1
|
Qiu J, Fu Y, Liu T, Wang J, Liu Y, Zhang Z, Ye Z, Cao Z, Su D, Luo W, Tao J, Weng G, Ye L, Zhang F, Liang Z, Zhang T. Single-cell RNA-seq reveals heterogeneity in metastatic renal cell carcinoma and effect of anti-angiogenesis therapy in the pancreas metastatic lesion. Cancer Lett 2024; 601:217193. [PMID: 39159881 DOI: 10.1016/j.canlet.2024.217193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024]
Abstract
Metastatic clear cell renal cell carcinoma has heterogenous tumor microenvironment (TME). Among the metastatic lesions, pancreas metastasis is rare and controversy in treatment approaches. Here, extensive primary and metastatic lesion samples were included by single-cell RNA-seq to decipher the distinct metastasis TME. The hypoxic and inflammatory TME of pancreas metastasis was decoded in this study, and the activation of PAX8-myc signaling, and metabolic reprogramming were observed. The active components including endothelial cells, fibroblasts and T cells were profiled. Meanwhile, we also evaluated the effect of anti-angiogenesis treatment in the pancreas metastasis patient. The potential mechanisms of pancreatic tropism, instability of genome, and the response of immunotherapy were also discussed in this work. Taken together, our findings suggest a clue to the heterogeneity in metastasis TME and provide evidence for the treatment of pancreas metastasis in renal cell carcinoma patients.
Collapse
Affiliation(s)
- Jiangdong Qiu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Yifan Fu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Tao Liu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Jun Wang
- Department of Pathology, State Key Laboratory of Complex Severe and Rare Disease, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yueze Liu
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Zeyu Zhang
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Ziwen Ye
- Department of Urology, The Fist Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Zhe Cao
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Dan Su
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Wenhao Luo
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Jinxin Tao
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Guihu Weng
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Liyuan Ye
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Feifan Zhang
- Department of Computer Science, University College London, UK.
| | - Zhiyong Liang
- Department of Pathology, State Key Laboratory of Complex Severe and Rare Disease, Molecular Pathology Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Taiping Zhang
- General Surgery Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
2
|
Wang H, Xu YH, Guo Y. Novel prognostic marker TGFBI affects the migration and invasion function of ovarian cancer cells and activates the integrin αvβ3-PI3K-Akt signaling pathway. J Ovarian Res 2024; 17:50. [PMID: 38395907 PMCID: PMC10885438 DOI: 10.1186/s13048-024-01377-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Individual patients with ovarian cancer show remarkably different prognosis. Present prognostic models for ovarian cancer mainly focus on clinico-pathological parameters, so quantifiable prognostic markers at molecular level are urgently needed. Platelets contribute to ovarian cancer progression, but have not been considered as biomarkers likely due to their instability. Here, we aimed to search for a stable prognostic marker from platelet-treated ovarian cancer cells, and explore its functions and mechanisms. METHODS Microarrays analysis was done with platelet-treated SKOV-3 ovarian cancer cells. Relevant studies were searched in the Gene Expression Omnibus (GEO) database. The candidate genes were determined by differentially expressed genes (DEGs), Venn diagram drawing, protein-protein interaction (PPI) network, Cox proportional hazards model and Kaplan-Meier analysis. The expression of TGFBI in clinical samples was assessed by immunehistochemical staining (IHC), and the association of TGFBI levels with the clinic-pathological characteristics and prognosis in ovarian cancer patients was evaluated by univariate and multivariate analysis. The functions of TGFBI were predicted using data from TCGA, and validated by in vitro and in vivo experiments. The mechanism exploration was performed based on proteomic analysis, molecular docking and intervention study. RESULTS TGFBI was significantly higher expressed in the platelet-treated ovarian cancer cells. An analysis of bioinformatics data revealed that increased expression of TGFBI led to significant decrease of overall survival (OS), progression-free survival (PFS) and post-progression survival (PPS) in ovarian cancer patients. Tissue microarray results showed that TGFBI was an independent factor for ovarian cancer, and TGFBI expression predict poor prognosis. Functionally, TGFBI affected the migration and invasion of ovarian cancer cells by regulation of epithelial mesenchymal transition (EMT) markers (CDH1 and CDH2) and extracellular matrix (ECM) degradation proteins (MMP-2). Mechanistically, TGFBI phosphorylated PI3K and Akt by combining integrin αvβ3. CONCLUSIONS We found out TGFBI as a novel prognostic indicator for ovarian cancer patients. TGFBI could promote metastasis in ovarian cancer by EMT induction and ECM remodeling, which might be associated with the activation of integrin αvβ3-PI3K-Akt signaling pathway.
Collapse
Affiliation(s)
- Hao Wang
- School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yin-Hai Xu
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
- School of Medical Technology, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China.
| | - Yi Guo
- Department of Laboratory Medicine, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Department of Laboratory Medicine, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221006, China.
| |
Collapse
|
3
|
Takahara T, Tsuyuki T, Satou A, Wada E, Sakurai K, Ueda R, Tsuzuki T. TGFB1 mRNA expression is associated with poor prognosis and specific features of inflammation in ccRCC. Virchows Arch 2022; 480:635-643. [PMID: 35112134 DOI: 10.1007/s00428-021-03256-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 11/12/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022]
Abstract
To determine whether TGFB1 affects the immune microenvironment of ccRCC, we investigated the association between TGFB1 expression and clinicopathological features. Tissue microarray was generated from 158 total or partial nephrectomy samples and 12 tumor-adjacent normal kidney tissue. TGFB1 expression was assessed by RNA in situ hybridization and quantified using ImageJ software. TGFB1 was significantly upregulated in ccRCC tissue than in normal kidney tissues (P = 1.03 × 10-9). Tumors with a high WHO/ISUP grade had higher TGFB1 expression levels (P = 7.05 × 10-3). Of 139 patients with localized ccRCC and whose follow-up data were available, those in the TGFB1-high group displayed significantly shorter relapse-free survival than those in the TGFB1-low group (P = 0.0251). TGFB1 expression was significantly upregulated in patients who developed distant metastasis after surgery (n = 12) than in patients without metastasis (n = 127; P = 0.00167). TGFB1 expression positively correlated with the number of PD-L1-positive cells in the tumor stroma (P = 0.0206, ρ = 0.163). Furthermore, TGFB1 expression was associated with the formation of tertiary lymphoid structures. TGF-β1 is a prognostic indicator of worse outcome for ccRCC and might be a therapeutic target in advanced ccRCC. Our data provide new insights into the association between tumor biology and tumor microenvironment in ccRCC.
Collapse
Affiliation(s)
- Taishi Takahara
- Department of Surgical Pathology, Aichi Medical University Hospital, 1-1, Yazakokarimata,, Nagakute, 480-1195, Japan.
| | - Takuji Tsuyuki
- Department of Surgical Pathology, Aichi Medical University Hospital, 1-1, Yazakokarimata,, Nagakute, 480-1195, Japan
| | - Akira Satou
- Department of Surgical Pathology, Aichi Medical University Hospital, 1-1, Yazakokarimata,, Nagakute, 480-1195, Japan
| | - Eriko Wada
- Department of Surgical Pathology, Aichi Medical University Hospital, 1-1, Yazakokarimata,, Nagakute, 480-1195, Japan
| | - Kaneko Sakurai
- Department of Surgical Pathology, Aichi Medical University Hospital, 1-1, Yazakokarimata,, Nagakute, 480-1195, Japan
| | - Ryuzo Ueda
- Department of Tumor Immunology, Aichi Medical University, Nagakute, Japan
| | - Toyonori Tsuzuki
- Department of Surgical Pathology, Aichi Medical University Hospital, 1-1, Yazakokarimata,, Nagakute, 480-1195, Japan
| |
Collapse
|
4
|
Wang X, Hu J, Fang Y, Fu Y, Liu B, Zhang C, Feng S, Lu X. Multi-Omics Profiling to Assess Signaling Changes upon VHL Restoration and Identify Putative VHL Substrates in Clear Cell Renal Cell Carcinoma Cell Lines. Cells 2022; 11:cells11030472. [PMID: 35159281 PMCID: PMC8833913 DOI: 10.3390/cells11030472] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 02/05/2023] Open
Abstract
The inactivation of von Hippel–Lindau (VHL) is critical for clear cell renal cell carcinoma (ccRCC) and VHL syndrome. VHL loss leads to the stabilization of hypoxia-inducible factor α (HIFα) and other substrate proteins, which, together, drive various tumor-promoting pathways. There is inadequate molecular characterization of VHL restoration in VHL-defective ccRCC cells. The identities of HIF-independent VHL substrates remain elusive. We reinstalled VHL expression in 786-O and performed transcriptome, proteome and ubiquitome profiling to assess the molecular impact. The transcriptome and proteome analysis revealed that VHL restoration caused the downregulation of hypoxia signaling, glycolysis, E2F targets, and mTORC1 signaling, and the upregulation of fatty acid metabolism. Proteome and ubiquitome co-analysis, together with the ccRCC CPTAC data, enlisted 57 proteins that were ubiquitinated and downregulated by VHL restoration and upregulated in human ccRCC. Among them, we confirmed the reduction of TGFBI (ubiquitinated at K676) and NFKB2 (ubiquitinated at K72 and K741) by VHL re-expression in 786-O. Immunoprecipitation assay showed the physical interaction between VHL and NFKB2. K72 of NFKB2 affected NFKB2 stability in a VHL-dependent manner. Taken together, our study generates a comprehensive molecular catalog of a VHL-restored 786-O model and provides a list of putative VHL-dependent ubiquitination substrates, including TGFBI and NFKB2, for future investigation.
