1
|
Li J, Zhou S, Li H, Xu Y, Zhou N, Liu R. PTEN/AKT upregulation of TMSB10 contributes to lung cancer cell growth and predicts poor survival of the patients. Biosci Biotechnol Biochem 2021; 85:805-813. [PMID: 33686397 DOI: 10.1093/bbb/zbaa113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/01/2020] [Indexed: 01/08/2023]
Abstract
PTEN/AKT signaling cascade is frequently activated in various cancers, including lung cancer. The downstream effector of this signaling cascade is poorly understood. β-Thymosin 10 (TMSB10) functions as an oncogene or tumor suppressors in cancers, whereas its significance in lung cancer remains unknown. In this study, we showed that the activation of PTEN/AKT signaling promoted the expression of TMSB10. Based on the TCGA database, TMSB10 was upregulated in lung cancer tissues and its overexpression was correlated with poor prognosis of lung cancer patients. Functional experiments demonstrated that TMSB10 knockdown suppressed, while its overexpression promoted the proliferation, growth, and migration of lung cancer cells. Apoptosis and epithelial-mesenchymal transition were also regulated by TMSB10. We therefore suggest that TMSB10 is a novel oncogene for lung cancer. Targeting TMSB10 may benefit lung cancer patients with activated PTEN/AKT signaling.
Collapse
Affiliation(s)
- Jie Li
- Department of Lymphadenopathy
| | - Shaohui Zhou
- Department of Thoracic Surgery, Hebei General Hospital
| | - Hongchen Li
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Yanzhao Xu
- Department of Thoracic Surgery, Fourth Hospital of Hebei Medical University, Hebei, P. R. China
| | - Ning Zhou
- Department of Laboratory, Baotou Cancer Hospital, Baotou, Inner Mongolia, P.R. China
| | - Rongfeng Liu
- Department of Oncology, Fourth Hospital of Hebei Medical University, Hebei, P. R. China
| |
Collapse
|
2
|
Bannerman D, Pascual-Gil S, Floryan M, Radisic M. Bioengineering strategies to control epithelial-to-mesenchymal transition for studies of cardiac development and disease. APL Bioeng 2021; 5:021504. [PMID: 33948525 PMCID: PMC8068500 DOI: 10.1063/5.0033710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 03/15/2021] [Indexed: 12/24/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a process that occurs in a wide range of tissues and environments, in response to numerous factors and conditions, and plays a critical role in development, disease, and regeneration. The process involves epithelia transitioning into a mobile state and becoming mesenchymal cells. The investigation of EMT processes has been important for understanding developmental biology and disease progression, enabling the advancement of treatment approaches for a variety of disorders such as cancer and myocardial infarction. More recently, tissue engineering efforts have also recognized the importance of controlling the EMT process. In this review, we provide an overview of the EMT process and the signaling pathways and factors that control it, followed by a discussion of bioengineering strategies to control EMT. Important biological, biomaterial, biochemical, and physical factors and properties that have been utilized to control EMT are described, as well as the studies that have investigated the modulation of EMT in tissue engineering and regenerative approaches in vivo, with a specific focus on the heart. Novel tools that can be used to characterize and assess EMT are discussed and finally, we close with a perspective on new bioengineering methods that have the potential to transform our ability to control EMT, ultimately leading to new therapies.
