tumor size and EGFR expression in colorectal carcinoma: a clinicopathological study of 230 cases. Int J Med Sci 2015; 12:92-9. [PMID: 25589885 PMCID: PMC4293174 DOI: 10.7150/ijms.10497] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 12/07/2014] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Syndecan-1 (SDC1) is reported to modulate several key processes of tumorigenesis and has variable expression in many cancers. To date, the cause of altered expression has not been elucidated. In this study, we compared SDC1 expression with various clinicopathological parameters and molecular markers to evaluate its clinical significance in colorectal carcinoma. METHODS We screened for SDC1 expression using immunohistochemistry in 230 surgical specimens of primary colorectal carcinoma from patients consecutively treated between 2008 and 2011 at Seoul St. Mary's Hospital, The Catholic University of Korea. The relationship between SDC1 expression and various clinicopathological parameters and molecular markers was analyzed. RESULTS The tumors were principally located in the left colon (71.3%) and rectum (33.5%). There were 216 (93.9%) adenocarcinomas, 10 (4.3%) mucinous adenocarcinomas, and 4 other tumors. Most of the carcinomas were pT3 (68.3%) and pT4 (22.2%). There was regional lymph node metastasis in 140 patients. SDC1 expression was identified in the cancer cells of 212 (96.8%) colon cancer cases. Of the SDC1-positive cases, 131 showed predominantly membranous immunopositivity, and 81 showed a predominantly cytoplasmic staining pattern. Mixed membranous and cytoplasmic staining was observed in 154 cases. In 93 cases, stromal SDC1 reactivity was noted. Epithelial SDC1 immunopositivity was significantly associated with tumor size (p=0.016) and epidermal growth factor receptor expression (p=0.006). However, it was not significantly correlated with lymph node metastasis, distant metastasis, lymphatic or vascular invasion, or KRAS mutation. In addition, stromal SDC1 immunopositivity was significantly associated with the male sex (p=0.018). CONCLUSIONS The expression profile of SDC1 may be of clinical value in colorectal cancer and may help in identifying aggressive forms of colorectal carcinoma. Further studies are needed in order to better understand the role of SDC1 in the progression and invasiveness of colorectal carcinoma.
Collapse
Affiliation(s)
- Su Young Kim
- 1. Department of Pathology, The Catholic University of Korea, School of Medicine, Seocho-gu Banpodaero 222, Seoul 137-701, South Korea
| | - Eun Ji Choi
- 1. Department of Pathology, The Catholic University of Korea, School of Medicine, Seocho-gu Banpodaero 222, Seoul 137-701, South Korea
| | - Jeong A Yun
- 1. Department of Pathology, The Catholic University of Korea, School of Medicine, Seocho-gu Banpodaero 222, Seoul 137-701, South Korea
| | - Eun Sun Jung
- 2. Department of Hospital Pathology, The Catholic University of Korea, School of Medicine, Seocho-gu Banpodaero 222, Seoul 137-701, South Korea
| | - Seung Taek Oh
- 3. Department of Surgery, The Catholic University of Korea, School of Medicine, Seocho-gu Banpodaero 222, Seoul 137-701, South Korea
| | - Jun Gi Kim
- 3. Department of Surgery, The Catholic University of Korea, School of Medicine, Seocho-gu Banpodaero 222, Seoul 137-701, South Korea
| | - Won Kyung Kang
- 3. Department of Surgery, The Catholic University of Korea, School of Medicine, Seocho-gu Banpodaero 222, Seoul 137-701, South Korea
| | - Sung Hak Lee
- 2. Department of Hospital Pathology, The Catholic University of Korea, School of Medicine, Seocho-gu Banpodaero 222, Seoul 137-701, South Korea
| |
Collapse
|
28
|
Pal SK, He M, Wilson T, Liu X, Zhang K, Carmichael C, Torres A, Hernandez S, Lau C, Agarwal N, Kawachi M, Yen Y, Jones JO. Detection and phenotyping of circulating tumor cells in high-risk localized prostate cancer. Clin Genitourin Cancer 2014; 13:130-6. [PMID: 25450039 DOI: 10.1016/j.clgc.2014.08.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/05/2014] [Accepted: 08/25/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND In this study, we aimed to determine the feasibility of identifying CTCs in patients with HRLPC, using a modified isolation procedure using the CellSearch (Veridex) platform, and to assess the expression of stem cell and epithelial-mesenchymal transition (EMT) markers on the CTCs. PATIENTS AND METHODS Thirty-five patients with HRLPC who had chosen prostatectomy for definitive management were prospectively identified. After obtaining consent, four 30-mL blood draws were performed, 2 before surgery and 2 after surgery. The CTC-containing fraction was Ficoll-purified and transferred to a CellSave (Veridex) tube containing dilution buffer before standard enumeration using the CellSearch system. Loss of E-cadherin expression, a marker of EMT, and CD133, a putative prostate cancer stem cell marker, were characterized using the open channel of the CellSearch platform. CTC fragments were also enumerated. RESULTS Using the modified methodology, CTCs were detectable in 49% of patients before surgery. Although no correlation between CTC count and biochemical recurrence (BR) was observed, the percentages of CD133 and E-cadherin-positive CTC fragments were associated with BR at 1 year. CONCLUSION Our results suggest that further research into the development of CTCs as prognostic biomarkers in HRLPC is warranted.