Collapse
Affiliation(s)
- Xuechun Wang
- Fundamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (X.W.); (Y.F.)
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jin Hu
- Mass Spectrometry & Metabolomics Core Facility, Key Laboratory of Structural Biology of Zhejiang Province, Westlake University, Hangzhou 310024, China;
| | - Yihao Fang
- Department of the Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN 46556, USA;
| | - Yanbin Fu
- Fundamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (X.W.); (Y.F.)
| | - Bing Liu
- Department of Urology, Eastern Hepatobiliary Surgery Hospital, Shanghai 201805, China;
| | - Chao Zhang
- Fundamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (X.W.); (Y.F.)
- Correspondence: (C.Z.); (S.F.); (X.L.)
| | - Shan Feng
- Mass Spectrometry & Metabolomics Core Facility, Key Laboratory of Structural Biology of Zhejiang Province, Westlake University, Hangzhou 310024, China;
- Correspondence: (C.Z.); (S.F.); (X.L.)
| | - Xin Lu
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
- Correspondence: (C.Z.); (S.F.); (X.L.)
| |
Collapse
|
5
|
Tao C, Liu W, Yan X, Yang M, Yao S, Shu Q, Li B, Zhu R. PAQR5 Expression Is Suppressed by TGFβ1 and Associated With a Poor Survival Outcome in Renal Clear Cell Carcinoma. Front Oncol 2022; 11:827344. [PMID: 35127538 PMCID: PMC8810503 DOI: 10.3389/fonc.2021.827344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/31/2021] [Indexed: 11/13/2022] Open
Abstract
BackgroundRenal cell carcinoma (RCC) was sex-hormone responsive, and clinical trials using progesterone significantly reduced the incidence of distal metastasis after radical nephrectomy. Recently membrane-bound progesterone receptors (mPRs) were discovered to mediate the non-genomic effect of progesterone. Aberrant expressions of these mPRs were reported in human breast, ovarian, urinary bladder, brain, uterine, and prostate cancers. However, their expression profiles in RCC are yet to be assessed.MethodsMultiple datasets from RNA sequencing (RNA-seq), cDNA microarray, and proteomic analysis were used to compare gene expression between cancerous and normal kidney tissues. Immunohistochemistry was conducted to examine protein expression in kidney tissues. Promoter methylation levels were assessed for correlation analysis with gene expression.ResultsOf the seven membrane-bound progesterone receptor genes, the progestin and adipoQ receptor-5 (PAQR5) gene is predominantly expressed in normal kidney tissue but was significantly downregulated in RCC tissues. PAQR5 downregulation correlated with tumor stage, cancer grade, lymph node invasion, and distal metastasis only in clear cell RCC (ccRCC) tissues. PAQR5 downregulation was associated with an increased promoter DNA methylation and a poor survival outcome in ccRCC patients. In addition, PAQR5 expression inversely correlated with transforming growth factor beta-1 (TGFB1) expression, and TGFβ1 treatment significantly reduced PAQR5 gene expression.ConclusionPAQR5 is a novel prognostic biomarker in ccRCC and is negatively regulated by the TGFβ1 pathway.
Collapse
Affiliation(s)
- Chang Tao
- National Clinical Research Center for Child Health, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wang Liu
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Xiang Yan
- National Clinical Research Center for Child Health, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Min Yang
- National Clinical Research Center for Child Health, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Si Yao
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Qiang Shu
- National Clinical Research Center for Child Health, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Runzhi Zhu, ; Benyi Li, ; Qiang Shu,
| | - Benyi Li
- Department of Urology, The University of Kansas Medical Center, Kansas City, KS, United States
- *Correspondence: Runzhi Zhu, ; Benyi Li, ; Qiang Shu,
| | - Runzhi Zhu
- National Clinical Research Center for Child Health, The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
- *Correspondence: Runzhi Zhu, ; Benyi Li, ; Qiang Shu,
| |
Collapse
|
6
|
Jorge S, Capelo JL, LaFramboise W, Satturwar S, Korentzelos D, Bastacky S, Quiroga-Garza G, Dhir R, Wiśniewski JR, Lodeiro C, Santos HM. Absolute quantitative proteomics using the total protein approach to identify novel clinical immunohistochemical markers in renal neoplasms. BMC Med 2021; 19:196. [PMID: 34482820 PMCID: PMC8420025 DOI: 10.1186/s12916-021-02071-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/22/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Renal neoplasms encompass a variety of malignant and benign tumors, including many with shared characteristics. The diagnosis of these renal neoplasms remains challenging with currently available tools. In this work, we demonstrate the total protein approach (TPA) based on high-resolution mass spectrometry (MS) as a tool to improve the accuracy of renal neoplasm diagnosis. METHODS Frozen tissue biopsies of human renal tissues [clear cell renal cell carcinoma (n = 7), papillary renal cell carcinoma (n = 5), chromophobe renal cell carcinoma (n = 5), and renal oncocytoma (n = 5)] were collected for proteome analysis. Normal adjacent renal tissue (NAT, n = 5) was used as a control. Proteins were extracted and digested using trypsin, and the digested proteomes were analyzed by label-free high-resolution MS (nanoLC-ESI-HR-MS/MS). Quantitative analysis was performed by comparison between protein abundances of tumors and NAT specimens, and the label-free and standard-free TPA was used to obtain absolute protein concentrations. RESULTS A total of 205 differentially expressed proteins with the potential to distinguish the renal neoplasms were found. Of these proteins, a TPA-based panel of 24, including known and new biomarkers, was selected as the best candidates to differentiate the neoplasms. As proof of concept, the diagnostic potential of PLIN2, TUBB3, LAMP1, and HK1 was validated using semi-quantitative immunohistochemistry with a total of 128 samples assessed on tissue micro-arrays. CONCLUSIONS We demonstrate the utility of combining high-resolution MS and the TPA as potential new diagnostic tool in the pathology of renal neoplasms. A similar TPA approach may be implemented in any cancer study with solid biopsies.
Collapse
Affiliation(s)
- Susana Jorge
- BIOSCOPE Group, LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
- PROTEOMASS Scientific Society, Madan Park, 2829-516, Caparica, Portugal
| | - José L Capelo
- BIOSCOPE Group, LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
- PROTEOMASS Scientific Society, Madan Park, 2829-516, Caparica, Portugal
| | - William LaFramboise
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Swati Satturwar
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Dimitrios Korentzelos
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Sheldon Bastacky
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | - Rajiv Dhir
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jacek R Wiśniewski
- Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Carlos Lodeiro
- BIOSCOPE Group, LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
- PROTEOMASS Scientific Society, Madan Park, 2829-516, Caparica, Portugal
| | - Hugo M Santos
- BIOSCOPE Group, LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.
- PROTEOMASS Scientific Society, Madan Park, 2829-516, Caparica, Portugal.
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| |
Collapse
|
7
|
Kim HJ, Ahn D, Park TI, Jeong JY. TGFBI Expression Predicts the Survival of Patients With Oropharyngeal Squamous Cell Carcinoma. In Vivo 2021; 34:3005-3012. [PMID: 32871844 DOI: 10.21873/invivo.12132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM This study was conducted to investigate transforming growth factor beta-induced protein (TGFBI) expression and analyze the clinical and prognostic significance of TGFBI in oropharyngeal squamous cell carcinoma (OPSCC). PATIENTS AND METHODS We evaluated TGFBI expression by immunohistochemistry in 94 patients with OPSCC. For comprehensive analysis, TGFBI expression was subdivided into tumor cell score (T), stroma score (S), and the sum of two scores (TS) calculated using H-score. Clinicopathological features and survival outcomes were compared between groups of high expression and low expression of TGFBI in each area. RESULTS Overall, 12 patients (12.8%) showed high T score, and 41 patients (43.6%) revealed high S score. Although T score showed no significant difference both in overall survival (OS) (p=0.080) and recurrence free survival (RFS) (p=0.272), high S score patients had significantly worse OS (p=0.003) and worse RFS (p=0.043). High TS score also showed significant association with worse OS (p=0.011) and worse RFS (p=0.021). High S score was an independent prognostic factor predicting shorter OS (HR=6.352, 95%CI=1.206-40.050, p=0.029) and RFS (HR=18.843, 95%CI=1.030-344.799, p=0.048) in the multivariate analysis. CONCLUSION High S score of TGFBI was a significant predictor of poor prognosis in OPSCC. TGFBI could be a useful new predictive and prognostic biomarker in OPSCC.