Collapse
|
3
|
Pan Q, Cheng G, Liu Y, Xu T, Zhang H, Li B. TMSB10 acts as a biomarker and promotes progression of clear cell renal cell carcinoma. Int J Oncol 2020; 56:1101-1114. [PMID: 32319572 PMCID: PMC7115359 DOI: 10.3892/ijo.2020.4991] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 01/22/2020] [Indexed: 01/01/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is one of the most common urological malignancies. Identifying novel biomarkers and investigating the underlying mechanism of ccRCC development will be crucial to the management and treatment of ccRCC in patients. Thymosin b10 (TMSB10), a member of the thymosin family, is involved in various physiological processes, including tissue regeneration and inflammatory regulation. Moreover, it has been found to be upregulated in many types of carcinoma. However, its roles in ccRCC remain to be elucidated. The present study aimed to explore the expression of TMSB10 in ccRCC through mining The Cancer Genome Atlas (TCGA) and Oncomine databases, and to investigate the association between TMSB10 expression and clinicopathological factors. Furthermore, immunohistochemistry assays and western blotting were conducted to verify TMSB10 expression levels in human ccRCC tissues and cell lines. Functional analyses were also performed to identify the roles of TMSB10 in vitro. The results revealed that TMSB10 was significantly upregulated in RCC tissues and cell lines. The expression of TMSB10 was closely associated with various clinicopathological parameters. In addition, high expression of TMSB10 predicted poor clinical outcome. The receiver operating characteristic curve revealed that TMSB10 could sufficiently distinguish the tumor from normal kidney (area under the curve = 0.9543, P<0.0001). Furthermore, knockdown of TMSB10 impaired the proliferation of ccRCC cells, and attenuated cell and invasion in vitro. In addition, TMSB10 knockdown downregulated reduced the phosphorylation of PI3K and the expression of vascular endothelial growth factor. In conclusion, the present study demonstrated that high expression of TMSB10 could serve as a useful diagnostic and prognostic biomarker and a potential therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Qiufeng Pan
- Department of Urology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Gong Cheng
- Department of Urology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yuenan Liu
- Department of Urology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Tianbo Xu
- Department of Urology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Hao Zhang
- Department of Urology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Bing Li
- Department of Urology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
4
|
Thymosin beta-4 overexpression correlates with high-risk groups in gastric gastrointestinal stromal tumors: A retrospective analysis by immunohistochemistry. Pathol Res Pract 2017; 213:1139-1143. [PMID: 28756979 DOI: 10.1016/j.prp.2017.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 06/01/2017] [Accepted: 07/02/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Thymosin beta-4 (Tβ4) is a protein that is linked to a number of important biological actions and recently tumor progression and poor prognosis of some tumors. The aim of this study was to evaluate Tβ4 expression in gastric GISTs and correlate with some clinicopathological characteristics related with prognosis and clinical outcome in order to add further data to the current literature. METHODS Tβ4 antibody was applied to the 4μm-thick paraffin sections of 57 gastric GISTs by immunohistochemistry. RESULTS Tβ4 expression was found to be directly corrrelated with higher risk groups, tumor size, mitotic count, cellularity, and necrosis while it was inversely correlated with overall survival (OS) by univariate analysis (p=0.000, p=0.001, p=0.000, p=0.025, p=0.023, and p=0.042, respectively). The direct association between Tβ4 expression and risk groups were also supported by multivariate analysis (p=0.000, β=0.497, t=4.374). CONCLUSION Overexpression of Tβ4 was found to be related with predictive characteristics for tumor progression and adverse prognosis. Thus, we suggest that overexpression of Tβ4 might play a role in the progression of gastric GISTs and might be used as a potential prognostic tool as well as a target for novel therapies.
Collapse
|
5
|
Marks ED, Kumar A. Thymosin β4: Roles in Development, Repair, and Engineering of the Cardiovascular System. VITAMINS AND HORMONES 2016; 102:227-49. [PMID: 27450737 DOI: 10.1016/bs.vh.2016.04.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The burden of cardiovascular disease is a growing worldwide issue that demands attention. While many clinical trials are ongoing to test therapies for treating the heart after myocardial infarction (MI) and heart failure, there are few options doctors able to currently give patients to repair the heart. This eventually leads to decreased ventricular contractility and increased systemic disease, including vascular disorders that could result in stroke. Small peptides such as thymosin β4 (Tβ4) are upregulated in the cardiovascular niche during fetal development and after injuries such as MI, providing increased neovasculogenesis and paracrine signals for endogenous stem cell recruitment to aid in wound repair. New research is looking into the effects of in vivo administration of Tβ4 through injections and coatings on implants, as well as its effect on cell differentiation. Results so far demonstrate Tβ4 administration leads to robust increases in angiogenesis and wound healing in the heart after MI and the brain after stroke, and can differentiate adult stem cells toward the cardiac lineage for implantation to the heart to increase contractility and survival. Future work, some of which is currently in clinical trials, will demonstrate the in vivo effect of these therapies on human patients, with the goal of helping the millions of people worldwide affected by cardiovascular disease.