Collapse
Affiliation(s)
- Sumanta K Pal
- Department of Medical Oncology and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Miaoling He
- Department of Molecular Pharmacology, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Timothy Wilson
- Department of Urology, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Xueli Liu
- Department of Biostatistics, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Keqiang Zhang
- Department of Molecular Pharmacology, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Courtney Carmichael
- Department of Medical Oncology and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Alejandra Torres
- Clinical Trials Office, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Sonya Hernandez
- Clinical Trials Office, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Clayton Lau
- Department of Urology, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Neeraj Agarwal
- Department of Medical Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Mark Kawachi
- Department of Urology, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Yun Yen
- Department of Molecular Pharmacology, City of Hope Comprehensive Cancer Center, Duarte, CA
| | - Jeremy O Jones
- Department of Molecular Pharmacology, City of Hope Comprehensive Cancer Center, Duarte, CA.
| |
Collapse
|
29
|
Kahn B, Collazo J, Kyprianou N. Androgen receptor as a driver of therapeutic resistance in advanced prostate cancer. Int J Biol Sci 2014; 10:588-95. [PMID: 24948871 PMCID: PMC4062951 DOI: 10.7150/ijbs.8671] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/01/2014] [Indexed: 12/21/2022] Open
Abstract
The role of the androgen receptor (AR) signaling axis in the progression of prostate cancer is a cornerstone to our understanding of the molecular mechanisms causing castration-resistant prostate cancer (CRPC). Resistance of advanced prostate cancer to available treatment options makes it a clinical challenge that results in approximately 30,000 deaths of American men every year. Since the historic discovery by Dr. Huggins more than 70 years ago, androgen deprivation therapy (ADT) has been the principal treatment for advanced prostate cancer. Initially, ADT induces apoptosis of androgen-dependent prostate cancer epithelial cells and regression of androgen-dependent tumors. However, the majority of patients with advanced prostate cancer progress and become refractory to ADT due to emergence of androgen-independent prostate cancer cells driven by aberrant AR activation. Microtubule-targeting agents such as taxanes, docetaxel and paclitaxel, have enjoyed success in the treatment of metastatic prostate cancer; although new, recently designed mitosis-specific agents, such as the polo-kinase and kinesin-inhibitors, have yielded clinically disappointing results. Docetaxel, as a first-line chemotherapy, improves prostate cancer patient survival by months, but tumor resistance to these therapeutic agents inevitably develops. On a molecular level, progression to CRPC is characterized by aberrant AR expression, de novo intraprostatic androgen production, and cross talk with other oncogenic pathways. Emerging evidence suggests that reactivation of epithelial-mesenchymal-transition (EMT) processes may facilitate the development of not only prostate cancer but also prostate cancer metastases. EMT is characterized by gain of mesenchymal characteristics and invasiveness accompanied by loss of cell polarity, with an increasing number of studies focusing on the direct involvement of androgen-AR signaling axis in EMT, tumor progression, and therapeutic resistance. In this article, we discuss the current knowledge of mechanisms via which the AR signaling drives therapeutic resistance in prostate cancer metastatic progression and the novel therapeutic interventions targeting AR in CRPC.
Collapse
Affiliation(s)
| | | | - Natasha Kyprianou
- Departments of Urology and Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, Lexington, KY 40536, USA
| |
Collapse
|
30
|
Heparan sulfate signaling in cancer. Trends Biochem Sci 2014; 39:277-88. [PMID: 24755488 DOI: 10.1016/j.tibs.2014.03.001] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 03/05/2014] [Accepted: 03/07/2014] [Indexed: 01/03/2023]
Abstract
Heparan sulfate (HS) is a biopolymer consisting of variably sulfated repeating disaccharide units. The anticoagulant heparin is a highly sulfated intracellular variant of HS. HS has demonstrated roles in embryonic development, homeostasis, and human disease via non-covalent interactions with numerous cellular proteins, including growth factors and their receptors. HS can function as a co-receptor by enhancing receptor-complex formation. In other contexts, HS disrupts signaling complexes or serves as a ligand sink. The effects of HS on growth factor signaling are tightly regulated by the actions of sulfyltransferases, sulfatases, and heparanases. HS has important emerging roles in oncogenesis, and heparin derivatives represent potential therapeutic strategies for human cancers. Here we review recent insights into HS signaling in tumor proliferation, angiogenesis, metastasis, and differentiation. A cancer-specific understanding of HS signaling could uncover potential therapeutic targets in this highly actionable signaling network.
Collapse
|
31
|
Li P, Yang R, Gao WQ. Contributions of epithelial-mesenchymal transition and cancer stem cells to the development of castration resistance of prostate cancer. Mol Cancer 2014; 13:55. [PMID: 24618337 PMCID: PMC3975176 DOI: 10.1186/1476-4598-13-55] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 03/03/2014] [Indexed: 01/06/2023] Open
Abstract
An important clinical challenge in prostate cancer therapy is the inevitable transition from androgen-sensitive to castration-resistant and metastatic prostate cancer. Albeit the androgen receptor (AR) signaling axis has been targeted, the biological mechanism underlying the lethal event of androgen independence remains unclear. New emerging evidences indicate that epithelial-to-mesenchymal transition (EMT) and cancer stem cells (CSCs) play crucial roles during the development of castration-resistance and metastasis of prostate cancer. Notably, EMT may be a dynamic process. Castration can induce EMT that may enhance the stemness of CSCs, which in turn results in castration-resistance and metastasis. Reverse of EMT may attenuate the stemness of CSCs and inhibit castration-resistance and metastasis. These prospective approaches suggest that therapies target EMT and CSCs may cast a new light on the treatment of castration-resistant prostate cancer (CRPC) in the future. Here we review recent progress of EMT and CSCs in CRPC.
