1
|
Shaghaghi Z, Alvandi M, Farzipour S, Dehbanpour MR, Nosrati S. A review of effects of atorvastatin in cancer therapy. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 40:27. [PMID: 36459301 DOI: 10.1007/s12032-022-01892-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 11/08/2022] [Indexed: 12/03/2022]
Abstract
Cancer is one of the most challenging diseases to manage. A sizeable number of researches are done each year to find better diagnostic and therapeutic strategies. At the present time, a package of chemotherapy, targeted therapy, radiotherapy, and immunotherapy is available to cope with cancer cells. Regarding chemo-radiation therapy, low effectiveness and normal tissue toxicity are like barriers against optimal response. To remedy the situation, some agents have been proposed as adjuvants to improve tumor responses. Statins, the known substances for reducing lipid, have shown a considerable capability for cancer treatment. Among them, atorvastatin as a reductase (HMG-CoA) inhibitor might affect proliferation, migration, and survival of cancer cells. Since finding an appropriate adjutant is of great importance, numerous studies have been conducted to precisely unveil antitumor effects of atorvastatin and its associated pathways. In this review, we aim to comprehensively review the most highlighted studies which focus on the use of atorvastatin in cancer therapy.
Collapse
Affiliation(s)
- Zahra Shaghaghi
- Cancer Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.,Cardiovascular Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Alvandi
- Cardiovascular Research Center, Hamadan University of Medical Sciences, Hamadan, Iran. .,Department of Nuclear Medicine and Molecular Imaging, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Soghra Farzipour
- Department of Cardiology, Cardiovascular Diseases Research Center, School of Medicine, Heshmat Hospital, Guilan University of Medical Sciences, Rasht, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Reza Dehbanpour
- Department of Radiology, School of Paramedicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sahar Nosrati
- Institute of Nuclear Chemistry and Technology, Dorodna 16 Str, 03-195, Warsaw, Poland
| |
Collapse
|
2
|
Shen W, Yu Q, Pu Y, Xing C. Upregulation of Long Noncoding RNA MALAT1 in Colorectal Cancer Promotes Radioresistance and Aggressive Malignance. Int J Gen Med 2022; 15:8365-8380. [PMID: 36465270 PMCID: PMC9717691 DOI: 10.2147/ijgm.s393270] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/18/2022] [Indexed: 09/07/2023] Open
Abstract
Background Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), a conserved transcript with 8000 nt, is highly associated with malignancy of numerous cancer types. However, the function of MALAT1 plays in regulating the response to radiotherapy in colorectal cancer (CRC) remains unclear. Thus, the object of this study is to investigate the functions of MALAT1 in CRC radioresistance. Methods First, the expression of MALAT1 in colon adenocarcinoma (COAD) was analyzed through the Cancer Genome Atlas (TCGA) database. Then, we detected the expression level of MALAT1 in tumor tissues and CRC cell lines and analyzed the relevance of MALAT1 and clinicopathological parameters. In the end, the effect of silencing MALAT1 on the radiosensitivity of CRC cells was investigated, and its potential mechanism was preliminarily illustrated. Results The analysis of TCGA data showed that MALAT1 was closely related to the type of tumor, and high expression of MALAT1 was remarkably relevant to poor outcome. MALAT1 was highly expressed in CRC tissues and cell lines and related to tumor stages. Knockdown of MALAT1 could significantly suppress colony survival, proliferation, and migration and increase apoptosis, G2/M phase arrest, and formation of gamma-H2AX foci in HCT116, whether in combination with X-rays or not. Moreover, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis demonstrated that the regulated proteins were principally enriched in the glycosaminoglycan degradation pathway after silencing MALAT1. Conclusion Our results implied that MALAT1 was highly expressed in CRC and associated with tumor stage and prognosis. Silencing MALAT1 can increase HCT116 cell radiosensitivity, which may be potentially influenced by glycosaminoglycan degradation pathway.
Collapse
Affiliation(s)
- Wenqi Shen
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Qifeng Yu
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Yuwei Pu
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| | - Chungen Xing
- Department of General Surgery, Second Affiliated Hospital of Soochow University, Suzhou, People’s Republic of China
| |
Collapse
|
3
|
King L, Bernaitis N, Christie D, Chess-Williams R, Sellers D, McDermott C, Dare W, Anoopkumar-Dukie S. Drivers of Radioresistance in Prostate Cancer. J Clin Med 2022; 11:jcm11195637. [PMID: 36233505 PMCID: PMC9573022 DOI: 10.3390/jcm11195637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/15/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Prostate cancer (PCa) is the second most commonly diagnosed cancer worldwide. Radiotherapy remains one of the first-line treatments in localised disease and may be used as monotherapy or in combination with other treatments such as androgen deprivation therapy or radical prostatectomy. Despite advancements in delivery methods and techniques, radiotherapy has been unable to totally overcome radioresistance resulting in treatment failure or recurrence of previously treated PCa. Various factors have been linked to the development of tumour radioresistance including abnormal tumour vasculature, oxygen depletion, glucose and energy deprivation, changes in gene expression and proteome alterations. Understanding the biological mechanisms behind radioresistance is essential in the development of therapies that are able to produce both initial and sustained response to radiotherapy. This review will investigate the different biological mechanisms utilised by PCa tumours to drive radioresistance.
Collapse
Affiliation(s)
- Liam King
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD 4215, Australia or
- Ramsay Pharmacy Group, Melbourne, VIC 3004, Australia
| | - Nijole Bernaitis
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD 4215, Australia or
| | - David Christie
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD 4215, Australia or
- GenesisCare, Gold Coast, QLD 4224, Australia
- Faculty of Health Sciences & Medicine, Bond University, Gold Coast, QLD 4229, Australia
| | - Russ Chess-Williams
- Faculty of Health Sciences & Medicine, Bond University, Gold Coast, QLD 4229, Australia
| | - Donna Sellers
- Faculty of Health Sciences & Medicine, Bond University, Gold Coast, QLD 4229, Australia
| | - Catherine McDermott
- Faculty of Health Sciences & Medicine, Bond University, Gold Coast, QLD 4229, Australia
| | - Wendy Dare
- Ramsay Pharmacy Group, Melbourne, VIC 3004, Australia
| | - Shailendra Anoopkumar-Dukie
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD 4215, Australia or
- Correspondence: ; Tel.: +61-(0)-7-5552-7725
| |
Collapse
|
4
|
Rickard AG, Zhuang M, DeRosa CA, Dewhirst MW, Fraser CL, Palmer GM. Quantifying the effects of anesthesia on intracellular oxygen via low-cost portable microscopy using dual-emissive nanoparticles. BIOMEDICAL OPTICS EXPRESS 2022; 13:3869-3881. [PMID: 35991919 PMCID: PMC9352295 DOI: 10.1364/boe.456125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Intracellular oxygenation is an important parameter for numerous biological studies. While there are a variety of methods available for acquiring in vivo measurements of oxygenation in animal models, most are dependent on indirect oxygen measurements, restraints, or anesthetization. A portable microscope system using a Raspberry Pi computer and Pi Camera was developed for attaching to murine dorsal window chambers. Dual-emissive boron nanoparticles were used as an oxygen-sensing probe while mice were imaged in awake and anesthetized states. The portable microscope system avoids altered in vivo measurements due to anesthesia or restraints while enabling increased continual acquisition durations.