Collapse
Affiliation(s)
- E D Marks
- Nanomedicine Research Laboratory, University of Delaware, Newark, DE, United States
| | - A Kumar
- Nanomedicine Research Laboratory, University of Delaware, Newark, DE, United States.
| |
Collapse
|
6
|
Abstract
Liver fibrosis, a major characteristic of chronic liver disease, is inappropriate tissue remodeling caused by prolonged parenchymal cell injury and inflammation. During liver injury, hepatic stellate cells (HSCs) undergo transdifferentiation from quiescent HSCs into activated HSCs, which promote the deposition of extracellular matrix proteins, leading to liver fibrosis. Thymosin beta 4 (Tβ4), a major actin-sequestering protein, is the most abundant member of the highly conserved β-thymosin family and controls cell morphogenesis and motility by regulating the dynamics of the actin cytoskeleton. Tβ4 is known to be involved in various cellular responses, including antiinflammation, wound healing, angiogenesis, and cancer progression. Emerging evidence suggests that Tβ4 is expressed in the liver; however, its biological roles are poorly understood. Herein, we introduce liver fibrogenesis and recent findings regarding the function of Tβ4 in various tissues and discuss the potential role of Tβ4 in liver fibrosis with a special focus on the effects of exogenous and endogenous Tβ4. Recent studies have revealed that activated HSCs express Tβ4 in vivo and in vitro. Treatment with the exogenous Tβ4 peptide inhibits the proliferation and migration of activated HSCs and reduces liver fibrosis, indicating it has an antifibrotic action. Meanwhile, the endogenously expressed Tβ4 in activated HSCs is shown to promote HSCs activation. Although the role of Tβ4 has not been elucidated, it is apparent that Tβ4 is associated with HSC activation. Therefore, understanding the potential roles and regulatory mechanisms of Tβ4 in liver fibrosis may provide a novel treatment for patients.
Collapse
|
7
|
Martelli C, Iavarone F, D'Angelo L, Arba M, Vincenzoni F, Inserra I, Delfino D, Rossetti DV, Caretto M, Massimi L, Tamburrini G, Di Rocco C, Caldarelli M, Messana I, Castagnola M, Sanna MT, Desiderio C. Integrated proteomic platforms for the comparative characterization of medulloblastoma and pilocytic astrocytoma pediatric brain tumors: a preliminary study. MOLECULAR BIOSYSTEMS 2016; 11:1668-83. [PMID: 25909245 DOI: 10.1039/c5mb00076a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A top-down/bottom-up integrated proteomic approach based on LC-MS and 2-DE analysis was applied for comparative characterization of medulloblastoma and pilocytic astrocytoma posterior cranial fossa pediatric brain tumor tissues. Although rare, primary brain tumors are the most frequent solid tumors in the pediatric age. Among them the medulloblastoma is the prevalent malignant tumor in childhood while pilocytic astrocytoma is the most common, rarely showing a malignant progression. Due to the limited availability of this kind of sample, the study was applied to pooled tumor tissues for a preliminary investigation. The results showed different proteomic profiles of the two tumors and evidenced interesting differential expression of several proteins and peptides. Top-down proteomics of acid-soluble fractions of brain tumor homogenates ascribed a potential biomarker role of malignancy to β- and α-thymosins and their truncated proteoforms and to C-terminal truncated (des-GG) ubiquitin, resulting exclusively detected or over-expressed in the highly malignant medulloblastoma. The bottom-up proteomics of the acid-soluble fraction identified several proteins, some of them in common with 2-DE analysis of acid-insoluble pellets. Peroxiredoxin-1, peptidyl-prolyl cis-trans isomerase A, triosephosphate isomerase, pyruvate kinase PKM, tubulin beta and alpha chains, heat shock protein HSP-90-beta and different histones characterized the medulloblastoma while the Ig kappa chain C region, serotransferrin, tubulin beta 2A chain and vimentin the pilocytic astrocytoma. The two proteomic strategies, with their pros and cons, well complemented each other in characterizing the proteome of brain tumor tissues and in disclosing potential disease biomarkers to be validated in a future study on individual samples of both tumor histotypes.