Collapse
Affiliation(s)
| | - Ru Yang
- State Key Laboratory of Oncogenes and Related Genes, Stem Cell Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | | |
Collapse
|
32
|
Miyake M, Lawton A, Dai Y, Chang M, Mengual L, Alcaraz A, Goodison S, Rosser CJ. Clinical implications in the shift of syndecan-1 expression from the cell membrane to the cytoplasm in bladder cancer. BMC Cancer 2014; 14:86. [PMID: 24524203 PMCID: PMC3930286 DOI: 10.1186/1471-2407-14-86] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 02/11/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To determine the diagnostic and prognostic capability of urinary and tumoral syndecan-1 (SDC-1) levels in patients with cancer of the urinary bladder. METHODS SDC-1 levels were quantitated by enzyme-linked immunosorbent assay (ELISA) in 308 subjects (102 cancer subjects and 206 non-cancer subjects) to assess its diagnostic capabilities in voided urine. The performance of SDC-1 was evaluated using the area under the curve of a receiver operating characteristic curve. In addition, immunohistochemical (IHC) staining assessed SDC-1 protein expression in 193 bladder specimens (185 cancer subjects and 8 non-cancer subjects). Outcomes were correlated to SDC-1 levels. RESULTS Mean urinary levels of SDC-1 did not differ between the cancer subjects and the non-cancer subjects, however, the mean urinary levels of SDC-1 were reduced in high-grade compared to low-grade disease (p < 0.0001), and in muscle invasive bladder cancer (MIBC) compared to non-muscle invasive bladder cancer (NMIBC) (p = 0.005). Correspondingly, preliminary data note a shift from a membranous cellular localization of SDC-1 in normal tissue, low-grade tumors and NMIBC, to a distinctly cytoplasmic localization in high-grade tumors and MIBC was observed in tissue specimens. CONCLUSION Alone urinary SDC-1 may not be a diagnostic biomarker for bladder cancer, but its urinary levels and cellular localization were associated with the differentiation status of patients with bladder tumors. Further studies are warranted to define the potential role for SDC-1 in bladder cancer progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Charles J Rosser
- Cancer Research Institute, Orlando Health, Orlando, FL 32827, USA.
| |
Collapse
|
33
|
|
34
|
Poblete CE, Fulla J, Gallardo M, Muñoz V, Castellón EA, Gallegos I, Contreras HR. Increased SNAIL expression and low syndecan levels are associated with high Gleason grade in prostate cancer. Int J Oncol 2014; 44:647-54. [PMID: 24424718 PMCID: PMC3928469 DOI: 10.3892/ijo.2014.2254] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 12/27/2013] [Indexed: 01/01/2023] Open
Abstract
Prostate cancer (PC) is a leading male oncologic malignancy wideworld. During malignant transformation, normal epithelial cells undergo genetic and morphological changes known as epithelial-mesenchymal transition (EMT). Several regulatory genes and specific marker proteins are involved in PC EMT. Recently, syndecans have been associated with malignancy grade and Gleason score in PC. Considering that SNAIL is mainly a gene repressor increased in PC and that syndecan promoters have putative binding sites for this repressor, we propose that SNAIL might regulate syndecan expression during PC EMT. The aim of this study was to analyze immunochemically the expression of SNAIL, syndecans 1 and 2 and other EMT markers in a tissue microarray (TMA) of PC samples and PC cell lines. The TMAs included PC samples of different Gleason grade and benign prostatic hyperplasia (BPH) samples, as non-malignant controls. PC3 and LNCaP cell lines were used as models of PC representing different tumorigenic capacities. Semi-quantitative immunohistochemistry was performed on TMAs and fluorescence immunocytochemistry and western blot analysis were conducted on cell cultures. Results show that SNAIL exhibits increased expression in high Gleason specimens compared to low histological grade and BPH samples. Accordingly, PC3 cells show higher SNAIL expression levels compared to LNCaP cells. Conversely, syndecan 1, similarly to E-cadherin (a known marker of EMT), shows a decreased expression in high Gleason grades samples and PC3 cells. Interestingly, syndecan 2 shows no changes associated to histological grade. It is concluded that increased SNAIL levels in advanced PC are associated with low expression of syndecan 1. The mechanism by which SNAIL regulates the expression of syndecan 1 remains to be investigated.
