1
|
Biomolecules under Pressure: Phase Diagrams, Volume Changes, and High Pressure Spectroscopic Techniques. Int J Mol Sci 2022; 23:ijms23105761. [PMID: 35628571 PMCID: PMC9144967 DOI: 10.3390/ijms23105761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 02/06/2023] Open
Abstract
Pressure is an equally important thermodynamical parameter as temperature. However, its importance is often overlooked in the biophysical and biochemical investigations of biomolecules and biological systems. This review focuses on the application of high pressure (>100 MPa = 1 kbar) in biology. Studies of high pressure can give insight into the volumetric aspects of various biological systems; this information cannot be obtained otherwise. High-pressure treatment is a potentially useful alternative method to heat-treatment in food science. Elevated pressure (up to 120 MPa) is present in the deep sea, which is a considerable part of the biosphere. From a basic scientific point of view, the application of the gamut of modern spectroscopic techniques provides information about the conformational changes of biomolecules, fluctuations, and flexibility. This paper reviews first the thermodynamic aspects of pressure science, the important parameters affecting the volume of a molecule. The technical aspects of high pressure production are briefly mentioned, and the most common high-pressure-compatible spectroscopic techniques are also discussed. The last part of this paper deals with the main biomolecules, lipids, proteins, and nucleic acids: how they are affected by pressure and what information can be gained about them using pressure. I I also briefly mention a few supramolecular structures such as viruses and bacteria. Finally, a subjective view of the most promising directions of high pressure bioscience is outlined.
Collapse
|
2
|
Barroso SPC, Vicente Dos Santos AC, Souza Dos Santos P, Dos Santos Silva Couceiro JN, Fernandes Ferreira D, Nico D, Morrot A, Lima Silva J, Cheble de Oliveira A. Inactivation of avian influenza viruses by hydrostatic pressure as a potential vaccine development approach. Access Microbiol 2021; 3:000220. [PMID: 34151171 PMCID: PMC8208760 DOI: 10.1099/acmi.0.000220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 03/04/2021] [Indexed: 11/21/2022] Open
Abstract
Vaccines are a recommended strategy for controlling influenza A infections in humans and animals. Here, we describe the effects of hydrostatic pressure on the structure, morphology and functional characteristics of avian influenza A H3N8 virus. The effect of hydrostatic pressure for 3 h on H3N8 virus revealed that the particles were resistant to this condition, and the virus displayed only a discrete conformational change. We found that pressure of 3 kbar applied for 6 h was able to inhibit haemagglutination and infectivity while virus replication was no longer observed, suggesting that full virus inactivation occurred at this point. However, the neuraminidase activity was not affected at this approach suggesting the maintenance of neutralizing antibody epitopes in this key antigen. Our data bring important information for the area of structural virology of enveloped particles and support the idea of applying pressure-induced inactivation as a tool for vaccine production.
Collapse
Affiliation(s)
- Shana Priscila Coutinho Barroso
- Laboratório de Termodinâmica de Proteínas e Estruturas Virais Gregorio Weber, Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, 21941-590, Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Brazil.,Laboratório de Biologia Molecular, Instituto de Pesquisas Biomédicas, Hospital Naval Marcílio Dias, Marinha do Brasil, Brazil
| | - Ana Clara Vicente Dos Santos
- Laboratório de Termodinâmica de Proteínas e Estruturas Virais Gregorio Weber, Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, 21941-590, Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Brazil
| | - Patrícia Souza Dos Santos
- Laboratório de Termodinâmica de Proteínas e Estruturas Virais Gregorio Weber, Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, 21941-590, Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Brazil.,Centro Universitário IBMR, Rio de Janeiro, RJ, Brazil
| | | | - Davis Fernandes Ferreira
- Departamento de Virologia, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Dirlei Nico
- Departamento de Virologia, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Alexandre Morrot
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, Rio de Janeiro, RJ, Brazil.,Faculdade de Medicina, Departamento de Clínica Médica, Centro de Pesquisa em Tuberculose,, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Jerson Lima Silva
- Laboratório de Termodinâmica de Proteínas e Estruturas Virais Gregorio Weber, Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, 21941-590, Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Brazil
| | - Andrea Cheble de Oliveira
- Laboratório de Termodinâmica de Proteínas e Estruturas Virais Gregorio Weber, Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, 21941-590, Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Brazil
| |
Collapse
|
3
|
Foot-and-mouth disease vaccines: recent updates and future perspectives. Arch Virol 2019; 164:1501-1513. [PMID: 30888563 DOI: 10.1007/s00705-019-04216-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 03/16/2019] [Indexed: 02/07/2023]
Abstract
Foot-and-mouth disease (FMD) is a major worldwide viral disease in animals, affecting the national and international trade of livestock and animal products and leading to high economic losses and social consequences. Effective control measures of FMD involve prevention through vaccination with inactivated vaccines. These inactivated vaccines, unfortunately, require short-term protection and cold-chain and high-containment facilities. Major advances and pursuit of hot topics in vaccinology and vectorology are ongoing, involving peptide vaccines, DNA vaccines, live vector vaccines, and novel attenuated vaccines. DIVA capability and marker vaccines are very important in differentiating infected animals from vaccinated animals. This review focuses on updating the research progress of these novel vaccines, summarizing their merits and including ideas for improvement.