Collapse
Affiliation(s)
- Ashlyn G. Rickard
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Meng Zhuang
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | | | - Mark W. Dewhirst
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | | | - Gregory M. Palmer
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
5
|
Bao Y, Zhong J, Shen L, Dai L, Zhou S, Fan J, Yao H, Lu Z. Effect of Glut-1 and HIF-1α double knockout by CRISPR/CAS9 on radiosensitivity in laryngeal carcinoma via the PI3K/Akt/mTOR pathway. J Cell Mol Med 2022; 26:2881-2894. [PMID: 35415942 PMCID: PMC9907005 DOI: 10.1111/jcmm.17303] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 03/13/2022] [Accepted: 03/16/2022] [Indexed: 12/16/2022] Open
Abstract
Hypoxic resistance is the main obstacle to radiotherapy for laryngeal carcinoma. Our previous study indicated that hypoxia-inducible factor 1α (HIF-1α) and glucose transporter 1 (Glut-1) double knockout reduced tumour biological behaviour in laryngeal carcinoma cells. However, their radioresistance mechanism remains unclear. In this study, cell viability was determined by CCK8 assay. Glucose uptake capability was evaluated by measurement of 18 F-fluorodeoxyglucose radioactivity. A tumour xenograft model was established by subcutaneous injection of Tu212 cells. Tumour histopathology was determined by haematoxylin and eosin staining, immunohistochemical staining, and TUNEL assays. Signalling transduction was evaluated by Western blotting. We found that hypoxia induced radioresistance in Tu212 cells accompanied by increased glucose uptake capability and activation of the PI3K/Akt/mTOR pathway. Inhibition of PI3K/Akt/mTOR activity abolished hypoxia-induced radioresistance and glucose absorption. Mechanistic analysis revealed that hypoxia promoted higher expressions of HIF-1α and Glut-1. Moreover, the PI3K/Akt/mTOR pathway was a positive mediator of HIF-1α and/or Glut-1 in the presence of irradiation. HIF-1α and/or Glut-1 knockout significantly reduced cell viability, glucose uptake and PI3K/Akt/mTOR activity, all of which were induced by hypoxia in the presence of irradiation. In vivo analysis showed that knockout of HIF-1α and/or Glut-1 also inhibited tumour growth by promoting cell apoptosis, more robustly compared with the PI3K inhibitor wortmannin, particularly in tumours with knockout of both HIF-1α and Glut-1. HIF-1α and/or Glut-1 knockout also abrogated PI3K/Akt/mTOR signalling transduction in tumour tissues, in a manner similar to wortmannin. HIF-1α and/or Glut-1 knockout facilitated radiosensitivity in laryngeal carcinoma Tu212 cells by regulation of the PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Yang‐Yang Bao
- Department of OtolaryngologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhou CityChina
| | - Jiang‐Tao Zhong
- Department of OtolaryngologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhou CityChina
| | - Li‐Fang Shen
- Department of OtolaryngologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhou CityChina
| | - Li‐Bo Dai
- Department of OtolaryngologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhou CityChina
| | - Shui‐Hong Zhou
- Department of OtolaryngologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhou CityChina
| | - Jun Fan
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineHangzhou CityChina
| | - Hong‐Tian Yao
- Department of PathologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhou CityChina
| | - Zhong‐Jie Lu
- Department of RadiotherapyThe First Affiliated HospitalZhejiang University School of MedicineHangzhou CityChina
| |
Collapse
|
6
|
Is Hypoxia a Factor Influencing PSMA-Directed Radioligand Therapy?-An In Silico Study on the Role of Chronic Hypoxia in Prostate Cancer. Cancers (Basel) 2021; 13:cancers13143429. [PMID: 34298642 PMCID: PMC8307065 DOI: 10.3390/cancers13143429] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/28/2021] [Accepted: 07/03/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Tumor hypoxia is considered a critical factor associated with the resistance of conventional radiotherapy, where the X-ray-induced free radicals lead to DNA damage in a manner that is strongly dependent on the tissue oxygenation. The emerging PSMA-directed radioligand therapy (RLT) employs the α or β particles emitted by the radiopharmaceuticals to kill the tumor cells. In contrast to conventional therapy, the induced DNA damage is less dependent on the oxygenation status. Less attention has been paid to investigating whether tumor hypoxia will influence the efficacy of PSMA-directed RLT. We propose a histology-driven in silico model to quantitatively investigate the influence of tumor hypoxia on the treatment outcome for PSMA-directed RLT with 177Lu and 225Ac. Our finding suggests that hypoxia is a factor to be considered for the application of PSMA-directed RLT. Abstract Radioligand therapy (RLT) targeting prostate specific-membrane antigen (PSMA) is an emerging treatment for metastatic castration-resistant prostate cancer (mCRPC). It administrates 225Ac- or 177Lu-labeled ligands for the targeted killing of tumor cells. Differently from X- or γ-ray, for the emitted α or β particles the ionization of the DNA molecule is less dependent on the tissue oxygenation status. Furthermore, the diffusion range of electrons in a tumor is much larger than the volume typically spanned by hypoxic regions. Therefore, hypoxia is less investigated as an influential factor for PSMA-directed RLT, in particular with β emitters. This study proposes an in silico approach to theoretically investigate the influence of tumor hypoxia on the PSMA-directed RLT. Based on mice histology images, the distribution of the radiopharmaceuticals was simulated with an in silico PBPK-based convection–reaction–diffusion model. Three anti-CD31 immunohistochemistry slices were used to simulate the tumor microenvironment. Ten regions of interest with varying hypoxia severity were analyzed. A kernel-based method was developed for dose calculation. The cell survival probability was calculated according to the linear-quadratic model. The statistical analysis performed on all the regions of interest (ROIs) shows more heterogeneous dose distributions obtained with 225Ac compared to 177Lu. The higher homogeneity of 177Lu-PSMA-ligand treatment is due to the larger range covered by the emitted β particles. The dose-to-tissue histogram (DTH) metric shows that in poorly vascularized ROIs only 10% of radiobiological hypoxic tissue receives the target dose using 177Lu-PSMA-ligand treatment. This percentage drops down to 5% using 225Ac. In highly vascularized ROIs, the percentage of hypoxic tissue receiving the target dose increases to more than 85% and 65% for the 177Lu and 225Ac-PSMA-ligands, respectively. The in silico study demonstrated that the reduced vascularization of the tumor strongly influences the dose delivered by PSMA-directed RLT, especially in hypoxic regions and consequently the treatment outcome.
Collapse
|
7
|
Macedo-Silva C, Benedetti R, Ciardiello F, Cappabianca S, Jerónimo C, Altucci L. Epigenetic mechanisms underlying prostate cancer radioresistance. Clin Epigenetics 2021; 13:125. [PMID: 34103085 PMCID: PMC8186094 DOI: 10.1186/s13148-021-01111-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 06/02/2021] [Indexed: 12/24/2022] Open
Abstract
Radiotherapy (RT) is one of the mainstay treatments for prostate cancer (PCa), a highly prevalent neoplasm among males worldwide. About 30% of newly diagnosed PCa patients receive RT with a curative intent. However, biochemical relapse occurs in 20–40% of advanced PCa treated with RT either alone or in combination with adjuvant-hormonal therapy. Epigenetic alterations, frequently associated with molecular variations in PCa, contribute to the acquisition of a radioresistant phenotype. Increased DNA damage repair and cell cycle deregulation decreases radio-response in PCa patients. Moreover, the interplay between epigenome and cell growth pathways is extensively described in published literature. Importantly, as the clinical pattern of PCa ranges from an indolent tumor to an aggressive disease, discovering specific targetable epigenetic molecules able to overcome and predict PCa radioresistance is urgently needed. Currently, histone-deacetylase and DNA-methyltransferase inhibitors are the most studied classes of chromatin-modifying drugs (so-called ‘epidrugs’) within cancer radiosensitization context. Nonetheless, the lack of reliable validation trials is a foremost drawback. This review summarizes the major epigenetically induced changes in radioresistant-like PCa cells and describes recently reported targeted epigenetic therapies in pre-clinical and clinical settings. ![]()
Collapse
Affiliation(s)
- Catarina Macedo-Silva
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naplei, Italy.,Cancer Biology and Epigenetics Group, Research Center at Portuguese Oncology Institute of Porto, F Bdg, 1st Floor, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal
| | - Rosaria Benedetti
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naplei, Italy
| | - Fortunato Ciardiello
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naplei, Italy
| | - Salvatore Cappabianca
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naplei, Italy
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center at Portuguese Oncology Institute of Porto, F Bdg, 1st Floor, Rua Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal. .,Department of Pathology and Molecular Immunology at School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal.
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Vico L. De Crecchio 7, 80138, Naplei, Italy.
| |
Collapse
|
8
|
He Z, Yuan J, Shen F, Zeng F, Qi P, Zhai Z, Wang Z. Atorvastatin Enhances Inhibitory Effects of Irradiation on Tumor Growth by Reducing MSH2 Expression both in Prostate Cancer Cells and Xenograft Tumor Models. Anticancer Agents Med Chem 2021; 22:1328-1339. [PMID: 34080969 DOI: 10.2174/1871520621666210602133005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/17/2021] [Accepted: 04/05/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Prostate cancer (PCa) is the fourth most common tumor in males. OBJECTIVE To investigate effects of atorvastatin (AS) on PCa cells proliferation and clarify the associated mechanisms. METHODS PCa cell lines were cultured and treated with irradiation (IR) (4 Gy), AS (6 μg/ml), transfected with Bcl-2 siRNA, and then divided into different groups. Xenograft tumor mouse model was established. Bcl-2 and MSH2 gene transcription and protein expression were evaluated using RT-PCR assay and western blot assay. Plate clone formation assay was employed to examine colony formation. MTT assay was used to detect cell viabilities. Flow cytometry analysis was utilized to verify apoptosis. Co-immunoprecipitation and immuno-fluorescence assay were used to identify interaction between Bcl-2 and MSH2. RESULTS IR significantly reduced colony formation, enhanced Bcl-2 and reduced MSH2 gene transcription in PCa cells compared to un-treated cells (p<0.05). AS significantly strengthened radio-therapeutic effects of IR on colony formation, decreased cell apoptosis and increased Bcl-2 gene transcription/protein expression in PCa cells compared to single IR treatment cells (p<0.05). AS combining IR down-regulated MSH2 gene transcription/protein expression in PCa cells compared to single IR treatment cells (p<0.05). Bcl-2 interacted with MSH2 both in PCa cells and tumor tissues administrating with AS. AS enhanced reductive effects of IR on tumor size of Xenograft tumor mice. CONCLUSION Atorvastatin administration enhanced inhibitory effects of IR either on PCa cells or on tumor size of Xenograft tumor mice. The inhibitory effects of atorvastatin were mediated by reducing MSH2 expression and triggering interaction between Bcl-2 and MSH2, both in vitro and in vivo levels.