Collapse
Affiliation(s)
- Cristian E Poblete
- Physiology and Biophysics Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Juan Fulla
- Physiology and Biophysics Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Marcela Gallardo
- Physiology and Biophysics Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Valentina Muñoz
- Physiology and Biophysics Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Enrique A Castellón
- Physiology and Biophysics Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Ivan Gallegos
- Pathological Anatomy Service, Clinic Hospital, University of Chile, Santiago, Chile
| | - Hector R Contreras
- Physiology and Biophysics Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
35
|
Szatmári T, Dobra K. The role of syndecan-1 in cellular signaling and its effects on heparan sulfate biosynthesis in mesenchymal tumors. Front Oncol 2013; 3:310. [PMID: 24392351 PMCID: PMC3867677 DOI: 10.3389/fonc.2013.00310] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 12/04/2013] [Indexed: 12/23/2022] Open
Abstract
Proteoglycans (PGs) and in particular the syndecans are involved in the differentiation process across the epithelial-mesenchymal axis, principally through their ability to bind growth factors and modulate their downstream signaling. Malignant tumors have individual proteoglycan profiles, which are closely associated with their differentiation and biological behavior, mesenchymal tumors showing a different profile from that of epithelial tumors. Syndecan-1 is the main syndecan of epithelial malignancies, whereas in sarcomas its expression level is generally low, in accordance with their mesenchymal phenotype and highly malignant behavior. This proteoglycan is often overexpressed in adenocarcinoma cells, whereas mesothelioma and fibrosarcoma cells express syndecan-2 and syndecan-4 more abundantly. Increased expression of syndecan-1 in mesenchymal tumors changes the tumor cell morphology to an epithelioid direction whereas downregulation results in a change in shape from polygonal to spindle-like morphology. Although syndecan-1 plays major roles on the cell-surface, there are also intracellular functions, which are not very well studied. On the functional level, syndecan-1 affects mesenchymal tumor cell proliferation, adhesion, migration and motility, and the effect varies with the different domains of the core protein. Syndecan-1 may exert stimulatory or inhibitory effects, depending on the concentration of various mitogens, enzymes, and signaling molecules, the ratio between the shed and membrane-associated syndecan-1 and histological grade of the tumour. Growth factor signaling seems to be delicately controlled by regulatory loops involving the syndecan expression levels and their sulfation patterns. Overexpression of syndecan-1 modulates the biosynthesis and sulfation of heparan sulfate and it also affects the expression of other PGs. On transcriptomic level, syndecan-1 modulation results in profound effects on genes involved in regulation of cell growth.
Collapse
Affiliation(s)
- Tünde Szatmári
- Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital , Stockholm , Sweden
| | - Katalin Dobra
- Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital , Stockholm , Sweden
| |
Collapse
|
36
|
Behnsawy HM, Miyake H, Harada KI, Fujisawa M. Expression patterns of epithelial-mesenchymal transition markers in localized prostate cancer: significance in clinicopathological outcomes following radical prostatectomy. BJU Int 2012; 111:30-7. [PMID: 23107154 DOI: 10.1111/j.1464-410x.2012.11551.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To analyse the expression patterns of multiple molecular markers implicated in epithelial-mesenchymal transition (EMT) in localized prostate cancer (PC), in order to clarify the significance of these markers in patients undergoing radical prostatectomy (RP). PATIENTS AND METHODS Expression levels of 13 EMT markers, namely E-cadherin, N-cadherin, β-catenin, γ-catenin, fibronectin, matrix metalloproteinase (MMP) 2, MMP-9, Slug, Snail, Twist, vimentin, ZEB1 and ZEB2, in RP specimens from 197 consecutive patients with localized PC were evaluated by immunohistochemical staining. RESULTS Of the 13 markers, expression levels of E-cadherin, Snail, Twist and vimentin were closely associated with several conventional prognostic factors. Univariate analysis identified these four EMT markers as significant predictors for biochemical recurrence (BR), while serum prostate-specific antigen, Gleason score, seminal vesicle invasion (SVI), surgical margin status (SMS) and tumour volume were also significant. Of these significant factors, expression levels of Twist and vimentin, SVI and SMS appeared to be independently related to BR on multivariate analysis. There were significant differences in BR-free survival according to positive numbers of these four independent factors. That is, BR occurred in four of 90 patients who were negative for risk factors (4.4%), 21 of 83 positive for one or two risk factors (25.3%) and 19 of 24 positive for three or four risk factors (79.2%). CONCLUSION Measurement of expression levels of potential EMT markers, particularly Twist and vimentin, in RP specimens, in addition to conventional prognostic parameters, would contribute to the accurate prediction of the biochemical outcome in patients with localized PC following RP.
Collapse
Affiliation(s)
- Hosny M Behnsawy
- Division of Urology, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | |
Collapse
|
37
|
Hu Y, Sun H, O'Flaherty JT, Edwards IJ. 15-Lipoxygenase-1-mediated metabolism of docosahexaenoic acid is required for syndecan-1 signaling and apoptosis in prostate cancer cells. Carcinogenesis 2012; 34:176-82. [PMID: 23066085 DOI: 10.1093/carcin/bgs324] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Fatty acid metabolism impacts multiple intracellular signaling pathways in many cell types, but its role in prostate cancer cells is still unclear. Our previous studies have shown that the n-3 polyunsaturated fatty acid docosahexaenoic acid (DHA) induces apoptosis in human prostate cancer cells by a syndecan-1 (SDC-1)-dependent mechanism. Here, we examined the contribution of lipoxygenase (LOX)- and cyclooxygenase (COX)-mediated DHA metabolism to this effect. Pan-LOX inhibitor (nordihydroguaiaretic acid), 15-LOX inhibitor (luteolin) or 15/12-LOX inhibitor (baicalein) blocked the induced effect of DHA on SDC-1 expression and apoptosis in human prostate cancer cells, whereas 5-LOX inhibitor, AA861, was ineffective. Human prostate cancer cells lines (PC3, LNCaP and DU145 cells) expressed two 15-LOX isoforms, 15-LOX-1 and 15-LOX-2, with higher 15-LOX-1 and lower 15-LOX-2 expressions compared with human epithelial prostate cells. Knockdown of 15-LOX-1 blocked the effect of DHA on SDC-1 expression and caspase-3 activity, whereas silencing 15-LOX-2, 5-LOX, COX-1, COX-2 or 12-LOX had no effect. Moreover, the ability of DHA to inhibit the activity of the PDK/Akt (T308) signaling pathway was abrogated by silencing 15-LOX-1. These findings demonstrate that 15-LOX-1-mediated metabolism of DHA is required for it to upregulate SDC-1 and trigger the signaling pathway that elicits apoptosis in prostate cancer cells.