Collapse
|
4
|
Adkins I, Hradilova N, Palata O, Sadilkova L, Palova-Jelinkova L, Spisek R. High hydrostatic pressure in cancer immunotherapy and biomedicine. Biotechnol Adv 2018; 36:577-582. [PMID: 29409785 DOI: 10.1016/j.biotechadv.2018.01.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 01/23/2018] [Accepted: 01/29/2018] [Indexed: 11/19/2022]
Abstract
High hydrostatic pressure (HHP) has been known to affect biological systems for >100 years. In this review, we describe the technology of HHP and its effect macromolecules and physiology of eukaryotic cells. We discuss the use of HHP in cancer immunotherapy to kill tumor cells for generation of whole cell and dendritic cell-based vaccines. We further summarize the current use and perspectives of HHP application in biomedicine, specifically in orthopedic surgery and for the viral, microbial and protozoan inactivation to develop vaccines against infectious diseases.
Collapse
Affiliation(s)
- Irena Adkins
- Sotio a.s, Prague, Czech Republic; Department of Immunology, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czech Republic.
| | - Nada Hradilova
- Sotio a.s, Prague, Czech Republic; Department of Immunology, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czech Republic
| | - Ondrej Palata
- Sotio a.s, Prague, Czech Republic; Department of Immunology, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czech Republic
| | | | - Lenka Palova-Jelinkova
- Department of Immunology, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czech Republic
| | - Radek Spisek
- Sotio a.s, Prague, Czech Republic; Department of Immunology, 2nd Faculty of Medicine, Charles University, University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
5
|
Wang Q, Zhang C, Liu L, Li Z, Guo F, Li X, Luo J, Zhao D, Liu Y, Su Z. High hydrostatic pressure encapsulation of doxorubicin in ferritin nanocages with enhanced efficiency. J Biotechnol 2017; 254:34-42. [PMID: 28591619 DOI: 10.1016/j.jbiotec.2017.05.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/18/2017] [Accepted: 05/29/2017] [Indexed: 01/05/2023]
Abstract
Human ferritin (HFn) nanocaging is becoming an appealing platform for anticancer drugs delivery. However, protein aggregation always occurs during the encapsulation process, resulting in low production efficiency. A new approach using high hydrostatic pressure (HHP) was explored in this study to overcome the problem of loading doxorubicin (DOX) in HFn. At the pressure of 500MPa and pH 5.5, DOX molecules were found to be encapsulated into HFn. Meanwhile, combining it with an additive of 20mM arginine completely inhibited precipitation and aggregation, resulting in highly monodispersed nanoparticles with almost 100% protein recovery. Furthermore, stepwise decompression and incubation of the complex in atmospheric pressure at pH 7.4 for another period could further increase the DOX encapsulation ratio. The HFn-DOX nanoparticles (NPs) showed similar morphology and structural features to the hollow cage and no notable drug leakage occurred for HFn-DOX NPs when stored at 4°C and pH 7.4 for two weeks. HFn-DOX NPs prepared through HHP also showed significant cytotoxicity in vitro and higher antitumor bioactivity in vivo than naked DOX. Moreover, This HHP encapsulation strategy could economize on DOX that was greatly wasted during the conventional preparation process simply through a desalting column. These results indicated that HHP could offer a feasible approach with high efficiency for the production of HFn-DOX NPs.