Collapse
Affiliation(s)
- Zhenhua He
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu Province 730030, China
| | - Jingmin Yuan
- Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu Province 730030, China
| | - Fuhui Shen
- Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu Province 730000, China
| | - Fangang Zeng
- Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu Province 730000, China
| | - Ping Qi
- Clinical Laboratory, Lanzhou University Second Hospital, Lanzhou, Gansu Province 730030, China
| | - Zhenxing Zhai
- Institute of Urology, Lanzhou University Second Hospital, Lanzhou, Gansu Province 730030, China
| | - Zhiping Wang
- Institute of Urology, Lanzhou University Second Hospital, Lanzhou, Gansu Province 730030, China
| |
Collapse
|
9
|
Qian D, Li Q, Zhu Y, Li D. Comprehensive Analysis of Key Proteins Involved in Radioresistance of Prostate Cancer by Integrating Protein-protein Interaction Networks. Curr Bioinform 2021. [DOI: 10.2174/1574893615999200605143510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Radioresistance remains a significant obstacle in the treatment of prostate
cancer (PCa). The mechanisms underlying the radioresistance in PCa remained to be further
investigated.
Methods:
GSE53902 dataset was used in this study to identify radioresistance-related mRNAs.
Protein-protein interaction (PPI) network was constructed based on STRING analysis. DAVID
system was used to predict the potential roles of radioresistance-related mRNAs.
Results:
We screened and re-annotated the GSE53902 dataset to identify radioresistance-related
mRNAs. A total of 445 up-regulated and 1036 down-regulated mRNAs were identified in
radioresistance PCa cells. Three key PPI networks consisting of 81 proteins were further constructed
in PCa. Bioinformatics analysis revealed that these genes were involved in regulating MAP kinase
activity, response to hypoxia, regulation of the apoptotic process, mitotic nuclear division, and
regulation of mRNA stability. Moreover, we observed that radioresistance-related mRNAs, such as
PRC1, RAD54L, PIK3R3, ASB2, FBXO32, LPAR1, RNF14, and UBA7, were dysregulated and
correlated to the survival time in PCa.
Conclusion:
We thought this study would be useful to understand the mechanisms underlying
radioresistance of PCa and identify novel prognostic markers for PCa.
Collapse
Affiliation(s)
- Duocheng Qian
- Department of Urology, Shanghai Fourth People’s Hospital, Shanghai, 200081, China
| | - Quan Li
- Department of Urology, Shanghai Fourth People’s Hospital, Shanghai, 200081, China
| | - Yansong Zhu
- Department of Urology, Shanghai Fourth People’s Hospital, Shanghai, 200081, China
| | - Dujian Li
- Department of Urology, Shanghai Fourth People’s Hospital, Shanghai, 200081, China
| |
Collapse
|
10
|
Hypoxia-Induced Cancer Cell Responses Driving Radioresistance of Hypoxic Tumors: Approaches to Targeting and Radiosensitizing. Cancers (Basel) 2021; 13:cancers13051102. [PMID: 33806538 PMCID: PMC7961562 DOI: 10.3390/cancers13051102] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/21/2021] [Accepted: 02/25/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Some regions of aggressive malignancies experience hypoxia due to inadequate blood supply. Cancer cells adapting to hypoxic conditions somehow become more resistant to radiation exposure and this decreases the efficacy of radiotherapy toward hypoxic tumors. The present review article helps clarify two intriguing points: why hypoxia-adapted cancer cells turn out radioresistant and how they can be rendered more radiosensitive. The critical molecular targets associated with intratumoral hypoxia and various approaches are here discussed which may be used for sensitizing hypoxic tumors to radiotherapy. Abstract Within aggressive malignancies, there usually are the “hypoxic zones”—poorly vascularized regions where tumor cells undergo oxygen deficiency through inadequate blood supply. Besides, hypoxia may arise in tumors as a result of antiangiogenic therapy or transarterial embolization. Adapting to hypoxia, tumor cells acquire a hypoxia-resistant phenotype with the characteristic alterations in signaling, gene expression and metabolism. Both the lack of oxygen by itself and the hypoxia-responsive phenotypic modulations render tumor cells more radioresistant, so that hypoxic tumors are a serious challenge for radiotherapy. An understanding of causes of the radioresistance of hypoxic tumors would help to develop novel ways for overcoming this challenge. Molecular targets for and various approaches to radiosensitizing hypoxic tumors are considered in the present review. It is here analyzed how the hypoxia-induced cellular responses involving hypoxia-inducible factor-1, heat shock transcription factor 1, heat shock proteins, glucose-regulated proteins, epigenetic regulators, autophagy, energy metabolism reprogramming, epithelial–mesenchymal transition and exosome generation contribute to the radioresistance of hypoxic tumors or may be inhibited for attenuating this radioresistance. The pretreatments with a multitarget inhibition of the cancer cell adaptation to hypoxia seem to be a promising approach to sensitizing hypoxic carcinomas, gliomas, lymphomas, sarcomas to radiotherapy and, also, liver tumors to radioembolization.
Collapse
|
11
|
Dong D, Fu Y, Chen F, Zhang J, Jia H, Li J, Wang H, Wen J. Hyperoxia sensitizes hypoxic HeLa cells to ionizing radiation by downregulating HIF‑1α and VEGF expression. Mol Med Rep 2021; 23:62. [PMID: 33215223 PMCID: PMC7706008 DOI: 10.3892/mmr.2020.11700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/02/2020] [Indexed: 12/16/2022] Open
Abstract
The current study investigated whether hyperoxia may reverse hypoxia‑induced radioresistance (RR) in cervical cancer. Human HeLa cells exposed to hypoxic, normoxic or hyperoxic conditions were irradiated using X‑rays. Cell proliferation and apoptosis were analyzed using MTT assays and flow cytometry. The expression levels of hypoxia‑inducible factor‑1α (HIF‑1α), VEGF165, VEGFRs, Akt and ERK were measured via western blotting and/or ELISA. The results demonstrated that hypoxia stimulated HIF‑1α and VEGF expression, and induced RR in HeLa cells. The administration of recombinant VEGF or the forced expression of VEGF promoted RR, whereas inactivating HIF‑1α or blocking the VEGF‑VEGFR interaction abrogated hypoxia‑induced RR. Notably, hyperoxia decreased the level of hypoxia‑stimulated HIF‑1α and VEGF, and enhanced radiosensitivity in hypoxic HeLa cells. The results demonstrated that hyperoxia suppressed the hypoxia‑activated Akt and ERK signaling pathways in HeLa cells. Therefore, a high O2 concentration may be considered as a radiotherapeutic sensitizer for hypoxic HeLa cells.
Collapse
Affiliation(s)
- Dan Dong
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yan Fu
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Feng Chen
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jing Zhang
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Haiyan Jia
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jia Li
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Huailin Wang
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jihong Wen
- Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
12
|
Zhang X, Di C, Chen Y, Wang J, Su R, Huang G, Xu C, Chen X, Long F, Yang H, Zhang H. Multilevel regulation and molecular mechanism of poly (rC)-binding protein 1 in cancer. FASEB J 2020; 34:15647-15658. [PMID: 33058239 DOI: 10.1096/fj.202000911r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/02/2020] [Accepted: 09/15/2020] [Indexed: 01/07/2023]
Abstract
Poly (rC)-binding protein 1 (PCBP1), an RNA- or DNA-binding protein with a relative molecular weight of 38 kDa, which is characterized by downregulation in many cancer types. Numerous cases have indicated that PCBP1 could be considered as a tumor suppressor to inhibit tumorigenesis, development, and metastasis. In the current review, we described the multilevel regulatory roles of PCBP1, including gene transcription, alternative splicing, and translation of many cancer-related genes. Additionally, we also provided a brief overview about the inhibitory effect of PCBP1 on most common tumors. More importantly, we summarized the current research status about PCBP1 in hypoxic microenvironment, autophagy, apoptosis, and chemotherapy of cancer cells, aiming to clarify the molecular mechanisms of PCBP1 in cancer. Taken together, in-depth study of PCBP1 in cancer may provide new ideas for cancer therapy.