Collapse
Affiliation(s)
- Yunping Hu
- Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | |
Collapse
|
38
|
Hance MW, Dole K, Gopal U, Bohonowych JE, Jezierska-Drutel A, Neumann CA, Liu H, Garraway IP, Isaacs JS. Secreted Hsp90 is a novel regulator of the epithelial to mesenchymal transition (EMT) in prostate cancer. J Biol Chem 2012; 287:37732-44. [PMID: 22989880 DOI: 10.1074/jbc.m112.389015] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Prostate cancer (PCa) is the most frequently diagnosed malignancy in men, and the second highest contributor of male cancer related lethality. Disease mortality is due primarily to metastatic spread, highlighting the urgent need to identify factors involved in this progression. Activation of the genetic epithelial to mesenchymal transition (EMT) program is implicated as a major contributor of PCa progression. Initiation of EMT confers invasive and metastatic behavior in preclinical models and is correlated with poor clinical prognosis. Extracellular Hsp90 (eHsp90) promotes cell motility and invasion in cancer cells and metastasis in preclinical models, however, the mechanistic basis for its widespread tumorigenic function remains unclear. We have identified a novel and pivotal role for eHsp90 in driving EMT events in PCa. In support of this notion, more metastatic PCa lines exhibited increased eHsp90 expression relative to their lineage-related nonmetastatic counterparts. We demonstrate that eHsp90 promoted cell motility in an ERK and matrix metalloproteinase-2/9-dependent manner, and shifted cellular morphology toward a mesenchymal phenotype. Conversely, inhibition of eHsp90 attenuated pro-motility signaling, blocked PCa migration, and shifted cell morphology toward an epithelial phenotype. Last, we report that surface eHsp90 was found in primary PCa tumor specimens, and elevated eHsp90 expression was associated with increased levels of matrix metalloproteinase-2/9 transcripts. We conclude that eHsp90 serves as a driver of EMT events, providing a mechanistic basis for its ability to promote cancer progression and metastasis in preclinical models. Furthermore, its newly identified expression in PCa specimens, and potential regulation of pro-metastatic genes, supports a putative clinical role for eHsp90 in PCa progression.
Collapse
Affiliation(s)
- Michael W Hance
- Department of Cell, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Harada KI, Miyake H, Kusuda Y, Fujisawa M. Expression of epithelial-mesenchymal transition markers in renal cell carcinoma: impact on prognostic outcomes in patients undergoing radical nephrectomy. BJU Int 2012; 110:E1131-7. [DOI: 10.1111/j.1464-410x.2012.11297.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
40
|
Syndecan-2 promotes perineural invasion and cooperates with K-ras to induce an invasive pancreatic cancer cell phenotype. Mol Cancer 2012; 11:19. [PMID: 22471946 PMCID: PMC3350462 DOI: 10.1186/1476-4598-11-19] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 04/03/2012] [Indexed: 12/16/2022] Open
Abstract
Background We have identified syndecan-2 as a protein potentially involved in perineural invasion of pancreatic adenocarcinoma (PDAC) cells. Methods Syndecan-2 (SDC-2) expression was analyzed in human normal pancreas, chronic pancreatitis and PDAC tissues. Functional in vitro assays were carried out to determine its role in invasion, migration and signaling. Results SDC-2 was expressed in the majority of the tested pancreatic cancer cell lines while it was upregulated in nerve-invasive PDAC cell clones. There were 2 distinct expression patterns of SDC-2 in PDAC tissue samples: SDC-2 positivity in the cancer cell cytoplasm and a peritumoral expression. Though SDC-2 silencing (using specific siRNA oligonucleotides) did not affect anchorage-dependent growth, it significantly reduced cell motility and invasiveness in the pancreatic cancer cell lines T3M4 and Su8686. On the transcriptional level, migration-and invasion-associated genes were down-regulated following SDC-2 RNAi. Furthermore, SDC-2 silencing reduced K-ras activity, phosphorylation of Src and - further downstream - phosphorylation of ERK2 while levels of the putative SDC-2 signal transducer p120GAP remained unaltered. Conclusion SDC-2 is a novel (perineural) invasion-associated gene in PDAC which cooperates with K-ras to induce a more invasive phenotype.