Collapse
Affiliation(s)
- Ha-Jeong Kim
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Dongbin Ahn
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Tae-In Park
- Department of Pathology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ji Yun Jeong
- Department of Pathology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea .,Department of Pathology, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| |
Collapse
|
8
|
Zhou XJ, Tsoi LC, Hu Y, Patrick MT, He K, Berthier CC, Li Y, Wang YN, Qi YY, Zhang YM, Gan T, Li Y, Hou P, Liu LJ, Shi SF, Lv JC, Xu HJ, Zhang H. Exome Chip Analyses and Genetic Risk for IgA Nephropathy among Han Chinese. Clin J Am Soc Nephrol 2021; 16:213-224. [PMID: 33462083 PMCID: PMC7863642 DOI: 10.2215/cjn.06910520] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 12/11/2020] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND OBJECTIVES IgA nephropathy is the most common form of primary GN worldwide. The evidence of geographic and ethnic differences, as well as familial aggregation of the disease, supports a strong genetic contribution to IgA nephropathy. Evidence for genetic factors in IgA nephropathy comes also from genome-wide association patient-control studies. However, few studies have systematically evaluated the contribution of coding variation in IgA nephropathy. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS We performed a two-stage exome chip-based association study in 13,242 samples, including 3363 patients with IgA nephropathy and 9879 healthy controls of Han Chinese ancestry. Common variant functional annotation, gene-based low-frequency variants analysis, differential mRNA expression, and gene network integration were also explored. RESULTS We identified three non-HLA gene regions (FBXL21, CCR6, and STAT3) and one HLA gene region (GABBR1) with suggestive significance (Pmeta <5×10-5) in single-variant associations. These novel non-HLA variants were annotated as expression-associated single-nucleotide polymorphisms and were located in enhancer regions enriched in histone marks H3K4me1 in primary B cells. Gene-based low-frequency variants analysis suggests CFB as another potential susceptibility gene. Further combined expression and network integration suggested that the five novel susceptibility genes, TGFBI, CCR6, STAT3, GABBR1, and CFB, were involved in IgA nephropathy. CONCLUSIONS Five novel gene regions with suggestive significance for IgA nephropathy were identified and shed new light for further mechanism investigation.
Collapse
Affiliation(s)
- Xu-jie Zhou
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, People’s Republic of China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, People’s Republic of China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, People’s Republic of China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Lam C. Tsoi
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Yong Hu
- Beijing Institute of Biotechnology, Beijing, People’s Republic of China
| | - Matthew T. Patrick
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Kevin He
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan
- Kidney Epidemiology and Cost Center, School of Public Health, University of Michigan, Ann Arbor, Michigan
| | - Celine C. Berthier
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Yanming Li
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, Kansas
| | - Yan-na Wang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, People’s Republic of China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, People’s Republic of China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, People’s Republic of China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Yuan-yuan Qi
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, People’s Republic of China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, People’s Republic of China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, People’s Republic of China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Yue-miao Zhang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, People’s Republic of China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, People’s Republic of China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, People’s Republic of China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Ting Gan
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, People’s Republic of China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, People’s Republic of China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, People’s Republic of China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Yang Li
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, People’s Republic of China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, People’s Republic of China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, People’s Republic of China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Ping Hou
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, People’s Republic of China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, People’s Republic of China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, People’s Republic of China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Li-jun Liu
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, People’s Republic of China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, People’s Republic of China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, People’s Republic of China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Su-fang Shi
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, People’s Republic of China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, People’s Republic of China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, People’s Republic of China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Ji-cheng Lv
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, People’s Republic of China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, People’s Republic of China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, People’s Republic of China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Hu-ji Xu
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, Kansas
- Department of Rheumatology and Immunology, Shanghai Changzheng Hospital, The Second Military Medical University, Shanghai, People’s Republic of China
| | - Hong Zhang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, People’s Republic of China
- Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, People’s Republic of China
- Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, People’s Republic of China
- Research Units of Diagnosis and Treatment of Immune-Mediated Kidney Diseases, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
9
|
Yang L, Cui R, Li Y, Liang K, Ni M, Gu Y. Hypoxia-Induced TGFBI as a Serum Biomarker for Laboratory Diagnosis and Prognosis in Patients with Pancreatic Ductal Adenocarcinoma. Lab Med 2020; 51:352-361. [PMID: 31626700 DOI: 10.1093/labmed/lmz063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVE To explore novel biomarkers for patients with pancreatic ductal adenocarcinoma (PDAC), from the perspective of tumor hypoxia. METHODS We screened 29 differentially expressed and hypoxia-upregulated genes from the Oncomine database. A total of 12 secretory proteins that interact with hypoxia-inducible factor 1 (HIF-1A) were selected by STRING (protein-protein interaction networks). After excluding enzymes and collagens, insulin-like growth factor-binding protein 3 (IGFBP3), glycoprotein NBM (GPNMB), transforming growth factor-β-induced (TGFBI), and biglycan (BGN) were detected by sandwich enzyme-linked immunosorbent assay (ELISA) in patients with cancer and healthy control individuals. RESULTS The serum level of TGFBI was significantly elevated in patients with PDAC, compared with healthy controls; the assay could discriminate among cases of PDAC in different clinical stages. The amount of TGFBI was significantly decreased after treatment. The combination of TGFBI and cancer antigen (CA) 19-9 was more accurate than TGFBI or CA 19-9 alone as diagnostic markers. Also, TGFBI might be used as a prognostic marker according to the PROGgeneV2 Pan Cancer Prognostics Database. CONCLUSIONS Serum TGFBI, combined with CA 19-9, offers higher diagnostic value than other methods for patients with PDAC. Also, TGFBI might be used as a prognostic marker.
Collapse
Affiliation(s)
- Lingmin Yang
- School of Medical Laboratory, Tianjin Medical University, Tianjin, China.,Shanghai Baize Medical Laboratory, Shanghai, China
| | - Ranliang Cui
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory for Cancer, Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yueguo Li
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory for Cancer, Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Kai Liang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Min Ni
- Henan Newborn Screening Center, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yajun Gu
- School of Medical Laboratory, Tianjin Medical University, Tianjin, China
| |
Collapse
|
10
|
Pouliquen DL, Boissard A, Coqueret O, Guette C. Biomarkers of tumor invasiveness in proteomics (Review). Int J Oncol 2020; 57:409-432. [PMID: 32468071 PMCID: PMC7307599 DOI: 10.3892/ijo.2020.5075] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
Over the past two decades, quantitative proteomics has emerged as an important tool for deciphering the complex molecular events involved in cancers. The number of references involving studies on the cancer metastatic process has doubled since 2010, while the last 5 years have seen the development of novel technologies combining deep proteome coverage capabilities with quantitative consistency and accuracy. To highlight key findings within this huge amount of information, the present review identified a list of tumor invasive biomarkers based on both the literature and data collected on a biocollection of experimental cell lines, tumor models of increasing invasiveness and tumor samples from patients with colorectal or breast cancer. Crossing these different data sources led to 76 proteins of interest out of 1,245 mentioned in the literature. Information on these proteins can potentially be translated into clinical prospects, since they represent potential targets for the development and evaluation of innovative therapies, alone or in combination. Herein, a systematical review of the biology of each of these proteins, including their specific subcellular/extracellular or multiple localizations is presented. Finally, as an important advantage of quantitative proteomics is the ability to provide data on all these molecules simultaneously in cell pellets, body fluids or paraffin‑embedded sections of tumors/invaded tissues, the significance of some of their interconnections is discussed.
Collapse
Affiliation(s)
| | - Alice Boissard
- Paul Papin ICO Cancer Center, CRCINA, Inserm, Université d'Angers, F‑44000 Nantes, France
| | | | - Catherine Guette
- Paul Papin ICO Cancer Center, CRCINA, Inserm, Université d'Angers, F‑44000 Nantes, France
| |
Collapse
|
11
|
Transforming growth factor-β1 enhances proliferative and metastatic potential by up-regulating lymphoid enhancer-binding factor 1/integrin αMβ2 in human renal cell carcinoma. Mol Cell Biochem 2019; 465:165-174. [PMID: 31848806 DOI: 10.1007/s11010-019-03676-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 12/07/2019] [Indexed: 12/12/2022]
Abstract
Renal cell carcinoma (RCC) is a kind of malignant tumor with high recurrence, and it is urgent to find molecular markers for diagnosis and prognosis of RCC. Our study investigated the expression and function of integrin αMβ2 in RCC cells, aiming to understand the role of integrin αMβ2 in RCC and develop new therapeutic target for RCC. Overexpression and knockdown of lymphoid enhancer-binding factor 1 (LEF1) were performed using vector containing full-length cDNA and via siRNA technology, respectively. The expressions of mRNA and protein were detected by RT-PCR and Western blot, respectively. Proliferation of RCC cell was analyzed using WST-1 assay, and metastasis of RCC cell was evaluated using the transwell system. Our results demonstrated that LEF1 and integrin αMβ2 were up-regulated in RCC cells via TGF-β1-dependent mechanism, and LEF1 together with β-catenin directly increased integrin αMβ2 level. On the other hand, TGF-β1-induced proliferation, migration and invasion were suppressed by function-blocking antibody against integrin αMβ2 in RCC cells. In addition, integrin αMβ2 is crucial for LEF1 mediated cell invasion by regulating MMP-2, MMP-9 and calpain-2 secretion in RCC cells. LEF1/integrin αMβ2 expression was regulated by TGF-β1, and LEF1/integrin αMβ2 was involved in TGF-β1's improvement effects on the proliferation and metastasis of RCC. Blocking integrin αMβ2 activity could be a therapeutic option for patients with advanced RCC.