Collapse
Affiliation(s)
- Claudia Martelli
- Istituto di Biochimica e Biochimica Clinica, Facoltà di Medicina, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Du Y, Bi W, Zhang F, Wu W, Xia S, Liu H. G-protein-coupled receptor 137 accelerates proliferation of urinary bladder cancer cells in vitro. Biotechnol Appl Biochem 2015; 62:855-860. [PMID: 25496438 DOI: 10.1002/bab.1329] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 11/30/2014] [Indexed: 12/16/2022]
Abstract
Urinary bladder cancer is a worldwide concern because of its level of incidence and recurrence. To search an effective therapeutic strategy for urinary bladder cancer, it is important to identify proteins involved in tumorigenesis that could serve as potential targets for diagnosis and treatment. G-protein-coupled receptors (GPRs) constitute a large protein family of receptors that sense molecules outside the cell and activate signal transduction pathways and cellular responses inside the cell. GPR137 is a newly discovered human gene encoding orphan GPRs. In this study, we aimed to investigate the physiological role of GPR137 in urinary bladder cancer. The effect of GPR137 on cell growth was examined via an RNA interference (RNAi) lentivirus system in two human urinary bladder cancer cell lines BT5637 and T24. Lentivirus-mediated RNAi could specifically suppressed GPR137 expression in vitro, resulting in alleviated cell viability and impaired colony formation, as well as blocks G0/G1 and S phases of the cell cycle. These results suggested GPR137 as an essential player in urinary bladder cancer cell growth, and it may serve as a potential target for gene therapy in the treatment of urinary bladder cancer.
Collapse
Affiliation(s)
- Yiheng Du
- Department of Urology, Shanghai First People's Hospital affiliated to Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Wenhuan Bi
- Department of Urology, Weifang Hospital of Chinese Traditional Medicine, Shandong, People's Republic of China
| | - Fei Zhang
- Department of Urology, Shanghai First People's Hospital affiliated to Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Wenbo Wu
- Department of Urology, Shanghai First People's Hospital affiliated to Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Shujie Xia
- Department of Urology, Shanghai First People's Hospital affiliated to Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Haitao Liu
- Department of Urology, Shanghai First People's Hospital affiliated to Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
9
|
Thymosin β4 induces proliferation, invasion, and epithelial-to-mesenchymal transition of oral squamous cell carcinoma. Amino Acids 2015; 48:117-27. [PMID: 26276576 DOI: 10.1007/s00726-015-2070-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 08/10/2015] [Indexed: 12/18/2022]
Abstract
The epithelial-to-mesenchymal transition (EMT) plays a vital role in carcinogenesis, invasion, and metastasis of many epithelial tumors including oral squamous cell carcinoma (OSCC), a common malignancy of the head and neck. However, the functional role of the actin-sequestering protein thymosin β4 (Tβ4) in the EMT in OSCCs remains unclear. Thus, we investigated whether overexpression of Tβ4 could induce in vitro tumorigenesis such as cell proliferation and anchorage independency and an EMT-like phenotype in OSCCs. Also, we examined whether it affects invasiveness and cell motility-associated signaling molecules. Tβ4-overexpressing OSCCs, SCC-15_Tβ4 and SCC-25_Tβ4, enhanced cell proliferation and colony formation. In addition, we observed that Tβ4 overexpression induced an EMT-like phenotype, accompanied by a decrease in expression of the epithelial cell marker E-cadherin and an increase in expression of mesenchymal cell markers vimentin and N-cadherin. Also, the expression level of Twist1, an EMT-inducing transcription factor, was significantly enhanced in SCC-15_Tβ4 and SCC-25_Tβ4 cells. Tβ4 overexpression augmented in vitro invasion and MMP-2 activity and enhanced the phosphorylation of paxillin and cortactin and expression of LIMK1. Taken together, these results suggest that Tβ4 overexpression could be one of the causes of tumorigenesis and progression in OSCCs. Further investigation on the Tβ4 molecule would encourage the development of specific targets for cancer treatment.