Collapse
|
41
|
Drivalos A, Papatsoris AG, Chrisofos M, Efstathiou E, Dimopoulos MA. The role of the cell adhesion molecules (integrins/cadherins) in prostate cancer. Int Braz J Urol 2011; 37:302-6. [PMID: 21756376 DOI: 10.1590/s1677-55382011000300002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2011] [Indexed: 01/09/2023] Open
Abstract
During prostate carcinogenesis the cellular adhesion molecules, i.e.; integrins and cadherins mediate aberrant interactions between glandular epithelial cells and the extracellular matrix. Several integrin α subunits are downregulated, while β subunits are up-regulated. The expression of several cadherins and catenins has specific prognostic value. There is an association between the expression of the E-cadherin/catenin complex and high grade prostate cancer. Clinical trials evaluating the efficacy of integrin antagonists are ongoing with promising results. In this article we update the role of integrins and cadherins in prostate carcinogenesis and evaluate the therapeutic potential of their manipulation.
Collapse
Affiliation(s)
- Alexandros Drivalos
- 2nd Department of Urology, School of Medicine, University of Athens, Sismanoglio Hospital, Athens, Greece
| | | | | | | | | |
Collapse
|
42
|
Sánchez C, Mercado A, Contreras HR, Mendoza P, Cabezas J, Acevedo C, Huidobro C, Castellón EA. Chemotherapy sensitivity recovery of prostate cancer cells by functional inhibition and knock down of multidrug resistance proteins. Prostate 2011; 71:1810-7. [PMID: 21480311 DOI: 10.1002/pros.21398] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 03/16/2011] [Indexed: 11/06/2022]
Abstract
BACKGROUND In several cancer types, expression of multidrug resistance (MDR) proteins has been associated with lack of chemotherapy response. In advanced prostate cancer (PCa) the use of chemotherapy is mainly palliative due to its high resistance. Previously, we described that MDR phenotype in PCa could be related with high basal and drug-induced expression of MDR proteins P-Glycoprotein (P-Gp), MRP1, and LRP. METHODS Using primary cell cultures from PCa patients, we evaluated the effect of function and expression inhibition of P-Gp, MRP1, and LRP, on cell survival after chemotherapy exposure. Cells were treated with specific MDR protein substrates (docetaxel and mitoxantrone for P-Gp, methotrexate for MRP1 and cisplatin for LRP) and pharmacological inhibitors (cyclosporine A, genistein and 3-aminobenzamide), and cell survival was evaluated trough 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and cell cycle analysis. MRP1 activity was evaluated by FACS using the specific inhibitor MK571. Cells were transfected with MDR proteins siRNAs and treated with the corresponding substrates. RESULTS PCa cell resistance to MDR protein substrates was partially reversed, decreasing cell survival in around 20%, by treating primary cell cultures with specific pharmacological inhibitors. PCa cells transfected with siRNAs against MDR proteins decreased cell survival when treated with the corresponding drugs. Docetaxel was the most effective chemotherapeutic drug to induce cell death and decrease survival. CONCLUSION Low chemotherapy response in PCa could be explained, in part, by over-expression of functional MDR proteins. Expression and function of these proteins should be evaluated to enhance efficacy of docetaxel-based therapies of patients with hormone-resistant PCa.
Collapse
Affiliation(s)
- Catherine Sánchez
- Laboratory of Molecular and Cellular Andrology, Physiology and Biophysics Department, Faculty of Medicine, University of Chile, Santiago, Chile
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Yang W, Levine AC. Androgens and prostate cancer bone metastases: effects on both the seed and the soil. Endocrinol Metab Clin North Am 2011; 40:643-53, x. [PMID: 21889726 DOI: 10.1016/j.ecl.2011.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Androgens are essential for normal prostate development and are necessary, but not sufficient, for the development of prostate cancer (PCa). Androgen deprivation therapy has long been the mainstay of treatment for PCa bone metastases, providing palliation of symptoms in the majority of patients, followed by relapse and progression. The majority of published preclinical studies demonstrate a stimulatory effect of androgens and androgen receptor signaling on the multistep process of PCa bone metastases, including androgenic promotion of local PCa growth, angiogenesis, invasion, bone targeting, stimulation of PCa growth factors that enhance osteoclastogenesis, and enhancement of Wnt signaling in osteoblasts.
Collapse
Affiliation(s)
- Wei Yang
- Division of Endocrinology, Diabetes and Bone Disease, Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|
44
|
Armstrong AJ, Marengo MS, Oltean S, Kemeny G, Bitting RL, Turnbull JD, Herold CI, Marcom PK, George DJ, Garcia-Blanco MA. Circulating tumor cells from patients with advanced prostate and breast cancer display both epithelial and mesenchymal markers. Mol Cancer Res 2011; 9:997-1007. [PMID: 21665936 DOI: 10.1158/1541-7786.mcr-10-0490] [Citation(s) in RCA: 499] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
During cancer progression, malignant cells undergo epithelial-mesenchymal transitions (EMT) and mesenchymal-epithelial transitions (MET) as part of a broad invasion and metastasis program. We previously observed MET events among lung metastases in a preclinical model of prostate adenocarcinoma that suggested a relationship between epithelial plasticity and metastatic spread. We thus sought to translate these findings into clinical evidence by examining the existence of EMT in circulating tumor cells (CTC) from patients with progressive metastatic solid tumors, with a focus on men with castration-resistant prostate cancer (CRPC) and women with metastatic breast cancer. We showed that the majority (> 80%) of these CTCs in patients with metastatic CRPC coexpress epithelial proteins such as epithelial cell adhesion molecule (EpCAM), cytokeratins (CK), and E-cadherin, with mesenchymal proteins including vimentin, N-cadherin and O-cadherin, and the stem cell marker CD133. Equally, we found that more than 75% of CTCs from women with metastatic breast cancer coexpress CK, vimentin, and N-cadherin. The existence and high frequency of these CTCs coexpressing epithelial, mesenchymal, and stem cell markers in patients with progressive metastases has important implications for the application and interpretation of approved methods to detect CTCs.