Collapse
|
12
|
Lang K, Kahveci S, Bonberg N, Wichert K, Behrens T, Hovanec J, Roghmann F, Noldus J, Tam YC, Tannapfel A, Käfferlein HU, Brüning T. TGFBI Protein Is Increased in the Urine of Patients with High-Grade Urothelial Carcinomas, and Promotes Cell Proliferation and Migration. Int J Mol Sci 2019; 20:ijms20184483. [PMID: 31514337 PMCID: PMC6770034 DOI: 10.3390/ijms20184483] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 01/03/2023] Open
Abstract
Here, we discovered TGFBI as a new urinary biomarker for muscle invasive and high-grade urothelial carcinoma (UC). After biomarker identification using antibody arrays, results were verified in urine samples from a study population consisting of 303 patients with UC, and 128 urological and 58 population controls. The analyses of possible modifying factors (age, sex, smoking status, urinary leukocytes and erythrocytes, and history of UC) were calculated by multiple logistic regression. Additionally, we performed knockdown experiments with TGFBI siRNA in bladder cancer cells and investigated the effects on proliferation and migration by wound closure assays and BrdU cell cycle analysis. TGFBI concentrations in urine are generally increased in patients with UC when compared to urological and population controls (1321.0 versus 701.3 and 475.6 pg/mg creatinine, respectively). However, significantly increased TGFBI was predominantly found in muscle invasive (14,411.7 pg/mg creatinine), high-grade (8190.7 pg/mg) and de novo UC (1856.7 pg/mg; all p < 0.0001). Knockdown experiments in vitro led to a significant decline of cell proliferation and migration. In summary, our results suggest a critical role of TGFBI in UC tumorigenesis and particularly in high-risk UC patients with poor prognosis and an elevated risk of progression on the molecular level.
Collapse
Affiliation(s)
- Kerstin Lang
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany.
| | - Selcan Kahveci
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany.
| | - Nadine Bonberg
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany.
| | - Katharina Wichert
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany.
| | - Thomas Behrens
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany.
| | - Jan Hovanec
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany.
| | - Florian Roghmann
- Department of Urology, Marien Hospital Herne, University Hospital of the Ruhr University Bochum, Hölkeskampring 40, 44625 Herne, Germany.
| | - Joachim Noldus
- Department of Urology, Marien Hospital Herne, University Hospital of the Ruhr University Bochum, Hölkeskampring 40, 44625 Herne, Germany.
| | - Yu Chun Tam
- Institute of Pathology, Georgius Agricola Stiftung Ruhr, Ruhr University Bochum, Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany.
| | - Andrea Tannapfel
- Institute of Pathology, Georgius Agricola Stiftung Ruhr, Ruhr University Bochum, Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany.
| | - Heiko U Käfferlein
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany.
| | - Thomas Brüning
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University Bochum (IPA), Bürkle-de-la-Camp Platz 1, 44789 Bochum, Germany.
| |
Collapse
|
13
|
Xie L, Wang Q, Dang Y, Ge L, Sun X, Li N, Han Y, Yan Z, Zhang L, Li Y, Zhang H, Guo X. OSkirc: a web tool for identifying prognostic biomarkers in kidney renal clear cell carcinoma. Future Oncol 2019; 15:3103-3110. [PMID: 31368353 DOI: 10.2217/fon-2019-0296] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aim: To develop a free and quick analysis online tool that allows users to easily investigate the prognostic potencies of interesting genes in kidney renal clear cell carcinoma (KIRC). Patients & methods: A total of 629 KIRC cases with gene expression profiling data and clinical follow-up information are collected from public Gene Expression Omnibus and The Cancer Genome Atlas databases. Results: One web application called Online consensus Survival analysis for KIRC (OSkirc) that can be used for exploring the prognostic implications of interesting genes in KIRC was constructed. By OSkirc, users could simply input the gene symbol to receive the Kaplan-Meier survival plot with hazard ratio and log-rank p-value. Conclusion: OSkirc is extremely valuable for basic and translational researchers to screen and validate the prognostic potencies of genes for KIRC, publicly accessible at http://bioinfo.henu.edu.cn/KIRC/KIRCList.jsp.
Collapse
Affiliation(s)
- Longxiang Xie
- Department of Preventive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng 475004, PR China
| | - Qiang Wang
- Department of Preventive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng 475004, PR China
| | - Yifang Dang
- Department of Preventive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng 475004, PR China
| | - Linna Ge
- Department of Preventive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng 475004, PR China
| | - Xiaoxiao Sun
- Department of Preventive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng 475004, PR China
| | - Ning Li
- Department of Preventive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng 475004, PR China
| | - Yali Han
- Department of Preventive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng 475004, PR China
| | - Zhongyi Yan
- Department of Preventive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng 475004, PR China
| | - Lu Zhang
- Department of Preventive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng 475004, PR China
| | - Yongqiang Li
- Department of Preventive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng 475004, PR China
| | - Haiyu Zhang
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Xiangqian Guo
- Department of Preventive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Software, School of Basic Medical Sciences, Henan University, Kaifeng 475004, PR China
| |
Collapse
|
14
|
Suzuki M, Yokobori T, Gombodorj N, Yashiro M, Turtoi A, Handa T, Ogata K, Oyama T, Shirabe K, Kuwano H. High stromal transforming growth factor β-induced expression is a novel marker of progression and poor prognosis in gastric cancer. J Surg Oncol 2018; 118:966-974. [DOI: 10.1002/jso.25217] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 08/01/2018] [Indexed: 02/03/2023]
Affiliation(s)
- Masaki Suzuki
- Department of General Surgical Science; Gunma University Graduate School of Medicine; Maebashi Japan
| | - Takehiko Yokobori
- Department of General Surgical Science; Gunma University Graduate School of Medicine; Maebashi Japan
- Department of Innovative Cancer Immunotherapy; Gunma University Graduate School of Medicine; Maebashi Japan
| | - Navchaa Gombodorj
- Department of General Surgical Science; Gunma University Graduate School of Medicine; Maebashi Japan
| | - Masakazu Yashiro
- Department of Surgical Oncology Molecular Oncology and Therapeutics; Osaka City University Graduate School of Medicine; Osaka Japan
| | - Andrei Turtoi
- Institut du Cancer; Montpellier France
- INSERM U1194; Montpellier France
- Institut de Recherche en Cancérologie de Montpellier; Montpellier France
- Université Montpellier; Montpellier France
| | - Tadashi Handa
- Department of Diagnostic Pathology; Gunma University Graduate School of Medicine; Maebashi Japan
| | - Kyoichi Ogata
- Department of General Surgical Science; Gunma University Graduate School of Medicine; Maebashi Japan
| | - Tetsunari Oyama
- Department of Diagnostic Pathology; Gunma University Graduate School of Medicine; Maebashi Japan
| | - Ken Shirabe
- Department of Hepatobiliary and Pancreatic Surgery; Gunma University Graduate School of Medicine; Maebashi Japan
| | - Hiroyuki Kuwano
- Department of General Surgical Science; Gunma University Graduate School of Medicine; Maebashi Japan
| |
Collapse
|
15
|
Kaur G, Li CG, Chantry A, Stayner C, Horsfield J, Eccles MR. SMAD proteins directly suppress PAX2 transcription downstream of transforming growth factor-beta 1 (TGF-β1) signalling in renal cell carcinoma. Oncotarget 2018; 9:26852-26867. [PMID: 29928489 PMCID: PMC6003550 DOI: 10.18632/oncotarget.25516] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/14/2018] [Indexed: 12/12/2022] Open
Abstract
Canonical TGF-β1 signalling promotes tumor progression by facilitating invasion and metastasis, whereby release of TGF-β1, by (for example) infiltrating immune cells, induces epithelial to mesenchymal transition (EMT). PAX2, a member of the Paired box family of transcriptional regulators, is normally expressed during embryonic development, including in the kidney, where it promotes mesenchymal to epithelial transition (MET). PAX2 expression is silenced in many normal adult tissues. However, in contrast, PAX2 is expressed in several cancer types, including kidney, prostate, breast, and ovarian cancer. While multiple studies have implicated TGF-β superfamily members in modulating expression of Pax genes during embryonic development, few have investigated direct regulation of Pax gene expression by TGF-β1. Here we have investigated direct regulation of PAX2 expression by TGF-β1 in clear cell renal cell carcinoma (CC-RCC) cell lines. Treatment of PAX2-expressing 786-O and A498 CC-RCC cell lines with TGF-β1 resulted in inhibition of endogenous PAX2 mRNA and protein expression, as well as expression from transiently transfected PAX2 promoter constructs; this inhibition was abolished in the presence of expression of the inhibitory SMAD, SMAD7. Using ChIP-PCR we showed TGF-β1 treatment induced SMAD3 protein phosphorylation in 786-O cells, and direct SMAD3 binding to the human PAX2 promoter, which was inhibited by SMAD7 over-expression. Overall, these data suggest that canonical TGF-β signalling suppresses PAX2 transcription in CC-RCC cells due to the direct binding of SMAD proteins to the PAX2 promoter. These studies improve our understanding of tumor progression and epithelial to mesenchyme transition (EMT) in CC-RCC and in other PAX2-expressing cancer types.