Collapse
|
10
|
In vivo growth suppression of CT-26 mouse colorectal cancer cells by adenovirus-expressed small hairpin RNA specifically targeting thymosin beta-4 mRNA. Cancer Gene Ther 2014; 21:389-96. [PMID: 25124811 DOI: 10.1038/cgt.2014.43] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/19/2014] [Accepted: 07/21/2014] [Indexed: 12/20/2022]
Abstract
Thymosin beta-4 (Tβ4) is known to be involved in tumorigenesis. Overexpression of this polypeptide has been observed in a wide variety of cancers, including colorectal carcinoma (CRC). Accordingly, Tβ4 has been proposed to be a novel therapeutic target for CRC, especially in its metastatic form. Although in vitro tumor-suppressive effects of Tβ4 gene silencing mediated by small hairpin RNA (shRNA) have already been demonstrated, the in vivo efficacy of such an approach has not yet been reported. Herein, we demonstrated that infection with recombinant adenovirus expressing an shRNA targeting Tβ4 markedly reduced the growth of and robustly induced apoptosis in CT-26 mouse CRC cells in culture. Additionally, tumors grown in nude mice from the CT-26 cells whose Tβ4 expression already been downregulated by virus infection were also drastically reduced. Most importantly, significant growth arrest of tumors derived from the parental CT-26 cells was observed after multiple intratumoral injections of these viruses. Together, our results show for the first time that in vivo silencing of Tβ4 expression by its shRNA generated after adenoviral infection can suppress CRC growth. These results further demonstrate the feasibility of treating CRC by a Tβ4 knockdown gene therapeutic approach.
Collapse
|
11
|
Desiderio C, Martelli C, Rossetti DV, Di Rocco C, D'Angelo L, Caldarelli M, Tamburrini G, Iavarone F, Castagnola M, Messana I, Cabras T, Faa G. Identification of thymosins β4 and β 10 in paediatric craniopharyngioma cystic fluid. Childs Nerv Syst 2013; 29:951-60. [PMID: 23503632 DOI: 10.1007/s00381-013-2069-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 02/27/2013] [Indexed: 12/14/2022]
Abstract
BACKGROUND Adamantinomatous craniopharyngioma is the third most recurrent paediatric brain tumour. Although histologically benign, it behaves aggressively as a malignant tumour due to invasion of the hypothalamus and visual pathways. Surgery is still the first and almost the only mode of treatment, although serious damage can occur as a consequence of tumour localization. The proteomic characterization of the intracystic tumoural fluid could contribute to the comprehension of the tumorigenesis processes and to the development of therapeutic targets to reduce cyst volume, allowing less invasive surgery and/or delay of the radical resection of the tumour mass and the collateral serious effects. METHODS Intracystic fluid was analysed by a LC-ESI-IT-MS top-down platform after acidification, deproteinization and chloroform liquid/liquid extraction. FINDINGS Thymosin β4 and β10 peptides were for the first time identified in the intracystic fluid of adamantinomatous craniopharyngioma by low- and high-resolution MS analysis coupled with LC. The two peptides showed the same distribution trend in the analysed samples. Thymosin β4 and β10 were present in 77 % of the analysed samples. These peptides were not found in the cerebrospinal fluid available for two patients. INTERPRETATION The presence of β-thymosins in the intracystic fluid of the tumour confirmed the secretion of these proteins in the extracellular environment. Due to their G-actin-sequestering activity and antiapoptotic and anti-inflammatory properties, these peptides could be strictly involved in both tumour progression and cyst development and growth.