Collapse
Affiliation(s)
- Andrew J Armstrong
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Syndecan-2 cytoplasmic domain regulates colon cancer cell migration via interaction with syntenin-1. Biochem Biophys Res Commun 2011; 409:148-53. [PMID: 21569759 DOI: 10.1016/j.bbrc.2011.04.135] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 04/28/2011] [Indexed: 11/22/2022]
Abstract
The cell surface heparan sulfate proteoglycan, syndecan-2, is crucial for the tumorigenic activity of colon cancer cells. However, the role played by the cytoplasmic domain of the protein remains unclear. Using colon cancer cells transfected with various syndecan-2-encoding genes with deletions in the cytoplasmic domain, it was shown that syndecan-2-induced migration activity requires the EFYA sequence of the C-terminal region; deletion of these residues abolished the rise in cell migration seen when the wild-type gene was transfected and syndecan-2 interaction with syntenin-1, suggesting that syntenin-1 functioned as a cytosolic signal effector downstream from syndecan-2. Colon cancer cells transfected with the syntenin-1 gene showed increased migratory activity, whereas migration was decreased in cells in which syntenin-1 was knock-down using small inhibitory RNA. In addition, syntenin-1 expression potentiated colon cancer cell migration induced by syndecan-2, and syndecan-2-mediated cell migration was reduced when syntenin-1 expression diminished. However, syntenin-1-mediated migration enhancement was not noted in colon cancer cells transfected with a gene encoding a syndecan-2 mutant lacking the cytoplasmic domain. Furthermore, in line with the increase in cell migration, syntenin-1 mediated Rac activation stimulated by syndecan-2. Together, the data suggest that the cytoplasmic domain of syndecan-2 regulates colon cancer cell migration via interaction with syntenin-1.
Collapse
|
46
|
Ledezma R, Cifuentes F, Gallegos I, Fullá J, Ossandon E, Castellon EA, Contreras HR. Altered expression patterns of syndecan-1 and -2 predict biochemical recurrence in prostate cancer. Asian J Androl 2011; 13:476-80. [PMID: 21317913 DOI: 10.1038/aja.2010.143] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The clinical features of prostate cancer do not provide an accurate determination of patients undergoing biochemical relapse and are therefore not suitable as indicators of prognosis for recurrence. New molecular markers are needed for proper pre-treatment risk stratification of patients. Our aim was to assess the value of altered expression of syndecan-1 and -2 as a marker for predicting biochemical relapse in patients with clinically localized prostate cancer treated by radical prostatectomy. The expression of syndecan-1 and -2 was examined by immunohistochemical staining in a series of 60 paraffin-embedded tissue samples from patients with localized prostate cancer. Ten specimens from patients with benign prostatic hyperplasia were used as non-malignant controls. Semiquantitative analysis was performed to evaluate the staining patterns. To investigate the prognostic value, Kaplan-Meier survival curves were performed and compared by a log-rank test. In benign samples, syndecan-1 was expressed in basal and secretory epithelial cells with basolateral membrane localisation, whereas syndecan-2 was expressed preferentially in basal cells. In prostate cancer samples, the expression patterns of both syndecans shifted to granular-cytoplasmic localisation. Survival analysis showed a significant difference (P < 0.05) between normal and altered expression of syndecan-1 and -2 in free prostate-specific antigen recurrence survival curves. These data suggest that the expression of syndecan-1 and -2 can be used as a prognostic marker for patients with clinically localized prostate cancer, improving the prostate-specific antigen recurrence risk stratification.
Collapse
Affiliation(s)
- Rodrigo Ledezma
- Laboratory of Molecular and Cellular Andrology, Physiology and Biophysics Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago 70005, Chile
| | | | | | | | | | | | | |
Collapse
|
47
|
Syndecan-1-dependent suppression of PDK1/Akt/bad signaling by docosahexaenoic acid induces apoptosis in prostate cancer. Neoplasia 2011; 12:826-36. [PMID: 20927321 DOI: 10.1593/neo.10586] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2010] [Revised: 07/08/2010] [Accepted: 07/09/2010] [Indexed: 11/18/2022] Open
Abstract
Evidence indicates that diets enriched in n-3 polyunsaturated fatty acids (n-3 PUFAs) reduce the risk of prostate cancer, but biochemical mechanisms are unclear. Syndecan-1 (SDC-1), a transmembrane heparan sulfate proteoglycan, supports the integrity of the epithelial compartment. In tumor cells of epithelial lineage, SDC-1 is generally downregulated. This may result in perturbation of homeostasis and lead to progression of malignancy. Our studies have shown that the n-3 PUFA species, docosahexaenoic acid (DHA), increases SDC-1 expression in prostate tissues of Pten knockout (Pten(P-/-)) mice/cells and human prostate cancer cells. We have now determined that DHA-mediated up-regulation of SDC-1 induces apoptosis. Bovine serum albumin-bound DHA and exogenous human recombinant SDC-1 ecotodomain were delivered to PC3 and LNCaP cells in the presence or absence of SDC-1 small interfering (si)RNA. In the presence of control siRNA, both DHA and SDC-1 ectodomain induced apoptosis, whereas SDC-1 silencing blocked DHA-induced but not SDC-1 ectodomain-induced apoptosis. Downstream effectors of SDC-1 signaling linked to n-3 PUFA-induced apoptosis involved the 3'-phosphoinositide-dependent kinase 1 (PDK1)/Akt/Bad integrating network. A diet enriched in n-3 PUFA decreased phosphorylation of PDK1, Akt (T308), and Bad in prostates of Pten(P-/-) mice. Similar results were observed in human prostate cancer cells in response to DHA and SDC-1 ectodomain. The effect of DHA on PDK1/Akt/Bad signaling was abrogated by SDC-1 siRNA. These findings define a mechanism by which SDC-1-dependent suppression of phosphorylation of PDK1/Akt/Bad mediates n-3 PUFA-induced apoptosis in prostate cancer.