Collapse
Affiliation(s)
- Xuetian Zhang
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Cuixia Di
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Yuhong Chen
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Ruowei Su
- The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Guomin Huang
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Caipeng Xu
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaohua Chen
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Feng Long
- Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Hongying Yang
- School of Radiation Medicine and Protection, Medical College of Soochow, Soochow, China
| | - Hong Zhang
- Bio-Medical Research Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Cellular Stress Responses in Radiotherapy. Cells 2019; 8:cells8091105. [PMID: 31540530 PMCID: PMC6769573 DOI: 10.3390/cells8091105] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/11/2019] [Accepted: 09/18/2019] [Indexed: 12/15/2022] Open
Abstract
Radiotherapy is one of the major cancer treatment strategies. Exposure to penetrating radiation causes cellular stress, directly or indirectly, due to the generation of reactive oxygen species, DNA damage, and subcellular organelle damage and autophagy. These radiation-induced damage responses cooperatively contribute to cancer cell death, but paradoxically, radiotherapy also causes the activation of damage-repair and survival signaling to alleviate radiation-induced cytotoxic effects in a small percentage of cancer cells, and these activations are responsible for tumor radio-resistance. The present study describes the molecular mechanisms responsible for radiation-induced cellular stress response and radioresistance, and the therapeutic approaches used to overcome radioresistance.
Collapse
|
14
|
Mortezaee K, Shabeeb D, Musa AE, Najafi M, Farhood B. Metformin as a Radiation Modifier; Implications to Normal Tissue Protection and Tumor Sensitization. CURRENT CLINICAL PHARMACOLOGY 2019; 14:41-53. [PMID: 30360725 DOI: 10.2174/1574884713666181025141559] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Nowadays, ionizing radiation is used for several applications in medicine, industry, agriculture, and nuclear power generation. Besides the beneficial roles of ionizing radiation, there are some concerns about accidental exposure to radioactive sources. The threat posed by its use in terrorism is of global concern. Furthermore, there are several side effects to normal organs for patients who had undergone radiation treatment for cancer. Hence, the modulation of radiation response in normal tissues was one of the most important aims of radiobiology. Although, so far, several agents have been investigated for protection and mitigation of radiation injury. Agents such as amifostine may lead to severe toxicity, while others may interfere with radiation therapy outcomes as a result of tumor protection. Metformin is a natural agent that is well known as an antidiabetic drug. It has shown some antioxidant effects and enhances DNA repair capacity, thereby ameliorating cell death following exposure to radiation. Moreover, through targeting endogenous ROS production within cells, it can mitigate radiation injury. This could potentially make it an effective radiation countermeasure. In contrast to other radioprotectors, metformin has shown modulatory effects through induction of several genes such as AMPK, which suppresses reduction/ oxidation (redox) reactions, protects cells from accumulation of unrepaired DNA, and attenuates initiation of inflammation as well as fibrotic pathways. Interestingly, these properties of metformin can sensitize cancer cells to radiotherapy. CONCLUSION In this article, we aimed to review the interesting properties of metformin such as radioprotection, radiomitigation and radiosensitization, which could make it an interesting adjuvant for clinical radiotherapy, as well as an interesting candidate for mitigation of radiation injury after a radiation disaster.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Dheyauldeen Shabeeb
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences (International Campus), Tehran, Iran
- Department of Physiology, College of Medicine, University of Misan, Misan, Iraq
| | - Ahmed E Musa
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences (International Campus), Tehran, Iran
- Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
15
|
Sensitization of prostate cancer to radiation therapy: Molecules and pathways to target. Radiother Oncol 2018; 128:283-300. [PMID: 29929859 DOI: 10.1016/j.radonc.2018.05.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 05/01/2018] [Accepted: 05/17/2018] [Indexed: 12/11/2022]
Abstract
Radiation therapy is used to treat cancer by radiation-induced DNA damage. Despite the best efforts to eliminate cancer, some cancer cells survive irradiation, resulting in cancer progression or recurrence. Alteration in DNA damage repair pathways is common in cancers, resulting in modulation of their response to radiation. This article focuses on the recent findings about molecules and pathways that potentially can be targeted to sensitize prostate cancer cells to ionizing radiation, thereby achieving an improved therapeutic outcome.
Collapse
|
16
|
Personalising Prostate Radiotherapy in the Era of Precision Medicine: A Review. J Med Imaging Radiat Sci 2018; 49:376-382. [PMID: 30514554 DOI: 10.1016/j.jmir.2018.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/27/2017] [Accepted: 01/18/2018] [Indexed: 12/14/2022]
Abstract
Prostate cancer continues to be the most commonly diagnosed cancer among Canadian men. The introduction of routine screening and advanced treatment options have allowed for a decrease in prostate cancer-related mortality, but outcomes following treatment continue to vary widely. In addition, the overtreatment of indolent prostate cancers causes unnecessary treatment toxicities and burdens health care systems. Accurate identification of patients who should undergo aggressive treatment, and those which should be managed more conservatively, needs to be implemented. More tumour and patient information is needed to stratify patients into low-, intermediate-, and high-risk groups to guide treatment options. This paper reviews the current literature on personalised prostate cancer management, including targeting tumour hypoxia, genomic and radiomic prognosticators, and radiobiological tumour targeting. A review of the current applications and future directions for the use of big data in radiation therapy is also presented. Prostate cancer management has a lot to gain from the implementation of personalised medicine into practice. Using specific tumour and patient characteristics to personalise prostate radiotherapy in the era of precision medicine will improve survival, decrease unnecessary toxicities, and minimise the heterogeneity of outcomes following treatment.
Collapse
|
17
|
Phosphorylation of PI3K regulatory subunit p85 contributes to resistance against PI3K inhibitors in radioresistant head and neck cancer. Oral Oncol 2018; 78:56-63. [PMID: 29496059 DOI: 10.1016/j.oraloncology.2018.01.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/09/2018] [Accepted: 01/18/2018] [Indexed: 12/27/2022]
Abstract
OBJECTIVES PI3K/Akt/mTOR pathway is commonly activated in most cancers and is correlated with resistance to anticancer therapies such as radiotherapy. Therefore, PI3K is an attractive target for treating PI3K-associated cancers. MATERIAL AND METHODS We investigated the basal expression and the expression after treatment of PI3K inhibitor or Src inhibitor of PI3K/Akt pathway-related proteins in AMC-HN3, AMC-HN3R, HN30 and HN31 cells by performing immunoblotting analysis. The sensitivity to PI3K inhibitors or Src inhibitor was analyzed by MTT assay and clonogenic assay. To determine the antitumoral activity of combination treatment with PI3K inhibitor and Src inhibitor, we used using xenograft mouse model. RESULTS We found that PI3K regulatory subunit p85 was predominantly phosphorylated in radioresistant head and neck cancer cell line (HN31), which showed resistance to PI3K inhibitors. Next, we investigated mechanism through which PI3K p85 phosphorylation modulated response to PI3K inhibitors. Of note, constitutive activation of Src was found in HN31 cells and upon PI3K inhibitor treatment, restoration of p-Src was occurred. Src inhibitor improved the efficacy of PI3K inhibitor treatment and suppressed the reactivation of both Src and PI3K p85 in HN31 cells. Furthermore, downregulation of PI3K p85 expression by using a specific siRNA suppressed Src phosphorylation. CONCLUSIONS Together, our results imply the novel role of the PI3K regulatory subunit p85 in the development of resistance to PI3K inhibitors and suggest the presence of a regulatory loop between PI3K p85 and Src in radioresistant head and neck cancers with constitutively active PI3K/Akt pathway.