Collapse
Affiliation(s)
- Gagandeep Kaur
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Caiyun Grace Li
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Andrew Chantry
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Cherie Stayner
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Julia Horsfield
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Michael R. Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| |
Collapse
|
16
|
Bissey PA, Law JH, Bruce JP, Shi W, Renoult A, Chua MLK, Yip KW, Liu FF. Dysregulation of the MiR-449b target TGFBI alters the TGFβ pathway to induce cisplatin resistance in nasopharyngeal carcinoma. Oncogenesis 2018; 7:40. [PMID: 29795279 PMCID: PMC5966388 DOI: 10.1038/s41389-018-0050-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 02/26/2018] [Accepted: 04/11/2018] [Indexed: 01/07/2023] Open
Abstract
Despite the improvement in locoregional control of nasopharyngeal carcinoma (NPC), distant metastasis (DM), and chemoresistance persist as major causes of mortality. This study identified a novel role for miR-449b, an overexpressed gene in a validated four-miRNA signature for NPC DM, leading to chemoresistance via the direct targeting of transforming growth factor beta-induced (TGFBI). In vitro shRNA-mediated downregulation of TGFBI induced phosphorylation of PTEN and AKT, increasing cisplatin resistance. Conversely, the overexpression of TGFBI sensitized the NPC cells to cisplatin. In NPC patients treated with concurrent chemoradiotherapy (CRT), the overall survival (OS) was significantly inversely correlated with miR-449b, and directly correlated with both TGFBI mRNA and protein expression, as assessed by RNA sequencing and immunohistochemistry (IHC). Mechanistically, co-immunoprecipitation demonstrated that TGFBI competes with pro-TGFβ1 for integrin receptor binding. Decreased TGFBI led to increased pro-TGFβ1 activation and TGFβ1 canonical/noncanonical pathway-induced cisplatin resistance. Thus, overexpression of miR-449b decreases TGFBI, thereby altering the balance between TGFBI and pro-TGFβ1, revealing a novel mechanism of chemoresistance in NPC.
Collapse
Affiliation(s)
| | - Jacqueline H Law
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Jeff P Bruce
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Wei Shi
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Aline Renoult
- LabEx DEVweCAN, Université de Lyon, F-69000, Lyon, France
| | - Melvin L K Chua
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Department of Radiation Oncology, Princess Margaret Cancer Centre and University of Toronto, Toronto, ON, Canada.,Division of Radiation Oncology, National Cancer Centre, Singapore, Singapore.,Duke-NUS Graduate School, Singapore, Singapore
| | - Kenneth W Yip
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Fei-Fei Liu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada. .,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada. .,Department of Radiation Oncology, Princess Margaret Cancer Centre and University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
17
|
Robinson CM, Lefebvre F, Poon BP, Bousard A, Fan X, Lathrop M, Tost J, Kim WY, Riazalhosseini Y, Ohh M. Consequences of VHL Loss on Global DNA Methylome. Sci Rep 2018; 8:3313. [PMID: 29463811 PMCID: PMC5820357 DOI: 10.1038/s41598-018-21524-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 02/06/2018] [Indexed: 12/13/2022] Open
Abstract
In clear-cell renal cell carcinoma (ccRCC), loss of von Hippel-Lindau (VHL) tumour suppressor gene and reduced oxygen tension promote stabilisation of hypoxia-inducible factor (HIF) family of transcription factors, which promote changes in the expression of genes that contribute to oncogenesis. Multiple studies have demonstrated significant perturbations in DNA methylation in ccRCC via largely unclear mechanisms that modify the transcriptional output of tumour cells. Here, we show that the methylation status of the CpG dinucleotide within the consensus hypoxia-responsive element (HRE) markedly influences the binding of HIF and that the loss of VHL results in significant alterations in the DNA methylome. Surprisingly, hypoxia, which likewise promotes HIF stabilisation and activation, has relatively few effects on global DNA methylation. Gene expression analysis of ccRCC patient samples highlighted expression of a group of genes whose transcription correlated with methylation changes, including hypoxic responsive genes such as VEGF and TGF. These results suggest that the loss of VHL alters DNA methylation profile across the genome, commonly associated with and contributing to ccRCC progression.
Collapse
Affiliation(s)
- Claire M Robinson
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 661 University Avenue, Room 1510, M5G1M1, Toronto, Ontario, Canada.,Department of Biochemistry, University of Toronto, 661 University Avenue, Room 1510, M5G1M1, Toronto, Ontario, Canada
| | - Francois Lefebvre
- Canadian Centre for Computational Genomics (C3G), 740 Doctor Penfield Avenue, Montreal, QC, H3A 0G1, Canada
| | - Betty P Poon
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 661 University Avenue, Room 1510, M5G1M1, Toronto, Ontario, Canada.,Department of Biochemistry, University of Toronto, 661 University Avenue, Room 1510, M5G1M1, Toronto, Ontario, Canada
| | - Aurelie Bousard
- Laboratory for Epigenetics & Environment, Centre National de Génotypage, CEA-Institut de Génomique, 2 rue Gaston Crémieux, 91000, Evry, France
| | - Xiaojun Fan
- Department of Human Genetics, McGill University, 1205 Dr Penfield Avenue, Montreal, QC, H3A 1B1, Canada.,McGill University and Genome Quebec Innovation Centre, 740 Doctor Penfield Avenue, Montreal, QC, H3A 0G1, Canada
| | - Mark Lathrop
- Department of Human Genetics, McGill University, 1205 Dr Penfield Avenue, Montreal, QC, H3A 1B1, Canada.,McGill University and Genome Quebec Innovation Centre, 740 Doctor Penfield Avenue, Montreal, QC, H3A 0G1, Canada
| | - Jorg Tost
- Laboratory for Epigenetics & Environment, Centre National de Génotypage, CEA-Institut de Génomique, 2 rue Gaston Crémieux, 91000, Evry, France
| | - William Y Kim
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, CB 7295, Chapel Hill, North Carolina, USA
| | - Yasser Riazalhosseini
- Department of Human Genetics, McGill University, 1205 Dr Penfield Avenue, Montreal, QC, H3A 1B1, Canada.,McGill University and Genome Quebec Innovation Centre, 740 Doctor Penfield Avenue, Montreal, QC, H3A 0G1, Canada
| | - Michael Ohh
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 661 University Avenue, Room 1510, M5G1M1, Toronto, Ontario, Canada. .,Department of Biochemistry, University of Toronto, 661 University Avenue, Room 1510, M5G1M1, Toronto, Ontario, Canada.
| |
Collapse
|
18
|
Pan YB, Zhang CH, Wang SQ, Ai PH, Chen K, Zhu L, Sun ZL, Feng DF. Transforming growth factor beta induced (TGFBI) is a potential signature gene for mesenchymal subtype high-grade glioma. J Neurooncol 2018; 137:395-407. [PMID: 29294230 DOI: 10.1007/s11060-017-2729-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 12/24/2017] [Indexed: 12/19/2022]
Abstract
Previous study revealed that higher expression of transforming growth factor beta induced (TGFBI) is correlated to poorer cancer-specific survival and higher proportion of tumor necrosis and Fuhrman grades III and IV in clear cell renal cell carcinomas. However, the relationships between TGFBI expression and malignant phenotypes of gliomas remain unclear. We downloaded and analyzed data from seven GEO datasets (GSE68848, GSE4290, GSE13041, GSE4271, GSE83300, GSE34824 and GSE84010), the TCGA database and the REMBRANDT database to investigate whether TGFBI could be a biomarker of glioma. From microarray data (GSE68848, GSE4290) and RNA-seq data (TCGA), TGFBI expression levels were observed to correlate positively with pathological grade, and TGFBI expression levels were significantly higher in gliomas than in normal brain tissues. Furthermore, in GSE13041, GSE4271 and the TCGA cohort, TGFBI expression in the mesenchymal (Mes) subtype high-grade glioma (HGG) was significantly higher than that in the proneural subtype. Kaplan-Meier survival analysis of GBM patients in the GSE83300 dataset, REMBRANDT and TCGA cohort revealed that patients in the top 50% TGFBI expression group survived for markedly shorter periods than those in the bottom 50%. Analysis of grade III gliomas showed that the median survival time was significantly shorter in the TGFBI high expression group than in the TGFBI low expression group. In addition, we found that TGFBI expression levels might relate to several classical molecular characterizations of glioma, such as, IDH mutation, TP53 mutation, EGFR amplification, etc. These results suggest that TGFBI expression positively correlates with glioma pathological grades and that TGFBI is a potential signature gene for Mes subtype HGG and a potential prognostic molecule.