Collapse
Affiliation(s)
- Qi Wang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No.1 Beierjie Street, Zhongguancun, Haidian District, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chun Zhang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No.1 Beierjie Street, Zhongguancun, Haidian District, Beijing 100190, PR China
| | - Liping Liu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No.1 Beierjie Street, Zhongguancun, Haidian District, Beijing 100190, PR China; Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, PR China
| | - Zenglan Li
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No.1 Beierjie Street, Zhongguancun, Haidian District, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fangxia Guo
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No.1 Beierjie Street, Zhongguancun, Haidian District, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiunan Li
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No.1 Beierjie Street, Zhongguancun, Haidian District, Beijing 100190, PR China
| | - Jian Luo
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No.1 Beierjie Street, Zhongguancun, Haidian District, Beijing 100190, PR China
| | - Dawei Zhao
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No.1 Beierjie Street, Zhongguancun, Haidian District, Beijing 100190, PR China
| | - Yongdong Liu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No.1 Beierjie Street, Zhongguancun, Haidian District, Beijing 100190, PR China.
| | - Zhiguo Su
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No.1 Beierjie Street, Zhongguancun, Haidian District, Beijing 100190, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing 210023, PR China.
| |
Collapse
|
6
|
Dumard CH, Barroso SPC, Santos ACV, Alves NS, Couceiro JNSS, Gomes AMO, Santos PS, Silva JL, Oliveira AC. Stability of different influenza subtypes: How can high hydrostatic pressure be a useful tool for vaccine development? Biophys Chem 2017; 231:116-124. [PMID: 28410940 DOI: 10.1016/j.bpc.2017.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/05/2017] [Accepted: 04/05/2017] [Indexed: 01/15/2023]
Abstract
BACKGROUND Avian influenza A viruses can cross naturally into mammals and cause severe diseases, as observed for H5N1. The high lethality of human infections causes major concerns about the real risk of a possible pandemic of severe diseases to which human susceptibility may be high and universal. High hydrostatic pressure (HHP) is a valuable tool for studies regarding the folding of proteins and the assembly of macromolecular structures such as viruses; furthermore, HHP has already been demonstrated to promote viral inactivation. METHODS Here, we investigated the structural stability of avian and human influenza viruses using spectroscopic and light-scattering techniques. We found that both particles have similar structural stabilities and that HHP promotes structural changes. RESULTS HHP induced slight structural changes to both human and avian influenza viruses, and these changes were largely reversible when the pressure returned to its initial level. The spectroscopic data showed that H3N2 was more pressure-sensitive than H3N8. Structural changes did not predict changes in protein function, as H3N2 fusion activity was not affected, while H3N8 fusion activity drastically decreased. The fusion activity of H1N1 was also strongly affected by HHP. In all cases, HHP caused inactivation of the different influenza viruses. CONCLUSIONS HHP may be a useful tool for vaccine development, as it induces minor and reversible structural changes that may be associated with partial preservation of viral biological activities and may potentiate their immunogenic response while abolishing their infectivity. We also confirmed that, although pressure does not promote drastic changes in viral particle structure, it can distinctly affect viral fusion activity.
Collapse
Affiliation(s)
- Carlos Henrique Dumard
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Brazil
| | - Shana P C Barroso
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Brazil
| | - Ana Clara V Santos
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Brazil
| | - Nathalia S Alves
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Brazil
| | - José Nelson S S Couceiro
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Andre M O Gomes
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Brazil
| | - Patricia S Santos
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Brazil
| | - Jerson L Silva
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Brazil.
| | - Andréa C Oliveira
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Brazil.
| |
Collapse
|
7
|
|
8
|
Lou F, Neetoo H, Chen H, Li J. High hydrostatic pressure processing: a promising nonthermal technology to inactivate viruses in high-risk foods. Annu Rev Food Sci Technol 2015; 6:389-409. [PMID: 25884283 DOI: 10.1146/annurev-food-072514-104609] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Foodborne outbreaks of viral origin have become increasingly a serious public health concern. High-pressure processing (HPP), a nonthermal technology, has come to the forefront for food processing given its minimal effects on food quality. Recent studies have revealed encouraging results for the inactivation of several human viruses by HPP. This review provides comprehensive information on the use of HPP to eliminate viruses in model systems and foods. We address the influences of various parameters, including pressure level, holding time, pH, temperature, and food matrix on the efficacy of pressure inactivation of viruses, as well as insight into the mechanisms for inactivation of enveloped and nonenveloped viruses. HPP is a promising technology for mitigating virus contamination of foods, thus it is essential to identify the optimal parameters for enhancing virus inactivation while ensuring sensory and nutritional quality retention of foods.