Collapse
|
18
|
Deep G, Panigrahi GK. Hypoxia-Induced Signaling Promotes Prostate Cancer Progression: Exosomes Role as Messenger of Hypoxic Response in Tumor Microenvironment. Crit Rev Oncog 2018; 20:419-34. [PMID: 27279239 DOI: 10.1615/critrevoncog.v20.i5-6.130] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Prostate cancer (PCA) is the leading malignancy in men and the second leading cause of cancer-related deaths. Hypoxia (low O2 condition) is considered an early event in prostate carcinogenesis associated with an aggressive phenotype. In fact, clinically, hypoxia and hypoxia-related biomarkers are associated with treatment failure and disease progression. Hypoxia-inducible factor 1 (HIF-1) is the key factor that is activated under hypoxia, and mediates adaptation of cells to hypoxic conditions through regulating the expression of genes associated with angiogenesis, epithelial-to-mesenchymal transition (EMT), metastasis, survival, proliferation, metabolism, sternness, hormone-refractory progression, and therapeutic resistance. Besides HIF-1, several other signaling pathways including PI3K/Akt/mTOR, NADPH oxidase (NOX), Wnt/b-catenin, and Hedgehog are activated in cancer cells under hypoxic conditions, and also contribute in hypoxia-induced biological effects in HIF-1-dependent and -independent manners. Hypoxic cancer cells cause extensive changes in the tumor microenvironment both local and distant, and recent studies have provided ample evidence supporting the crucial role of nanosized vesicles "exosomes" in mediating hypoxia-induced tumor microenvironment remodeling. Exosomes' role has been reported in hypoxia-induced angiogenesis, sternness, activation of cancer-associated fibroblasts (CAFs), and EMT. Together, existing literature suggests that hypoxia plays a predominant role in PCA growth and progression, and PCA could be effectively prevented and treated via targeting hypoxia/hypoxia-related signaling pathways.
Collapse
Affiliation(s)
- Gagan Deep
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO; University of Colorado Cancer Center, University of Colorado Denver, Aurora, CO
| | - Gati K Panigrahi
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO
| |
Collapse
|
19
|
Atorvastatin enhances radiosensitivity in hypoxia-induced prostate cancer cells related with HIF-1α inhibition. Biosci Rep 2017; 37:BSR20170340. [PMID: 28760843 PMCID: PMC5563539 DOI: 10.1042/bsr20170340] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/10/2017] [Accepted: 07/31/2017] [Indexed: 12/26/2022] Open
Abstract
Hypoxia could enhance radioresistance in prostate cancer cells through up-regulating HIF-1α, which could be inhibited by statins in several cancer cells. However, this effect of statins in prostate cancer remains unclear. In the present study, we aim to investigate the effect of atorvastatin on HIF-1α expression and radiosensitivity in prostate cancer cells. The hypoxia-induced human prostate cancer PC3 cells were generated by incubating with 5% O2 for 24 h. The cell viability and apoptosis were respectively analyzed by cell counting kit-8 (CCK-8) assay and flow cytometry. The HIF-1α protein expression was assessed by Western blotting. HIF-1α expression in PC3 cells was significantly increased after incubating with 5% O2 for 24 h. The viability of hypoxia-induced PC3 cells was inhibited by a higher dose of irradiation than control cells. The viability of hypoxia-induced PC3 cells were inhibited by astorvastatin with a higher concentration than control cells. Astorvastatin reduced the HIF-1α protein expression in hypoxia-induced PC3 cells, and induced apoptosis of both control and hypoxia-induced cells with and without irradiation. Atorvastatin could enhance radiosensitivity in hypoxia-induced prostate cancer cells, which may be related with inhibition of HIF-1α protein.
Collapse
|
20
|
Zhang WJ, Chen C, Zhou ZH, Gao ST, Tee TJ, Yang LQ, Xu YY, Pang TH, Xu XY, Sun Q, Feng M, Wang H, Lu CL, Wu GZ, Wu S, Guan WX, Xu GF. Hypoxia-inducible factor-1 alpha Correlates with Tumor-Associated Macrophages Infiltration, Influences Survival of Gastric Cancer Patients. J Cancer 2017; 8:1818-1825. [PMID: 28819379 PMCID: PMC5556645 DOI: 10.7150/jca.19057] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 05/10/2017] [Indexed: 12/12/2022] Open
Abstract
Background: Hypoxia was a common feature for accelerating tumor metastasis by both inducting epithelial-mesenchymal transition (EMT) of tumor cells and polarization of tumor-associated macrophages (TAMs). The association and roles between hypoxia, EMT and TAMs in the biological behavior of gastric cancer (GC) for the time being recurrence is unclear. Material and methods: hypoixa by expression of hypoxia-inducible factor-1 alpha (HIF-1α), polarized functional status of infiltrated TAMs by immunohistochemical staining of CD68 and CD163, and the expression of E-cadherin as EMT property had been evaluated in 236 patients consecutive with histologically confirmed GC. Clinical significance was assessed for all these patients. Results: High expression of HIF-1α was found in patients with aggressive features, especially for recurrent patients. High infiltration of TAMs and abnormal expression of EMT-marker were also related to aggressive characteristics and predicted poor prognosis in GC. Meanwwhile, there existed a significant correlation among expression of HIF-1α, infiltration of TAMs and EMT marker in GC tissues. Multivariate Cox analysis revealed that high expression of HIF-1α combined TAMs infiltration were independent prognostic factors for disease-specific survival rate. Conclusion: HIF-1α is an unfavorable indicator for prognosis, may promote tumor progression through the induction of EMT and establishment of a pro-tumor immunosuppressive microenvironment. Further investigation into the therapeutic effects of blocking hypoxia is possible a potential strategy for GC treatment.
Collapse
Affiliation(s)
- Wei-Jie Zhang
- Department of General surgery, Drum Tower Clinical College of Nanjing Medical University, Nanjing, Jiangsu Province, China.,Department of General surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Cheng Chen
- Department of Radiotherapy, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zhi-Hua Zhou
- Department of Pathology, 101th Hospital of PLA, Wuxi, Jiangsu Providence, China
| | - Shan-Ting Gao
- Department of General surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Teong Jin Tee
- Department of Medical, Gastroenterology unit, Nilai Medical Center, Nilai, Negeri Sembilan, Malaysia
| | - Liu-Qing Yang
- Department of Gastroenterology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Yuan-Yuan Xu
- Department of Gastroenterology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Tao-Hong Pang
- Department of Gastroenterology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Xin-Yun Xu
- Department of Pathology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Qi Sun
- Department of Pathology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Min Feng
- Department of General surgery, Drum Tower Clinical College of Nanjing Medical University, Nanjing, Jiangsu Province, China.,Department of General surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Hao Wang
- Department of General surgery, Drum Tower Clinical College of Nanjing Medical University, Nanjing, Jiangsu Province, China.,Department of General surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Chun-Lei Lu
- Department of General surgery, 101th Hospital of PLA, Wuxi, Jiangsu Providence, China
| | - Guo-Zhong Wu
- Department of General surgery, 101th Hospital of PLA, Wuxi, Jiangsu Providence, China
| | - Sheng Wu
- Department of General surgery, 101th Hospital of PLA, Wuxi, Jiangsu Providence, China
| | - Wen-Xian Guan
- Department of General surgery, Drum Tower Clinical College of Nanjing Medical University, Nanjing, Jiangsu Province, China.,Department of General surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Gui-Fang Xu
- Department of Gastroenterology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| |
Collapse
|
21
|
He G, Di X, Sun X, Yan J, Zhang S. Analysis of radio-sensitization patents in China from 2006 to 2015. Expert Opin Ther Pat 2017. [PMID: 28621575 DOI: 10.1080/13543776.2017.1344222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Radiotherapy is by means of ionizing radiation to kill tumor cells, inhibit and control the growth, metastasis and diffusion of tumor cells. During the last few decades, application of radiotherapy combined with chemotherapy and surgery are clinical mainstream treatments. However, little is known what radio-sensitization agents have been patented in China and what the potential drug candidates for patents are in China. Areas covered: This reviews covers research and patent literature of the last 10 years dealing with the discovery and development of novel radio-sensitization patents in China. Expert opinion: The 94 radio-sensitization patents granted from 2006 to 2015 mainly focus on six types of products. They are: traditional Chinese medicines (TCM), synthetic compounds, combinations of synthetic compounds and TCM, biological products, medical apparatus and others. In the course of tumor treatment, radiotherapy occupies an irreplaceable position. Previously believed that due to the prevalence of hypoxic cells in solid tumors, most of the tumor exist a certain degree of radiation resistance. To find effective ways to improve the sensitivity of tumor cells to radiation therapy has become a focus in scientific research and clinical treatment. So radiation sensitivity has been proposed and widely studied.