Collapse
Affiliation(s)
- Yuan-Bo Pan
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201999, China
| | - Chi-Hao Zhang
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201999, China
| | - Si-Qi Wang
- Department of Radiology, Affiliated Hospital of Medical School of Ningbo University, Ningbo, 315020, Zhejiang Province, China
| | - Peng-Hui Ai
- Department of Neurology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Kui Chen
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201999, China
| | - Liang Zhu
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201999, China
| | - Zhao-Liang Sun
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201999, China
| | - Dong-Fu Feng
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 201999, China.
| |
Collapse
|
19
|
Pan T, Lin SC, Yu KJ, Yu G, Song JH, Lewis VO, Bird JE, Moon B, Lin PP, Tannir NM, Jonasch E, Wood CG, Gallick GE, Yu-Lee LY, Lin SH, Satcher RL. BIGH3 Promotes Osteolytic Lesions in Renal Cell Carcinoma Bone Metastasis by Inhibiting Osteoblast Differentiation. Neoplasia 2017; 20:32-43. [PMID: 29190493 PMCID: PMC5711998 DOI: 10.1016/j.neo.2017.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/01/2017] [Accepted: 11/02/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND: Bone metastasis is common in renal cell carcinoma (RCC), and the lesions are mainly osteolytic. The mechanism of bone destruction in RCC bone metastasis is unknown. METHODS: We used a direct intrafemur injection of mice with bone-derived 786-O RCC cells (Bo-786) as an in vivo model to study if inhibition of osteoblast differentiation is involved in osteolytic bone lesions in RCC bone metastasis. RESULTS: We showed that bone-derived Bo-786 cells induced osteolytic bone lesions in the femur of mice. We examined the effect of conditioned medium of Bo-786 cells (Bo-786 CM) on both primary mouse osteoblasts and MC3T3-E1 preosteoblasts and found that Bo-786 CM inhibited osteoblast differentiation. Secretome analysis of Bo-786 CM revealed that BIGH3 (Beta ig h3 protein), also known as TGFBI (transforming growth factor beta-induced protein), is highly expressed. We generated recombinant BIGH3 and found that BIGH3 inhibited osteoblast differentiation in vitro. In addition, CM from Bo-786 BIGH3 knockdown cells (786-BIGH3 KD) reduced the inhibition of osteoblast differentiation compared to CM from vector control. Intrafemural injection of mice with 786-BIGH3 KD cells showed a reduction in osteolytic bone lesions compared to vector control. Immunohistochemical staining of 18 bone metastasis specimens from human RCC showed strong BIGH3 expression in 11/18 (61%) and moderate BIGH3 expression in 7/18 (39%) of the specimens. CONCLUSIONS: These results suggest that suppression of osteoblast differentiation by BIGH3 is one of the mechanisms that enhance osteolytic lesions in RCC bone metastasis, and raise the possibilty that treatments that increase bone formation may improve therapy outcomes.
Collapse
Affiliation(s)
- Tianhong Pan
- Department of Orthopedic Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Song-Chang Lin
- Department of Translational Molecular Pathology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Kai-Jie Yu
- Department of Urology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA; Division of Urology, Department of Surgery, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan, Taiwan; Department of Chemical Engineering and Biotechnology and Graduate Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Guoyu Yu
- Department of Translational Molecular Pathology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Jian H Song
- Department of Genitourinary Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Valerae O Lewis
- Department of Orthopedic Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Justin E Bird
- Department of Orthopedic Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Bryan Moon
- Department of Orthopedic Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Patrick P Lin
- Department of Orthopedic Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Nizar M Tannir
- Department of Genitourinary Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Eric Jonasch
- Department of Genitourinary Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher G Wood
- Department of Urology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Gary E Gallick
- Department of Genitourinary Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Li-Yuan Yu-Lee
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Sue-Hwa Lin
- Department of Translational Molecular Pathology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA; Department of Genitourinary Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA.
| | - Robert L Satcher
- Department of Orthopedic Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
20
|
Hascoet P, Chesnel F, Jouan F, Le Goff C, Couturier A, Darrigrand E, Mahe F, Rioux-Leclercq N, Le Goff X, Arlot-Bonnemains Y. The pVHL 172 isoform is not a tumor suppressor and up-regulates a subset of pro-tumorigenic genes including TGFB1 and MMP13. Oncotarget 2017; 8:75989-76002. [PMID: 29100286 PMCID: PMC5652680 DOI: 10.18632/oncotarget.18376] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/26/2017] [Indexed: 01/24/2023] Open
Abstract
The von Hippel-Lindau (VHL) tumor suppressor gene is often deleted or mutated in ccRCC (clear cell renal cell carcinoma) producing a non-functional protein. The gene encodes two mRNA, and three protein isoforms (pVHL213, pVHL160 and pVHL172). The pVHL protein is part of an E3 ligase complex involved in the ubiquitination and proteasomal degradation of different proteins, particularly hypoxia inducible factors (HIF) that drive the transcription of genes involved in the regulation of cell proliferation, angiogenesis or extracellular matrix remodelling. Other non-canonical (HIF-independent) pVHL functions have been described. A recent work reported the expression of the uncharacterized protein isoform pVHL172 which is translated from the variant 2 by alternative splicing of the exon 2. This splice variant is sometimes enriched in the ccRCCs and the protein has been identified in the respective samples of ccRCCs and different renal cell lines. Functional studies on pVHL have only concerned the pVHL213 and pVHL160 isoforms, but no function was assigned to pVHL172. Here we show that pVHL172 stable expression in renal cancer cells does not regulate the level of HIF, exacerbates tumorigenicity when 786-O-pVHL172 cells were xenografted in mice. The pVHL172-induced tumors developed a sarcomatoid phenotype. Moreover, pVHL172 expression was shown to up regulate a subset of pro-tumorigenic genes including TGFB1, MMP1 and MMP13. In summary we identified that pVHL172 is not a tumor suppressor. Furthermore our findings suggest an antagonistic function of this pVHL isoform in the HIF-independent aggressiveness of renal tumors compared to pVHL213.
Collapse
Affiliation(s)
- Pauline Hascoet
- CNRS, UMR 6290 IGDR, Université Rennes 1, BIOSIT, Rennes, France
| | - Franck Chesnel
- CNRS, UMR 6290 IGDR, Université Rennes 1, BIOSIT, Rennes, France
| | - Florence Jouan
- CNRS, UMR 6290 IGDR, Université Rennes 1, BIOSIT, Rennes, France
| | - Cathy Le Goff
- CNRS, UMR 6290 IGDR, Université Rennes 1, BIOSIT, Rennes, France
| | - Anne Couturier
- CNRS, UMR 6290 IGDR, Université Rennes 1, BIOSIT, Rennes, France
| | | | | | | | - Xavier Le Goff
- CNRS, UMR 6290 IGDR, Université Rennes 1, BIOSIT, Rennes, France
| | | |
Collapse
|
21
|
Chen XL, Chen ZQ, Zhu SL, Liu TW, Wen Y, Su YS, Xi XJ, Hu Y, Lian L, Liu FB. Prognostic value of transforming growth factor-beta in patients with colorectal cancer who undergo surgery: a meta-analysis. BMC Cancer 2017; 17:240. [PMID: 28376764 PMCID: PMC5379512 DOI: 10.1186/s12885-017-3215-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 03/22/2017] [Indexed: 02/07/2023] Open
Abstract
Background Transforming growth factor-beta (TGF-β) is associated with a higher incidence of distant metastasis and decreased survival. Whether TGF-β can be used as a prognostic indicator of colorectal cancer (CRC) remains controversial. Methods The Medline, EMBASE and Cochrane databases were searched from their inception to March 2016. The studies that focused on TGF-β as a prognostic factor in patients with CRC were included in this analysis. Overall survival (OS) and disease-free survival (DFS) were analysed separately. A meta-analysis was performed, and hazard ratios (HR) with 95% confidence intervals (CI) were calculated. Results Twelve studies were included in the analysis, of which 8 were used for OS and 7 for DFS. In all, 1622 patients with CRC undergoing surgery were included. Combined HRs suggested that high expression of TGF-β had a favourable impact on OS (HR = 1.68, 95% CI: 1.10–2.59) and DFS (HR = 1.11, 95% CI: 1.03–1.19) in CRC patients. For OS, the combined HRs of Asian studies and Western studies were 1.50 (95% CI: 0.61–3.68) and 1.80 (95% CI: 1.33–2.45), respectively. For DFS, the combined HRs of Asian studies and Western studies were 1.42 (95% CI: 0.61–3.31) and 1.11 (95% CI: 1.03–1.20), respectively. Conclusions This meta-analysis demonstrates that TGF-β can be used as a prognostic biomarker for CRC patients undergoing surgery, especially for CRC patients from Western countries. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3215-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xin-Lin Chen
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhuo-Qun Chen
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shui-Lian Zhu
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Tian-Wen Liu
- Guangdong Province Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi Wen
- The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi-Sheng Su
- Guangdong Province Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xu-Jie Xi
- Guangdong Province Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yue Hu
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lei Lian
- Department of Colorectal Surgery, Sun Yat-sen University, Guangzhou, China.