Collapse
Affiliation(s)
- Fangfei Lou
- Department of Veterinary Biosciences, College of Veterinary Medicine
| | | | | | | |
Collapse
|
9
|
Silva JL, Barroso SPC, Mendes YS, Dumard CH, Santos PS, Gomes AMO, Oliveira AC. Pressure-Inactivated Virus: A Promising Alternative for Vaccine Production. Subcell Biochem 2015; 72:301-18. [PMID: 26174388 DOI: 10.1007/978-94-017-9918-8_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In recent years, many applications in diverse scientific fields with various purposes have examined pressure as a thermodynamic parameter. Pressure studies on viruses have direct biotechnological applications. Currently, most studies that involve viral inactivation by HHP are found in the area of food engineering and focus on the inactivation of foodborne viruses. Nevertheless, studies of viral inactivation for other purposes have also been conducted. HHP has been shown to be efficient in the inactivation of many viruses of clinical importance and the use of HHP approach has been proposed for the development of animal and human vaccines. Several studies have demonstrated that pressure can result in virus inactivation while preserving immunogenic properties. Viruses contain several components that can be susceptible to the effects of pressure. HHP has been a valuable tool for assessing viral structure function relationships because the viral structure is highly dependent on protein-protein interactions. In the case of small icosahedral viruses, incremental increases in pressure produce a progressive decrease in the folding structure when moving from assembled capsids to ribonucleoprotein intermediates (in RNA viruses), free dissociated units (dimers and/or monomers) and denatured monomers. High pressure inactivates enveloped viruses by trapping their particles in a fusion-like intermediate state. The fusogenic state, which is characterized by a smaller viral volume, is the final conformation promoted by HHP, in contrast with the metastable native state, which is characterized by a larger volume. The combined effects of high pressure with other factors, such as low or subzero temperature, pH and agents in sub-denaturing conditions (urea), have been a formidable tool in the assessment of the component's structure, as well as pathogen inactivation. HHP is a technology for the production of inactivated vaccines that are free of chemicals, safe and capable of inducing strong humoral and cellular immune responses. Here we present a current overview about the pressure-induced viral inactivation and the production of inactivated viral vaccines.
Collapse
Affiliation(s)
- Jerson L Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil,
| | | | | | | | | | | | | |
Collapse
|
10
|
Silva JL, Oliveira AC, Vieira TCRG, de Oliveira GAP, Suarez MC, Foguel D. High-Pressure Chemical Biology and Biotechnology. Chem Rev 2014; 114:7239-67. [DOI: 10.1021/cr400204z] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jerson L. Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto
Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem,
Centro Nacional de Ressonância Magnética Nuclear Jiri
Jonas, and ‡Polo Xerém, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Andrea C. Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto
Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem,
Centro Nacional de Ressonância Magnética Nuclear Jiri
Jonas, and ‡Polo Xerém, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Tuane C. R. G. Vieira
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto
Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem,
Centro Nacional de Ressonância Magnética Nuclear Jiri
Jonas, and ‡Polo Xerém, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Guilherme A. P. de Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto
Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem,
Centro Nacional de Ressonância Magnética Nuclear Jiri
Jonas, and ‡Polo Xerém, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Marisa C. Suarez
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto
Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem,
Centro Nacional de Ressonância Magnética Nuclear Jiri
Jonas, and ‡Polo Xerém, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Debora Foguel
- Instituto de Bioquímica Médica Leopoldo de Meis, Instituto
Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem,
Centro Nacional de Ressonância Magnética Nuclear Jiri
Jonas, and ‡Polo Xerém, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| |
Collapse
|
11
|