Collapse
Affiliation(s)
- Guofeng He
- a Department of Radiation Oncology , the First Affiliated Hospital of Nanjing Medical University , Nanjing , P. R. China
| | - Xiaoke Di
- a Department of Radiation Oncology , the First Affiliated Hospital of Nanjing Medical University , Nanjing , P. R. China
| | - Xinchen Sun
- a Department of Radiation Oncology , the First Affiliated Hospital of Nanjing Medical University , Nanjing , P. R. China
| | - Jingjing Yan
- a Department of Radiation Oncology , the First Affiliated Hospital of Nanjing Medical University , Nanjing , P. R. China
| | - Shu Zhang
- a Department of Radiation Oncology , the First Affiliated Hospital of Nanjing Medical University , Nanjing , P. R. China.,b Clinical Research Center , the First Affiliated Hospital of Nanjing Medical University , Nanjing , P. R. China
| |
Collapse
|
22
|
Narayan V, Vapiwala N, Mick R, Subramanian P, Christodouleas JP, Bekelman JE, Deville C, Rajendran R, Haas NB. Phase 1 Trial of Everolimus and Radiation Therapy for Salvage Treatment of Biochemical Recurrence in Prostate Cancer Patients Following Prostatectomy. Int J Radiat Oncol Biol Phys 2017; 97:355-361. [DOI: 10.1016/j.ijrobp.2016.10.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/28/2016] [Accepted: 10/12/2016] [Indexed: 12/15/2022]
|
23
|
Li YG, Liang NX, Qin YZ, Ma DJ, Huang CJ, Liu L, Li SQ. Effects of RNAi-mediated TUSC3 silencing on radiation-induced autophagy and radiation sensitivity of human lung adenocarcinoma cell line A549 under hypoxic condition. Tumour Biol 2016; 37:16357–16365. [PMID: 27900564 DOI: 10.1007/s13277-016-5458-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 09/23/2016] [Indexed: 12/13/2022] Open
Abstract
This study examined the effects of RNAi-mediated TUSC3 silencing on radiation-induced autophagy and radiation sensitivity of human lung adenocarcinoma cell line A549 under hypoxic condition. Different CoCl2 concentrations were used to treat A549 cells and establish a CoCl2-induced hypoxic model of A549 cells. MTT and clone formation assays were used to determine the effects of different concentrations of CoCl2 on the growth and proliferation of A549 cells treated by different doses of X-ray irradiation. The siRNA-expressing vector was transfected by liposomes and for silencing of TUSC3. Flow cytometry was used to measure cell cycle changes and apoptosis rate. Real-time quantitative polymerase chain reaction (qRT-PCR) assay was performed to detect the expression of TUSC3 mRNA. Western blotting was applied to detect the changes of TUSC3, LC3, and p62 proteins under different CoCl2 concentrations and after siRNA silencing of TUSC3. The TUSC3 levels in A549 cells increased under hypoxic conditions in a dose-dependent manner (P < 0.05). Hypoxia inhibited the growth and proliferation of A549 cells and promoted apoptosis (P < 0.05). With an increasing dose of X-ray irradiation, A549 cells showed significantly increased growth and proliferation and decreased apoptosis (P < 0.05). After siRNA-TUSC3 was transfected by liposome, the TUSC3 level was substantially inhibited (P < 0.05). Silencing TUSC3 inhibited A549 cell growth and proliferation after radiotherapy under hypoxic condition, promoted apoptosis, increased G0/G1 phase cells, and reduced S phase cells (all P < 0.05). Hypoxia and radiation along with different CoCl2 concentrations could induce cell autophagy, which increased with concentration and dose, while silencing the TUSC3 gene inhibited autophagy (all P < 0.05). RNAi silencing of TUSC3 inhibited growth and proliferation, while enhanced apoptosis and radiation sensitivity of hypoxic A549 lung adenocarcinoma cells.
Collapse
Affiliation(s)
- Ya-Guang Li
- Department of Thoracic Surgery, Peking Union Medical College Hospital, No. 1 Shuaifuyuan, Wangfujing Street, Dongcheng District, Beijing, 100730, People's Republic of China
| | - Nai-Xin Liang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, No. 1 Shuaifuyuan, Wangfujing Street, Dongcheng District, Beijing, 100730, People's Republic of China
| | - Ying-Zhi Qin
- Department of Thoracic Surgery, Peking Union Medical College Hospital, No. 1 Shuaifuyuan, Wangfujing Street, Dongcheng District, Beijing, 100730, People's Republic of China
| | - Dong-Jie Ma
- Department of Thoracic Surgery, Peking Union Medical College Hospital, No. 1 Shuaifuyuan, Wangfujing Street, Dongcheng District, Beijing, 100730, People's Republic of China
| | - Chang-Jin Huang
- Plastic Surgery Hospital, CAMS, PUMC, Beijing, 100144, People's Republic of China
| | - Lei Liu
- Department of Thoracic Surgery, Peking Union Medical College Hospital, No. 1 Shuaifuyuan, Wangfujing Street, Dongcheng District, Beijing, 100730, People's Republic of China
| | - Shan-Qing Li
- Department of Thoracic Surgery, Peking Union Medical College Hospital, No. 1 Shuaifuyuan, Wangfujing Street, Dongcheng District, Beijing, 100730, People's Republic of China.
| |
Collapse
|
24
|
Jonsson M, Ragnum HB, Julin CH, Yeramian A, Clancy T, Frikstad KAM, Seierstad T, Stokke T, Matias-Guiu X, Ree AH, Flatmark K, Lyng H. Hypoxia-independent gene expression signature associated with radiosensitisation of prostate cancer cell lines by histone deacetylase inhibition. Br J Cancer 2016; 115:929-939. [PMID: 27599042 PMCID: PMC5061908 DOI: 10.1038/bjc.2016.278] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/22/2016] [Accepted: 08/11/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Histone deacetylase inhibitors (HDACis) like vorinostat are promising radiosensitisers in prostate cancer, but their effect under hypoxia is not known. We investigated gene expression associated with radiosensitisation of normoxic and hypoxic prostate cancer cells by vorinostat. METHODS Cells were exposed to vorinostat under normoxia or hypoxia and subjected to gene expression profiling before irradiation and clonogenic survival analysis. RESULTS Pretreatment with vorinostat led to radiosensitisation of the intrinsically radioresistant DU 145 cells, but not the radiosensitive PC-3 and 22Rv1 cells, and was independent of hypoxia status. Knockdown experiments showed that the sensitisation was not caused by repression of hypoxia-inducible factor HIF1 or tumour protein TP53. Global deregulation of DNA repair and chromatin organisation genes was associated with radiosensitisation under both normoxia and hypoxia. A radiosensitisation signature with expression changes of 56 genes was generated and valid for both conditions. For eight signature genes, baseline expression also correlated with sensitisation, showing potential as pretreatment biomarker. The hypoxia independence of the signature was confirmed in a clinical data set. CONCLUSIONS Pretreatment with HDACi may overcome radioresistance of hypoxic prostate tumours by similar mechanisms as under normoxia. We propose a gene signature to predict radiosensitising effects independent of hypoxia status.
Collapse
Affiliation(s)
- Marte Jonsson
- Department of Radiation Biology, Norwegian Radium Hospital, Oslo University Hospital, Pb 4950, Nydalen, 0424 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Harald Bull Ragnum
- Department of Radiation Biology, Norwegian Radium Hospital, Oslo University Hospital, Pb 4950, Nydalen, 0424 Oslo, Norway
| | - Cathinka Halle Julin
- Department of Radiation Biology, Norwegian Radium Hospital, Oslo University Hospital, Pb 4950, Nydalen, 0424 Oslo, Norway
| | - Andree Yeramian
- Department of Pathology and Molecular Genetics HUAV, University of Lleida, Lleida, Spain
| | - Trevor Clancy
- Department of Tumor Biology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Kari-Anne Myrum Frikstad
- Department of Radiation Biology, Norwegian Radium Hospital, Oslo University Hospital, Pb 4950, Nydalen, 0424 Oslo, Norway
| | - Therese Seierstad
- Department of Radiology and Nuclear Medicine, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Trond Stokke
- Department of Radiation Biology, Norwegian Radium Hospital, Oslo University Hospital, Pb 4950, Nydalen, 0424 Oslo, Norway
| | - Xavier Matias-Guiu
- Department of Pathology and Molecular Genetics HUAV, University of Lleida, Lleida, Spain
| | - Anne Hansen Ree
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Tumor Biology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
| | - Kjersti Flatmark
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Tumor Biology, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
- Department of Gastroenterological Surgery, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Heidi Lyng
- Department of Radiation Biology, Norwegian Radium Hospital, Oslo University Hospital, Pb 4950, Nydalen, 0424 Oslo, Norway
| |
Collapse
|
25
|
Gu H, Liu M, Ding C, Wang X, Wang R, Wu X, Fan R. Hypoxia-responsive miR-124 and miR-144 reduce hypoxia-induced autophagy and enhance radiosensitivity of prostate cancer cells via suppressing PIM1. Cancer Med 2016; 5:1174-82. [PMID: 26990493 PMCID: PMC4924376 DOI: 10.1002/cam4.664] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 01/14/2016] [Accepted: 01/17/2016] [Indexed: 02/06/2023] Open
Abstract
Cancer cells in hypoxia usually make adaptive changes in cellular metabolism, such as altered autophagy. This might be a cause of enhanced radioresistance in some types of cancer. In this study, we investigated hypoxia‐responsive miRNAs in two prostate cancer cell lines (DU145 and PC3). This study firstly reported that hypoxia induces further downregulation of miR‐124 and miR‐144, which might be a result of impaired dicer expression. These two miRNAs can simultaneously target 3′UTR of PIM1. Functional study showed that miR‐124 or miR‐144 overexpression can inhibit hypoxia‐induced autophagy and enhance radiosensitivity at least via downregulating PIM1. Therefore, hypoxia induced miR‐124 and miR‐144 downregulation may contribute to a prosurvival mechanism of prostate cancer cells to hypoxia and irradiation at least through attenuated suppressing of PIM1. This finding presents a potential therapeutic target for prostate cancer.