| | - Feng-Bin Liu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
22
|
Gu Y, Lu L, Wu L, Chen H, Zhu W, He Y. Identification of prognostic genes in kidney renal clear cell carcinoma by RNA‑seq data analysis. Mol Med Rep 2017; 15:1661-1667. [PMID: 28260099 PMCID: PMC5364979 DOI: 10.3892/mmr.2017.6194] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 12/06/2016] [Indexed: 01/07/2023] Open
Abstract
The present study aimed to analyze RNA-seq data of kidney renal clear cell carcinoma (KIRC) to identify prognostic genes. RNA‑seq data were downloaded from The Cancer Genome Atlas. Feature genes with a coefficient of variation (CV) >0.5 were selected using the genefilter package in R. Gene co‑expression networks were constructed with the WGCNA package. Cox regression analysis was performed using the survive package. Furthermore, a functional enrichment analysis was conducted using Database for Annotation, Visualization and Integrated Discovery tools. A total of 533 KIRC samples were collected, from which 6,758 feature genes with a CV >0.5 were obtained for further analysis. The KIRC samples were divided into two sets: The training set (n=319 samples) and the validation set (n=214 samples). Subsequently, gene co‑expression networks were constructed for the two sets. A total of 12 modules were identified, and the green module was significantly associated with survival time. Genes from the green module were revealed to be implicated in the cell cycle and p53 signaling pathway. In addition, a total of 11 hub genes were revealed, and 10 of them (CCNA2, CDC20, CDCA8, GTSE1, KIF23, KIF2C, KIF4A, MELK, TOP2A and TPX2) were validated as possessing prognostic value, as determined by conducting a survival analysis on another gene expression dataset. In conclusion, a total of 10 prognostic genes were identified in KIRC. These findings may help to advance the understanding of this disease, and may also provide potential biomarkers for therapeutic development.
Collapse
Affiliation(s)
- Yanqin Gu
- Department of Urology, The First Hospital of Jiaxing, Jiaxing, Zhejiang 314001, P.R. China
| | - Linfeng Lu
- Department of Urology, The First Hospital of Jiaxing, Jiaxing, Zhejiang 314001, P.R. China
| | - Lingfeng Wu
- Department of Urology, The First Hospital of Jiaxing, Jiaxing, Zhejiang 314001, P.R. China
| | - Hao Chen
- Department of Urology, The First Hospital of Jiaxing, Jiaxing, Zhejiang 314001, P.R. China
| | - Wei Zhu
- Department of Urology, The First Hospital of Jiaxing, Jiaxing, Zhejiang 314001, P.R. China
| | - Yi He
- Department of Urology, The First Hospital of Jiaxing, Jiaxing, Zhejiang 314001, P.R. China
| |
Collapse
|
23
|
Cervical Cancer Cell Line Secretome Highlights the Roles of Transforming Growth Factor-Beta-Induced Protein ig-h3, Peroxiredoxin-2, and NRF2 on Cervical Carcinogenesis. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4180703. [PMID: 28261610 PMCID: PMC5316418 DOI: 10.1155/2017/4180703] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/16/2016] [Accepted: 11/24/2016] [Indexed: 02/07/2023]
Abstract
Cancer cells acquire unique secretome compositions that contribute to tumor development and metastasis. The aim of our study was to elucidate the biological processes involved in cervical cancer, by performing a proteomic analysis of the secretome from the following informative cervical cell lines: SiHa (HPV16+), HeLa (HPV18+), C33A (HPV-), and HCK1T (normal). Proteins were analyzed by 2D gel electrophoresis coupled to MALDI-TOF-MS. Enrichment of secreted proteins with characteristic profiles for each cell line was followed by the identification of differentially expressed proteins. Particularly, transforming growth factor-beta-induced protein ig-h3 (Beta ig-h3) and peroxiredoxin-2 (PRDX2) overexpression in the secretome of cancer cell lines was detected and confirmed by Western blot. Bioinformatics analysis identified the transcription factor NRF2 as a regulator of differentially expressed proteins in the cervical cancer secretome. NRF2 levels were measured by both Western blot and Multiple Reaction Monitoring (MRM) in the total cell extract of the four cell lines. NRF2 was upregulated in SiHa and C33A compared to HCK1T. In conclusion, the secreted proteins identified in cervical cancer cell lines indicate that aberrant NRF2-mediated oxidative stress response (OSR) is a prominent feature of cervical carcinogenesis.
Collapse
|
24
|
Zhao Z, Lu J, Han L, Wang X, Man Q, Liu S. Prognostic significance of two lipid metabolism enzymes, HADHA and ACAT2, in clear cell renal cell carcinoma. Tumour Biol 2016; 37:8121-30. [PMID: 26715271 DOI: 10.1007/s13277-015-4720-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 12/21/2015] [Indexed: 01/26/2023] Open
Abstract
Renal cell carcinoma (RCC) is one of the leading causes of cancer mortality in adults, but there is still no acknowledged biomarker for its prognostic evaluation. Our previous proteomic data had demonstrated the dysregulation of some lipid metabolism enzymes in clear cell RCC (ccRCC). In the present study, we elucidated the expression of two lipid metabolism enzymes, hydroxyl-coenzyme A dehydrogenase, alpha subunit (HADHA) and acetyl-coenzyme A acetyltransferase 2 (ACAT2), using Western blotting analysis, then assessed the prognostic potential of HADHA and ACAT2 using immunohistochemistry (IHC) on a tissue microarray of 145 ccRCC tissues. HADHA and ACAT2 were downregulated in ccRCC (P < 0.05); further IHC analysis revealed that HADHA expression was significantly associated with tumor grade, stage, size, metastasis, and cancer-specific survival (P = 0.004, P < 0.001, P < 0.001, P = 0.049, P < 0.001, respectively) and ACAT2 expression was significantly associated with tumor stage, size, and cancer-specific survival (P < 0.001, P = 0.001, P < 0.001, respectively). In addition, a strong correlation was found between HADHA and ACAT2 expression (R = 0.655, P < 0.001). Further univariate survival analysis demonstrated that high stage, big tumor size, metastasis, and HADHA and ACAT2 down-expression were associated with poorer prognosis on cancer-specific survival (P = 0.007, P = 0.005, P = 0.006, P < 0.001, P = 0.001, respectively), and multivariate analysis revealed that HADHA, stage, and metastasis were identified as independent prognostic factors for cancer-specific survival in patients with ccRCC (P = 0.018, P = 0.046, P = 0.001, respectively). Collectively, these findings indicated that HADHA could serve as a promising prognostic marker in ccRCC, which indicated lipid metabolism abnormality might be involved in ccRCC tumorigenesis.
Collapse
Affiliation(s)
- Zuohui Zhao
- Department of Pediatric Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jingshi Road, No. 16766, Jinan, Shandong, 250014, China
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jingwu Road, No. 324, Jinan, Shandong, 250021, China
| | - Jiaju Lu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jingwu Road, No. 324, Jinan, Shandong, 250021, China
| | - Liping Han
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jingshi Road, No. 16766, Jinan, Shandong, 250014, China
| | - Xiaoqing Wang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jingwu Road, No. 324, Jinan, Shandong, 250021, China
| | - Quanzhan Man
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jingwu Road, No. 324, Jinan, Shandong, 250021, China
| | - Shuai Liu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jingwu Road, No. 324, Jinan, Shandong, 250021, China.
| |
Collapse
|
25
|
Neely BA, Wilkins CE, Marlow LA, Malyarenko D, Kim Y, Ignatchenko A, Sasinowska H, Sasinowski M, Nyalwidhe JO, Kislinger T, Copland JA, Drake RR. Proteotranscriptomic Analysis Reveals Stage Specific Changes in the Molecular Landscape of Clear-Cell Renal Cell Carcinoma. PLoS One 2016; 11:e0154074. [PMID: 27128972 PMCID: PMC4851420 DOI: 10.1371/journal.pone.0154074] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/10/2016] [Indexed: 11/20/2022] Open
Abstract
Renal cell carcinoma comprises 2 to 3% of malignancies in adults with the most prevalent subtype being clear-cell RCC (ccRCC). This type of cancer is well characterized at the genomic and transcriptomic level and is associated with a loss of VHL that results in stabilization of HIF1. The current study focused on evaluating ccRCC stage dependent changes at the proteome level to provide insight into the molecular pathogenesis of ccRCC progression. To accomplish this, label-free proteomics was used to characterize matched tumor and normal-adjacent tissues from 84 patients with stage I to IV ccRCC. Using pooled samples 1551 proteins were identified, of which 290 were differentially abundant, while 783 proteins were identified using individual samples, with 344 being differentially abundant. These 344 differentially abundant proteins were enriched in metabolic pathways and further examination revealed metabolic dysfunction consistent with the Warburg effect. Additionally, the protein data indicated activation of ESRRA and ESRRG, and HIF1A, as well as inhibition of FOXA1, MAPK1 and WISP2. A subset analysis of complementary gene expression array data on 47 pairs of these same tissues indicated similar upstream changes, such as increased HIF1A activation with stage, though ESRRA and ESRRG activation and FOXA1 inhibition were not predicted from the transcriptomic data. The activation of ESRRA and ESRRG implied that HIF2A may also be activated during later stages of ccRCC, which was confirmed in the transcriptional analysis. This combined analysis highlights the importance of HIF1A and HIF2A in developing the ccRCC molecular phenotype as well as the potential involvement of ESRRA and ESRRG in driving these changes. In addition, cofilin-1, profilin-1, nicotinamide N-methyltransferase, and fructose-bisphosphate aldolase A were identified as candidate markers of late stage ccRCC. Utilization of data collected from heterogeneous biological domains strengthened the findings from each domain, demonstrating the complementary nature of such an analysis. Together these results highlight the importance of the VHL/HIF1A/HIF2A axis and provide a foundation and therapeutic targets for future studies. (Data are available via ProteomeXchange with identifier PXD003271 and MassIVE with identifier MSV000079511.)