Dumard CH, Barroso SPC, de Oliveira GAP, Carvalho CAM, Gomes AMO, Couceiro JNSS, Ferreira DF, Nico D, Oliveira AC, Silva JL, Santos PS. Full inactivation of human influenza virus by high hydrostatic pressure preserves virus structure and membrane fusion while conferring protection to mice against infection. PLoS One 2013; 8:e80785. [PMID: 24282553 PMCID: PMC3840014 DOI: 10.1371/journal.pone.0080785] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Accepted: 10/07/2013] [Indexed: 01/24/2023] Open
Abstract
Whole inactivated vaccines (WIVs) possess greater immunogenicity than split or subunit vaccines, and recent studies have demonstrated that WIVs with preserved fusogenic activity are more protective than non-fusogenic WIVs. In this work, we describe the inactivation of human influenza virus X-31 by high hydrostatic pressure (HHP) and analyze the effects on the structure by spectroscopic measurements, light scattering, and electron microscopy. We also investigated the effects of HHP on the glycoprotein activity and fusogenic activity of the viral particles. The electron microscopy data showed pore formation on the viral envelope, but the general morphology was preserved, and small variations were seen in the particle structure. The activity of hemagglutinin (HA) during the process of binding and fusion was affected in a time-dependent manner, but neuraminidase (NA) activity was not affected. Infectious activity ceased after 3 hours of pressurization, and mice were protected from infection after being vaccinated. Our results revealed full viral inactivation with overall preservation of viral structure and maintenance of fusogenic activity, thereby conferring protection against infection. A strong response consisting of serum immunoglobulin IgG1, IgG2a, and serum and mucosal IgA was also detected after vaccination. Thus, our data strongly suggest that applying hydrostatic pressure may be an effective method for developing new vaccines against influenza A as well as other viruses.
Collapse
Affiliation(s)
- Carlos H. Dumard
- Instituto de Bioquímica Médica and Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Shana P. C. Barroso
- Instituto de Bioquímica Médica and Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Guilherme A. P. de Oliveira
- Instituto de Bioquímica Médica and Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos A. M. Carvalho
- Instituto de Bioquímica Médica and Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andre M. O. Gomes
- Instituto de Bioquímica Médica and Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - José Nelson S. S. Couceiro
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Davis F. Ferreira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Dirlei Nico
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andrea C. Oliveira
- Instituto de Bioquímica Médica and Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jerson L. Silva
- Instituto de Bioquímica Médica and Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail: (JLS); (PSS)
| | - Patrícia S. Santos
- Instituto de Bioquímica Médica and Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail: (JLS); (PSS)
| |
Collapse
|
12
|
Mota MJ, Lopes RP, Delgadillo I, Saraiva JA. Microorganisms under high pressure--adaptation, growth and biotechnological potential. Biotechnol Adv 2013; 31:1426-34. [PMID: 23831003 DOI: 10.1016/j.biotechadv.2013.06.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 06/21/2013] [Accepted: 06/24/2013] [Indexed: 11/16/2022]
Abstract
Hydrostatic pressure is a well-known physical parameter which is now considered an important variable of life, since organisms have the ability to adapt to pressure changes, by the development of resistance against this variable. In the past decades a huge interest in high hydrostatic pressure (HHP) technology is increasingly emerging among food and biosciences researchers. Microbial specific stress responses to HHP are currently being investigated, through the evaluation of pressure effects on biomolecules, cell structure, metabolic behavior, growth and viability. The knowledge development in this field allows a better comprehension of pressure resistance mechanisms acquired at sub-lethal pressures. In addition, new applications of HHP could arise from these studies, particularly in what concerns to biotechnology. For instance, the modulation of microbial metabolic pathways, as a response to different pressure conditions, may lead to the production of novel compounds with potential biotechnological and industrial applications. Considering pressure as an extreme life condition, this review intends to present the main findings so far reported in the scientific literature, focusing on microorganisms with the ability to withstand and to grow in high pressure conditions, whether they have innated or acquired resistance, and show the potential of the application of HHP technology for microbial biotechnology.