Collapse
Affiliation(s)
- Claudia Desiderio
- Consiglio Nazionale delle Ricerche, Istituto di Chimica del Riconoscimento Molecolare, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Sribenja S, Wongkham S, Wongkham C, Yao Q, Chen C. Roles and Mechanisms of β-Thymosins in Cell Migration and Cancer Metastasis: An Update. Cancer Invest 2013; 31:103-10. [DOI: 10.3109/07357907.2012.756111] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Faa G, Nemolato S, Cabras T, Fanni D, Gerosa C, Fanari M, Locci A, Fanos V, Messana I, Castagnola M. Thymosin β4 expression reveals intriguing similarities between fetal and cancer cells. Ann N Y Acad Sci 2013; 1269:53-60. [PMID: 23045970 DOI: 10.1111/j.1749-6632.2012.06679.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Thymosin β4 (Tβ4) is highly expressed in saliva of human newborns but not in adults. Here preliminary immunohistochemical analyses on different human tissues are reported. Immunoreactivity for Tβ4 in human salivary glands show high quantities of Tβ4 before birth, followed by downregulation of expression in adulthood. In contrast, Tβ4 is detected in tumors of salivary glands, suggesting that tumor cells might utilize fetal programs, including Tβ4 synthesis. Immunohistochemical analyses in the gastrointestinal tract showed strong reactivity for Tβ4 in enterocytes during development, but weak immunostaining in mature enterocytes. In colorectal cancer, the association of a high expression of Tβ4 with epithelial-mesenchymal transition was observed. On the basis of these data, the process of epithelial-mesenchymal transition could represent the unifying process that explains the role of Tβ4 during fetal development and in cancer progression.
Collapse
Affiliation(s)
- Gavino Faa
- Department of Pathology, University Hospital San Giovanni di Dio, University of Cagliari, Cagliari, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Ji YI, Lee BY, Kang YJ, Jo JO, Lee SH, Kim HY, Kim YO, Lee C, Koh SB, Kim A, Lee JY, Jung MH, Ock MS, Cha HJ. Expression Patterns of Thymosin β4 and Cancer Stem Cell Marker CD133 in Ovarian Cancers. Pathol Oncol Res 2012; 19:237-45. [DOI: 10.1007/s12253-012-9574-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 09/18/2012] [Indexed: 12/23/2022]
|
15
|
Matsuo K, Akasaki Y, Adachi K, Zhang M, Ishikawa A, Jimi E, Nishihara T, Hosokawa R. Promoting effects of thymosin β4 on granulation tissue and new bone formation after tooth extraction in rats. Oral Surg Oral Med Oral Pathol Oral Radiol 2012; 114:17-26. [PMID: 22732845 DOI: 10.1016/j.tripleo.2011.05.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 05/28/2011] [Indexed: 12/23/2022]
|
16
|
Can B, Karagoz F, Yildiz L, Yildirim A, Kefeli M, Gonullu G, Kandemir B. Thymosin β4 is a novel potential prognostic marker in gastrointestinal stromal tumors. APMIS 2012; 120:689-98. [PMID: 22882257 DOI: 10.1111/j.1600-0463.2012.02887.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Accepted: 01/09/2012] [Indexed: 12/22/2022]
Abstract
Thymosin beta-4 (Tβ(4)) is a major actin-sequestering molecule that contributes to cell growth, differentiation, motility, survival, mitosis and angiogenesis. It is overexpressed in certain type of carcinoma and fibrosarcoma cell lines and is associated with metastatic potential. The aim of this study was to investigate the relationship between Tβ(4) expression and clinicopathologic features and VEGF status in gastrointestinal stromal tumors (GISTs). Retrospectively, 60 GISTs were re-examined and immunohistochemistry for Tβ(4) and VEGF was performed. Increased expression of Tβ(4) and VEGF was observed in 26 (43.3%) and in 19 (31.6%) of the tumors, respectively. Tβ(4) expression was positively correlated with VEGF expression (p < 0.01). Tβ(4) and VEGF expression were significantly associated with tumor size (p = 0.00 and p = 0.02, respectively) and high mitosis (p = 0.03 and p = 0.00, respectively). Although Tβ(4) expression was positively associated with pleomorphism (p = 0.01), VEGF expression was positively associated with necrosis (p = 0.03). Tβ(4) expression was related with local recurrence and/or metastasis (p = 0.03), but VEGF expression was not (p = 0.12). We firstly demonstrate the presence of Tβ(4) protein in GISTs. Our study reveals that increased expression of Tβ(4) could be considered as an indicator of aggressive behavior of tumor.
Collapse
Affiliation(s)
- Bilge Can
- Department of Pathology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey.
| | | | | | | | | | | | | |
Collapse
|