Collapse
Affiliation(s)
- Hao Gu
- Department of Radiation OncologyThe First Affiliated Hospital of Zhengzhou UniversityHenan450052China
| | - Mingzhu Liu
- Department of Traditional Chinese MedicineThe First Affiliated Hospital of Zhengzhou UniversityHenan450052China
| | - Changmao Ding
- Department of RadiologyThe First Affiliated Hospital of Zhengzhou UniversityHenan450052China
| | - Xin Wang
- Department of Radiation OncologyThe First Affiliated Hospital of Zhengzhou UniversityHenan450052China
| | - Rui Wang
- Department of Radiation OncologyThe First Affiliated Hospital of Zhengzhou UniversityHenan450052China
| | - Xinyu Wu
- Department of Nuclear MedicineHenan Provincial People's Hospital & the People's Hospital of Zhengzhou UniversityHenan450003China
| | - Ruitai Fan
- Department of Radiation OncologyThe First Affiliated Hospital of Zhengzhou UniversityHenan450052China
| |
Collapse
|
26
|
Li X, Lu P, Li B, Yang R, Chu Y, Zhang Z, Wan H, Niu C, Wang C, Luo K. Sensitization of hepatocellular carcinoma cells to irradiation by miR‑34a through targeting lactate dehydrogenase‑A. Mol Med Rep 2016; 13:3661-7. [PMID: 26956717 DOI: 10.3892/mmr.2016.4974] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 10/14/2015] [Indexed: 11/06/2022] Open
Abstract
Radiation is a therapeutic strategy for the treatment of cancer, and is also used for the treatment of hepatocellular carcinoma. MicroRNAs (miRs) are endogenous, non‑coding single‑stranded RNA molecules, which regulate gene expression at the post‑transcriptional level. In the present study, the roles of miR‑34a‑mediated glycolysis in radiation sensitivity were investigated. By establishing a radioresistant liver cancer cell line, the present study compared the expression level of miR‑34a from radiosensitive and radioresistant cells using the reverse transcription‑quantitative polymerase chain reaction. The glucose uptake and lactate production were also compared between the two types of cells. The results demonstrated that miR‑34a acted as a tumor suppressor in human hepatocellular cancer cells. Following comparison of radiosensitive and radioresistant cancer cells, the results of the present study demonstrated that miR‑34a was negatively correlated with radiation resistance; and levels of miR‑34a were significantly downregulated in the HepG2 radioresistant cells. Furthermore, the rate of glycolysis in the radioresistant cells was elevated, and there was evidence that glucose uptake and lactate production increased. Lactate dehydrogenase A (LDHA), which is a key enzyme in the glycolysis signaling pathway, was found to be a target of miR‑34a in hepatocellular cancer cells. Notably, the overexpression of miR‑34a re‑sensitized HepG2 radioresistant cells to radiation treatment by inhibiting LDHA. The results of the present study revealed a negative correlation between miR‑34a and glycolysis, caused by the targeting of LDHA‑34a, providing a novel mechanism for miR‑34a‑mediated radioresistance.
Collapse
Affiliation(s)
- Xiaogang Li
- Department of General Surgery, The Second People's Hospital of Yunnan Province, Fourth Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650021, P.R. China
| | - Ping Lu
- Department of Vascular Surgery, The Second People's Hospital of Yunnan Province, Fourth Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650021, P.R. China
| | - Bo Li
- Department of General Surgery, The Second People's Hospital of Yunnan Province, Fourth Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650021, P.R. China
| | - Rong Yang
- Department of General Surgery, The Second People's Hospital of Yunnan Province, Fourth Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650021, P.R. China
| | - Yan Chu
- Department of General Surgery, The Second People's Hospital of Yunnan Province, Fourth Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650021, P.R. China
| | - Zhiping Zhang
- Department of General Surgery, The Second People's Hospital of Yunnan Province, Fourth Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650021, P.R. China
| | - Hongwei Wan
- Department of General Surgery, The Second People's Hospital of Yunnan Province, Fourth Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650021, P.R. China
| | - Chao Niu
- Department of General Surgery, The Second People's Hospital of Yunnan Province, Fourth Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650021, P.R. China
| | - Chunxiao Wang
- Department of General Surgery, The Second People's Hospital of Yunnan Province, Fourth Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650021, P.R. China
| | - Kaiyuan Luo
- Department of General Surgery, The Second People's Hospital of Yunnan Province, Fourth Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650021, P.R. China
| |
Collapse
|
27
|
Chang L, Graham PH, Ni J, Hao J, Bucci J, Cozzi PJ, Li Y. Targeting PI3K/Akt/mTOR signaling pathway in the treatment of prostate cancer radioresistance. Crit Rev Oncol Hematol 2015; 96:507-17. [PMID: 26253360 DOI: 10.1016/j.critrevonc.2015.07.005] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 05/20/2015] [Accepted: 07/08/2015] [Indexed: 12/19/2022] Open
Abstract
The phosphatidylinositol-3-kinase/Akt and the mammalian target of rapamycin (PI3K/Akt/mTOR) pathway is one of the most frequently activated signaling pathways in prostate cancer (CaP) and other cancers, and responsible for the survival, metastasis and therapeutic resistance. Recent advances in radiation therapy indicate that activation of this pathway is closely associated with cancer radioresistance, which is a major challenge for the current CaP radiation treatment. Therefore, targeting this pathway by inhibitors to enhance radiosensitivity has great potential for clinical benefits of CaP patients. In this review, we summarize the recent findings in the PI3K/Akt/mTOR pathway in CaP radiotherapy research and discuss the potential use of the PI3K/Akt/mTOR pathway inhibitors as radiosensitizers in the treatment of CaP radioresistance in preclinical studies to explore novel approaches for future clinical trials.
Collapse
Affiliation(s)
- Lei Chang
- Cancer Care Centre and Prostate Cancer Institute, St. George Hospital, Sydney, NSW, Australia; St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Kensington, NSW, Australia
| | - Peter H Graham
- Cancer Care Centre and Prostate Cancer Institute, St. George Hospital, Sydney, NSW, Australia; St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Kensington, NSW, Australia
| | - Jie Ni
- Cancer Care Centre and Prostate Cancer Institute, St. George Hospital, Sydney, NSW, Australia; St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Kensington, NSW, Australia
| | - Jingli Hao
- Cancer Care Centre and Prostate Cancer Institute, St. George Hospital, Sydney, NSW, Australia; St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Kensington, NSW, Australia
| | - Joseph Bucci
- Cancer Care Centre and Prostate Cancer Institute, St. George Hospital, Sydney, NSW, Australia; St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Kensington, NSW, Australia
| | - Paul J Cozzi
- St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Kensington, NSW, Australia; Department of Surgery, St. George Hospital, Sydney, NSW, Australia
| | - Yong Li
- Cancer Care Centre and Prostate Cancer Institute, St. George Hospital, Sydney, NSW, Australia; St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Kensington, NSW, Australia.
| |
Collapse
|
28
|
Womeldorff M, Gillespie D, Jensen RL. Hypoxia-inducible factor-1 and associated upstream and downstream proteins in the pathophysiology and management of glioblastoma. Neurosurg Focus 2015; 37:E8. [PMID: 25581937 DOI: 10.3171/2014.9.focus14496] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive brain tumor with an exceptionally poor patient outcome despite aggressive therapy including surgery, radiation, and chemotherapy. This aggressive phenotype may be associated with intratumoral hypoxia, which probably plays a key role in GBM tumor growth, development, and angiogenesis. A key regulator of cellular response to hypoxia is the protein hypoxia-inducible factor–1 (HIF-1). An examination of upstream hypoxic and nonhypoxic regulation of HIF-1 as well as a review of the downstream HIF-1– regulated proteins may provide further insight into the role of this transcription factor in GBM pathophysiology. Recent insights into upstream regulators that intimately interact with HIF-1 could provide potential therapeutic targets for treatment of this tumor. The same is potentially true for HIF-1–mediated pathways of glycolysis-, angiogenesis-, and invasion-promoting proteins. Thus, an understanding of the relationship between HIF-1, its upstream protein regulators, and its downstream transcribed genes in GBM pathogenesis could provide future treatment options for the care of patients with these tumors.