Collapse
Affiliation(s)
- Maria J Mota
- QOPNA, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | | | | | | |
Collapse
|
13
|
Eichelberger SL, Sultana I, Gao J, Getie-Kebtie M, Alterman M, Eichelberger MC. Potency under pressure: the impact of hydrostatic pressure on antigenic properties of influenza virus hemagglutinin. Influenza Other Respir Viruses 2013; 7:961-8. [PMID: 23496824 PMCID: PMC4634276 DOI: 10.1111/irv.12102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2013] [Indexed: 11/27/2022] Open
Abstract
Background Influenza vaccines are effective in protecting against illness and death caused by this seasonal pathogen. The potency of influenza vaccines is measured by single radial immunodiffusion (SRID) assay that quantifies antigenic forms of hemagglutinin (HA). Hydrostatic pressure results in loss of binding of influenza virus to red blood cells, but it is not known whether this infers loss of potency. Objectives Our goal was to determine the impact of pressure on HA antigenic structure. Methods Viruses included in the 2010–2011 trivalent influenza vaccine were subjected to increasing number of cycles at 35 000 psi in a barocycler, and the impact of this treatment measured by determining hemagglutination units (HAU) and potency. Potency was assessed by SRID and immunogenicity in mice. Results After 25 cycles of pressure, the potency measured by SRID assay was below the limit of quantification for the H1N1 and B viruses used in our study, while the H3N2 component retained some potency that was lost after 50 pressure cycles. Pressure treatment also resulted in loss of HAU, but this did not strictly correlate with the potency value. Curiously, loss of potency was abrogated when influenza A, but not B, antigens were exposed to pressure in chicken egg allantoic fluid. Protection against pressure appeared to be mediated by specific interactions because addition of bovine serum albumin did not have the same effect. Conclusions Our results show that pressure‐induced loss of potency is strain dependent and suggests that pressure treatment may be useful for identifying vaccine formulations that improve HA stability.
Collapse
Affiliation(s)
- Schafer L Eichelberger
- Division of Cellular and Gene Therapies, Office of Cell, Tissue and Gene Therapy, Bethesda, MD, USA
| | | | | | | | | | | |
Collapse
|
14
|
Bispo JAC, Bonafe CFS, Joekes I, Martinez EA, Carvalho GBM, Norberto DR. Entropy and Volume Change of Dissociation in Tobacco Mosaic Virus Probed by High Pressure. J Phys Chem B 2012. [DOI: 10.1021/jp310219k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jose A. C. Bispo
- Departamento de Tecnologia (DTEC),
Curso de Engenharia de Alimentos, Universidade Estadual de Feira de Santana (UEFS), CP 252/294, Feira de Santana,
BA, CEP 44036-900, Brazil
| | - Carlos F. S. Bonafe
- Laboratório de Termodinâmica
de Proteínas, Departamento de Bioquímica, Instituto de Biologia, Campinas, SP, CEP 13083-970,
Brazil
| | - Ines Joekes
- Departamento de Físico
Química, Instituto de Química, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, CEP 13083-970,
Brazil
| | - Ernesto A. Martinez
- Departamento de Tecnologia (DTEC),
Curso de Engenharia de Alimentos, Universidade Estadual de Feira de Santana (UEFS), CP 252/294, Feira de Santana,
BA, CEP 44036-900, Brazil
| | - Giovani B. M. Carvalho
- Departamento de Tecnologia (DTEC),
Curso de Engenharia de Alimentos, Universidade Estadual de Feira de Santana (UEFS), CP 252/294, Feira de Santana,
BA, CEP 44036-900, Brazil
| | - Douglas R. Norberto
- Laboratório de Termodinâmica
de Proteínas, Departamento de Bioquímica, Instituto de Biologia, Campinas, SP, CEP 13083-970,
Brazil
| |
Collapse
|
15
|
Lou F, Neetoo H, Li J, Chen H, Li J. Lack of correlation between virus barosensitivity and the presence of a viral envelope during inactivation of human rotavirus, vesicular stomatitis virus, and avian metapneumovirus by high-pressure processing. Appl Environ Microbiol 2011; 77:8538-47. [PMID: 22003028 PMCID: PMC3233080 DOI: 10.1128/aem.06711-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 10/08/2011] [Indexed: 11/20/2022] Open
Abstract