Collapse
Affiliation(s)
- Benjamin A. Neely
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Christopher E. Wilkins
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
| | - Laura A. Marlow
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida, United States of America
| | - Dariya Malyarenko
- Department of Radiology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Yunee Kim
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | | | | | - Maciek Sasinowski
- INCOGEN, Inc., Williamsburg, Virginia, United States of America
- Venebio Group, LLC, Richmond, Virginia, United States of America
| | - Julius O. Nyalwidhe
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
| | - Thomas Kislinger
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Center, Toronto, Ontario, Canada
| | - John A. Copland
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida, United States of America
| | - Richard R. Drake
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
26
|
Chinello C, Cazzaniga M, De Sio G, Smith AJ, Grasso A, Rocco B, Signorini S, Grasso M, Bosari S, Zoppis I, Mauri G, Magni F. Tumor size, stage and grade alterations of urinary peptidome in RCC. J Transl Med 2015; 13:332. [PMID: 26482227 PMCID: PMC4617827 DOI: 10.1186/s12967-015-0693-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/10/2015] [Indexed: 01/23/2023] Open
Abstract
Background Several promising biomarkers have been found for RCC, but none of them has been used in clinical practice for predicting tumour progression. The most widely used features for predicting tumour aggressiveness still remain the cancer stage, size and grade. Therefore, the aim of our study is to investigate the urinary peptidome to search and identify peptides whose concentrations in urine are linked to tumour growth measure and clinical data. Methods A proteomic approach applied to ccRCC urinary peptidome (n = 117) based on prefractionation with activated magnetic beads followed by MALDI-TOF profiling was used. A systematic correlation study was performed on urinary peptide profiles obtained from MS analysis. Peptide identity was obtained by LC–ESI–MS/MS. Results Fifteen, twenty-six and five peptides showed a statistically significant alteration of their urinary concentration according to tumour size, pT and grade, respectively. Furthermore, 15 and 9 signals were observed to have urinary levels statistically modified in patients at different pT or grade values, even at very early stages. Among them, C1RL, A1AGx, ZAG2G, PGBM, MMP23, GP162, ADA19, G3P, RSPH3, DREB, NOTC2 SAFB2 and CC168 were identified. Conclusions We identified several peptides whose urinary abundance varied according to tumour size, stage and grade. Among them, several play a possible role in tumorigenesis, progression and aggressiveness. These results could be a useful starting point for future studies aimed at verifying their possible use in the managements of RCC patients. Electronic supplementary material The online version of this article (doi:10.1186/s12967-015-0693-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Clizia Chinello
- Department of Health Science, School of Medicine, University of Milano-Bicocca (UNIMIB), Via Cadore, 48, 20900, Monza, Italy.
| | - Marta Cazzaniga
- Department of Health Science, School of Medicine, University of Milano-Bicocca (UNIMIB), Via Cadore, 48, 20900, Monza, Italy.
| | - Gabriele De Sio
- Department of Health Science, School of Medicine, University of Milano-Bicocca (UNIMIB), Via Cadore, 48, 20900, Monza, Italy.
| | - Andrew James Smith
- Department of Health Science, School of Medicine, University of Milano-Bicocca (UNIMIB), Via Cadore, 48, 20900, Monza, Italy.
| | - Angelica Grasso
- Urology Unit, Department of Specialistic Surgical Sciences, Ospedale Maggiore Policlinico Foundation, Milan, Italy.
| | - Bernardo Rocco
- Urology Unit, Department of Specialistic Surgical Sciences, Ospedale Maggiore Policlinico Foundation, Milan, Italy.
| | | | - Marco Grasso
- Department of Surgical Pathology, Cytology, Medical Genetics and Nephropathology, Azienda Ospedaliera San Gerardo, Monza, Italy.
| | - Silvano Bosari
- Department of Medicine, Surgery and Dental Sciences, Pathology Unit, IRCCS-Policlinico Foundation, Mangiagalli and Regina Elena, University of Milan, Milan, Italy.
| | - Italo Zoppis
- Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milan, Italy.
| | - Giancarlo Mauri
- Department of Informatics, Systems and Communication, University of Milano-Bicocca, Milan, Italy.
| | - Fulvio Magni
- Department of Health Science, School of Medicine, University of Milano-Bicocca (UNIMIB), Via Cadore, 48, 20900, Monza, Italy.
| |
Collapse
|
27
|
Ozawa D, Yokobori T, Sohda M, Sakai M, Hara K, Honjo H, Kato H, Miyazaki T, Kuwano H. TGFBI Expression in Cancer Stromal Cells is Associated with Poor Prognosis and Hematogenous Recurrence in Esophageal Squamous Cell Carcinoma. Ann Surg Oncol 2014; 23:282-9. [PMID: 25448803 DOI: 10.1245/s10434-014-4259-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Indexed: 11/18/2022]
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is an important cause of cancer-related death worldwide. To improve prognoses in patients with ESCC, we evaluated the potential of transforming growth factor-beta-induced protein (TGFBI), which is overexpressed in ESCC, as a therapeutic candidate. METHODS We examined the clinical significance of TBFBI in 102 ESCC samples using real-time RT-PCR. Immunohistochemical studies were conducted to examine the localization of TGFBI. Knockdown of TGFBI in cocultured fibroblasts was performed to determine the roles of TGFBI in migration and invasion. RESULTS The level of TGFBI in ESCC tissues was higher than that in normal tissues. The high TGFBI expression group (n = 16) had higher TGFB1 expression and more frequent hematogenous recurrence than the low-expression group (n = 86). High TGFBI expression was an independent prognostic factor in patients with ESCC. TGFBI was mainly localized in stromal cells of ESCC. Moreover, suppression of TGFBI in fibroblasts inhibited the migration and invasion capacity of TE8 ESCC cells. CONCLUSIONS High TGFBI expression in ESCC tissues could be a powerful biomarker of poor prognosis and hematogenous recurrence. TGFBI in stromal cells might be a promising molecular target for ESCC treatment.
Collapse
Affiliation(s)
- Daigo Ozawa
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan.
| | - Takehiko Yokobori
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Makoto Sohda
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Makoto Sakai
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Keigo Hara
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Hiroaki Honjo
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Hiroyuki Kato
- First Department of Surgery, Dokkyo Medical University, Mibu, Japan
| | - Tatsuya Miyazaki
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Hiroyuki Kuwano
- Department of General Surgical Science, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| |
Collapse
|
28
|
Label-free quantitative proteomic analysis reveals potential biomarkers and pathways in renal cell carcinoma. Tumour Biol 2014; 36:939-51. [PMID: 25315187 DOI: 10.1007/s13277-014-2694-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 09/30/2014] [Indexed: 01/22/2023] Open
Abstract
Renal cell carcinoma (RCC) is one of the most common malignancies in adults, and there is still no acknowledged biomarker for its diagnosis, prognosis, recurrence monitoring, and treatment stratification. Besides, little is known about the post-translational modification (PTM) of proteins in RCC. Here, we performed quantitative proteomic analysis on 12 matched pairs of clear cell RCC (ccRCC) and adjacent kidney tissues using liquid chromatography-tandem mass spectrometry (nanoLCMS/MS) and Progenesis LC-MS software (label-free) to identify and quantify the dysregulated proteins. A total of 1872 and 1927 proteins were identified in ccRCC and adjacent kidney tissues, respectively. Among these proteins, 1037 proteins were quantified by Progenesis LC-MS, and 213 proteins were identified as dysregulated proteins between ccRCC and adjacent tissues. Pathway analysis using IPA, STRING, and David tools was performed, which demonstrated the enrichment of cancer-related signaling pathways and biological processes such as mitochondrial dysfunction, metabolic pathway, cell death, and acetylation. Dysregulation of two mitochondrial proteins, acetyl-CoA acetyltransferase 1 (ACAT1) and manganese superoxide dismutase (MnSOD) were selected and confirmed by Western blotting and immunohistochemistry assays using another 6 pairs of ccRCC and adjacent tissues. Further mass spectrometry analysis indicated that both ACAT1 and MnSOD had characterized acetylation at lysine residues, which is the first time to identify acetylation of ACAT1 and MnSOD in ccRCC. Collectively, these data revealed a number of dysregulated proteins and signaling pathways by label-free quantitative proteomic approach in RCC, which shed light on potential diagnostic or prognostic biomarkers and therapeutic molecular targets for clinical intervention of RCC.
Collapse
|