Collapse
|
48
|
Serpa J, Caiado F, Carvalho T, Torre C, Gonçalves LG, Casalou C, Lamosa P, Rodrigues M, Zhu Z, Lam EWF, Dias S. Butyrate-rich colonic microenvironment is a relevant selection factor for metabolically adapted tumor cells. J Biol Chem 2010; 285:39211-23. [PMID: 20926374 DOI: 10.1074/jbc.m110.156026] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The short chain fatty acid (SCFA) butyrate is a product of colonic fermentation of dietary fibers. It is the main source of energy for normal colonocytes, but cannot be metabolized by most tumor cells. Butyrate also functions as a histone deacetylase (HDAC) inhibitor to control cell proliferation and apoptosis. In consequence, butyrate and its derived drugs are used in cancer therapy. Here we show that aggressive tumor cells that retain the capacity of metabolizing butyrate are positively selected in their microenvironment. In the mouse xenograft model, butyrate-preselected human colon cancer cells gave rise to subcutaneous tumors that grew faster and were more angiogenic than those derived from untreated cells. Similarly, butyrate-preselected cells demonstrated a significant increase in rates of homing to the lung after intravenous injection. Our data showed that butyrate regulates the expression of VEGF and its receptor KDR at the transcriptional level potentially through FoxM1, resulting in the generation of a functional VEGF:KDR autocrine growth loop. Cells selected by chronic exposure to butyrate express higher levels of MMP2, MMP9, α2 and α3 integrins, and lower levels of E-cadherin, a marker for epithelial to mesenchymal transition. The orthotopic model of colon cancer showed that cells preselected by butyrate are able to colonize the animals locally and at distant organs, whereas control cells can only generate a local tumor in the cecum. Together our data shows that a butyrate-rich microenvironment may select for tumor cells that are able to metabolize butyrate, which are also phenotypically more aggressive.
Collapse
Affiliation(s)
- Jacinta Serpa
- Angiogenesis Group, Instituto Português de Oncologia de Francisco Gentil, Centro de Lisboa, EPE (CIPM/IPOLFG), Lisbon 1099-023, Portugal
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
The Tiam1 PDZ domain couples to Syndecan1 and promotes cell-matrix adhesion. J Mol Biol 2010; 398:730-46. [PMID: 20361982 DOI: 10.1016/j.jmb.2010.03.047] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 03/23/2010] [Accepted: 03/25/2010] [Indexed: 11/24/2022]
Abstract
The T-cell lymphoma invasion and metastasis gene 1 (Tiam1) is a guanine exchange factor (GEF) for the Rho-family GTPase Rac1 that is crucial for the integrity of adherens junctions, tight junctions, and cell-matrix interactions. This GEF contains several protein-protein interaction domains, including a PDZ domain. Earlier studies identified a consensus PDZ-binding motif and a synthetic peptide capable of binding to the Tiam1 PDZ domain, but little is known about its ligand specificity and physiological role in cells. Here, we investigated the structure, specificity, and function of the Tiam1 PDZ domain. We determined the crystal structures of the Tiam1 PDZ domain free and in complex with a "model" peptide, which revealed the structural basis for ligand specificity. Protein database searches using the consensus PDZ-binding motif identified two eukaryotic cell adhesion proteins, Syndecan1 and Caspr4, as potential Tiam1 PDZ domain binding proteins. Equilibrium binding experiments confirmed that C-terminal peptides derived from Syndecan1 and Caspr4 bound the Tiam1 PDZ domain. NMR chemical shift perturbation experiments indicated that the Tiam1 PDZ/Syndecan1 and PDZ/Caspr4 complexes were structurally distinct and identified key residues likely to be responsible for ligand selectivity. Moreover, cell biological analysis established that Syndecan1 is a physiological binding partner of Tiam1 and that the PDZ domain has a function in cell-matrix adhesion and cell migration. Collectively, our data provide insight into the structure, specificity, and function of the Tiam1 PDZ domain. Importantly, our data report on a physiological role for the Tiam1 PDZ domain and establish a novel link between two previously unrelated signal transduction pathways, both of which are implicated in cancer.
Collapse
|
50
|
Expression and prognostic role of syndecan-2 in prostate cancer. Prostate Cancer Prostatic Dis 2009; 13:78-82. [DOI: 10.1038/pcan.2009.43] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|