Collapse
|
29
|
Steinberger E, Kollmeier M, McBride S, Novak C, Pei X, Zelefsky MJ. Cigarette smoking during external beam radiation therapy for prostate cancer is associated with an increased risk of prostate cancer-specific mortality and treatment-related toxicity. BJU Int 2015; 116:596-603. [PMID: 25345838 DOI: 10.1111/bju.12969] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To evaluate whether a history of smoking or smoking during therapy after external beam radiotherapy (EBRT) for clinically localised prostate cancer is associated with increased treatment-related toxicity or disease progression. PATIENTS AND METHODS Of 2358 patients receiving EBRT for prostate cancer between 1988 and 2005, 2156 had chart-recorded smoking histories. Patients were classified as 'never smokers', 'current smokers', 'former smokers', and 'current smoking unknown'. Variables considered included quantity of tobacco use in pack-years, duration of smoking, and, for former smokers, how long before initiation of RT the patient quit smoking, when available. The median EBRT dose was 8100 Gy and the median follow-up was 95 months. Toxicity was graded according to the National Cancer Institute's Common Terminology Criteria for Adverse Events. RESULTS Current smoking significantly increased the risks of both prostate-specific antigen relapse [hazard ratio (HR) 1.4, P = 0.02] and distant metastases (HR 2.37, P < 0.001), as well as prostate cancer-specific death (HR 2.25, P < 0.001). Multivariate analysis showed that smoking was also associated with increased risk of EBRT-related genitourinary toxicities (current smoker, HR 1.8, P = 0.02; former smoker, HR 1.45, P = 0.01). Smoking did not increase gastrointestinal toxicity. CONCLUSIONS Current smokers with prostate cancer are at increased risk of biochemical recurrence, distant metastasis, and prostate cancer-related mortality after definitive RT to the prostate. Current and former smokers, regardless of duration and quantity of exposure, are at an increased risk of long-term genitourinary toxicity after EBRT. Oncologists should encourage patients to participate in smoking-cessation programmes before therapy to potentially lower their risk of relapsing disease and post-treatment toxicities.
Collapse
Affiliation(s)
- Emily Steinberger
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Marisa Kollmeier
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sean McBride
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Caroline Novak
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xin Pei
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael J Zelefsky
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
30
|
HWANG SANGYOUN, HEO KYU, KIM JOONSEOK, IM JUNGWOO, LEE SUNMI, CHO MONG, KANG DAEHWAN, HEO JEONG, LEE JUNWOO, CHOI CHEOLWON, YANG KWANGMO. Emodin attenuates radioresistance induced by hypoxia in HepG2 cells via the enhancement of PARP1 cleavage and inhibition of JMJD2B. Oncol Rep 2015; 33:1691-8. [DOI: 10.3892/or.2015.3744] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 12/08/2014] [Indexed: 11/06/2022] Open
|
31
|
Koukourakis MI, Giatromanolaki A, Panteliadou M, Pouliliou SE, Chondrou PS, Mavropoulou S, Sivridis E. Lactate dehydrogenase 5 isoenzyme overexpression defines resistance of prostate cancer to radiotherapy. Br J Cancer 2014; 110:2217-23. [PMID: 24714743 PMCID: PMC4007238 DOI: 10.1038/bjc.2014.158] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 02/28/2014] [Accepted: 03/03/2014] [Indexed: 12/17/2022] Open
Abstract
Background: Radiotherapy provides high-cure rates in prostate cancer. Despite its overall slow clinical growth, high proliferation rates documented in a subset of tumours relate to poor radiotherapy outcome. This study examines the role of anaerobic metabolism in prostate cancer growth and resistance to radiotherapy. Methods: Biopsy samples from 83 patients with prostate cancer undergoing radical hypofractionated and accelerated radiotherapy were analysed for MIB1 proliferation index and for lactate dehydrogenase isoenzyme LDH5, a marker of tumour anaerobic metabolism. Ninety-five surgical samples were in parallel analysed. Correlation with histopathological variables, PSA and radiotherapy outcome was assessed. Dose–response experiments were performed in PC3 and DU145 cancer cell lines. Results: High MIB1 index (noted in 25% of cases) was directly related to Gleason score (P<0.0001), T3-stage (P=0.0008) and PSA levels (P=0.03). High LDH5 (noted in 65% of cases) was directly related to MIB1 index (P<0.0001), Gleason score (P=0.02) and T3-stage (P=0.001). High Gleason score, MIB1, LDH5 and PSA levels were significantly related to poor BRFS (P=0.007, 0.01, 0.03 and 0.01, respectively). High Gleason score (P=0.04), LDH5 (P=0.01) and PSA levels (P=0.003) were significantly related to local recurrence. MIB1 and T-stage did not affect local control. Silencing of LDHA gene in both prostate cancer cell lines resulted in significant radiosensitisation. Conclusions: LDH5 overexpression is significantly linked to highly proliferating prostate carcinomas and with biochemical failure and local relapse following radiotherapy. Hypoxia and LDHA targeting agents may prove useful to overcome radioresistance in a subgroup of prostate carcinomas with anaerobic metabolic predilection.
Collapse
Affiliation(s)
- M I Koukourakis
- Department of Radiotherapy/Oncology, Democritus University of Thrace, Alexandroupolis 68100, Greece
| | - A Giatromanolaki
- Department of Pathology, Democritus University of Thrace, Alexandroupolis 68100, Greece
| | - M Panteliadou
- Department of Radiotherapy/Oncology, Democritus University of Thrace, Alexandroupolis 68100, Greece
| | - S E Pouliliou
- Department of Radiotherapy/Oncology, Democritus University of Thrace, Alexandroupolis 68100, Greece
| | - P S Chondrou
- Department of Radiotherapy/Oncology, Democritus University of Thrace, Alexandroupolis 68100, Greece
| | - S Mavropoulou
- Department of Pathology, Democritus University of Thrace, Alexandroupolis 68100, Greece
| | - E Sivridis
- Department of Pathology, Democritus University of Thrace, Alexandroupolis 68100, Greece
| |
Collapse
|
32
|
Mimeault M, Batra SK. Hypoxia-inducing factors as master regulators of stemness properties and altered metabolism of cancer- and metastasis-initiating cells. J Cell Mol Med 2013; 17:30-54. [PMID: 23301832 PMCID: PMC3560853 DOI: 10.1111/jcmm.12004] [Citation(s) in RCA: 245] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 11/20/2012] [Indexed: 12/12/2022] Open
Abstract
Accumulating lines of experimental evidence have revealed that hypoxia-inducible factors, HIF-1α and HIF-2α, are key regulators of the adaptation of cancer- and metastasis-initiating cells and their differentiated progenies to oxygen and nutrient deprivation during cancer progression under normoxic and hypoxic conditions. Particularly, the sustained stimulation of epidermal growth factor receptor (EGFR), insulin-like growth factor-1 receptor (IGF-1R), stem cell factor (SCF) receptor KIT, transforming growth factor-β receptors (TGF-βRs) and Notch and their downstream signalling elements such as phosphatidylinositol 3′-kinase (PI3K)/Akt/molecular target of rapamycin (mTOR) may lead to an enhanced activity of HIFs. Moreover, the up-regulation of HIFs in cancer cells may also occur in the hypoxic intratumoral regions formed within primary and secondary neoplasms as well as in leukaemic cells and metastatic prostate and breast cancer cells homing in the hypoxic endosteal niche of bone marrow. The activated HIFs may induce the expression of numerous gene products such as induced pluripotency-associated transcription factors (Oct-3/4, Nanog and Sox-2), glycolysis- and epithelial-mesenchymal transition (EMT) programme-associated molecules, including CXC chemokine receptor 4 (CXCR4), snail and twist, microRNAs and angiogenic factors such as vascular endothelial growth factor (VEGF). These gene products in turn can play critical roles for high self-renewal ability, survival, altered energy metabolism, invasion and metastases of cancer cells, angiogenic switch and treatment resistance. Consequently, the targeting of HIF signalling network and altered metabolic pathways represents new promising strategies to eradicate the total mass of cancer cells and improve the efficacy of current therapies against aggressive and metastatic cancers and prevent disease relapse.
Collapse
Affiliation(s)
- Murielle Mimeault
- Department of Biochemistry and Molecular Biology, College of Medicine, Eppley Cancer Institute, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA.
| | | |
Collapse
|