High-pressure processing (HPP) is a nonthermal technology that has been shown to effectively inactivate a wide range of microorganisms. However, the effectiveness of HPP on inactivation of viruses is relatively less well understood. We systematically investigated the effects of intrinsic (pH) and processing (pressure, time, and temperature) parameters on the pressure inactivation of a nonenveloped virus (human rotavirus [HRV]) and two enveloped viruses (vesicular stomatitis virus [VSV] and avian metapneumovirus [aMPV]). We demonstrated that HPP can efficiently inactivate all tested viruses under optimal conditions, although the pressure susceptibilities and the roles of temperature and pH substantially varied among these viruses regardless of the presence of a viral envelope. We found that VSV was much more stable than most food-borne viruses, whereas aMPV was highly susceptible to HPP. When viruses were held for 2 min under 350 MPa at 4°C, 1.1-log, 3.9-log, and 5.0-log virus reductions were achieved for VSV, HRV, and aMPV, respectively. Both VSV and aMPV were more susceptible to HPP at higher temperature and lower pH. In contrast, HRV was more easily inactivated at higher pH, although temperature did not have a significant impact on inactivation. Furthermore, we demonstrated that the damage of virion structure by disruption of the viral envelope and/or capsid is the primary mechanism underlying HPP-induced viral inactivation. In addition, VSV glycoprotein remained antigenic although VSV was completely inactivated. Taken together, our findings suggest that HPP is a promising technology to eliminate viral contaminants in high-risk foods, water, and other fomites.
Collapse
Affiliation(s)
- Fangfei Lou
- Department of Food Science and Technology, College of Food, Agricultural and Environmental Sciences
| | - Hudaa Neetoo
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware 19716
| | - Junan Li
- Division of Environmental Health Sciences, College of Public Health
| | - Haiqiang Chen
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware 19716
| | - Jianrong Li
- Department of Food Science and Technology, College of Food, Agricultural and Environmental Sciences
- Division of Environmental Health Sciences, College of Public Health
- Center for RNA Biology, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
16
|
Lu S, Wang S. Technical transformation of biodefense vaccines. Vaccine 2009; 27 Suppl 4:D8-D15. [PMID: 19837293 DOI: 10.1016/j.vaccine.2009.08.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 08/14/2009] [Accepted: 08/17/2009] [Indexed: 01/08/2023]
Abstract
Biodefense vaccines are developed against a diverse group of pathogens. Vaccines were developed for some of these pathogens a long time ago but they are facing new challenges to move beyond the old manufacturing technologies. New vaccines to be developed against other pathogens have to determine whether to follow traditional vaccination strategies or to seek new approaches. Advances in basic immunology and recombinant DNA technology have fundamentally transformed the process of formulating a vaccine concept, optimizing protective antigens, and selecting the most effective vaccine delivery approach for candidate biodefense vaccines.
Collapse
Affiliation(s)
- Shan Lu
- Laboratory of Nucleic Acid Vaccines, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | | |
Collapse
|
17
|
Ferreira E, Mendes YS, Silva JL, Galler R, Oliveira AC, Freire MS, Gaspar LP. Effects of hydrostatic pressure on the stability and thermostability of poliovirus: A new method for vaccine preservation. Vaccine 2009; 27:5332-7. [DOI: 10.1016/j.vaccine.2009.06.099] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2008] [Revised: 06/08/2009] [Accepted: 06/29/2009] [Indexed: 11/28/2022]
|
18
|
Abstract
Disease management in the food industry is complex and includes use of good hygienic practices, antimicrobials, and immunization. Vaccines are available against many, but not all, disease agents affecting animals reared for human food. Fewer vaccines are currently licensed and widely available for human foodborne pathogens. Increased resistance to antimicrobials provides additional impetus to develop new vaccines. In addition to the need for new vaccines, new methods of vaccine production are desired. Some current methods of vaccine production can involve use of hazardous chemicals, provide inconsistent results, or present risk to vaccine recipients with certain allergies. The efficacy of high hydrostatic pressure (HHP) for inactivation of a variety of foodborne pathogenic microorganisms has been well established, and some of these microorganisms have been demonstrated to retain immunogenic properties, suggesting HHP may have application for the development of vaccines. Studies on the effect of HHP on infectivity and immunogenicity of various viruses, a protozoan parasite, and one bacterial species are presented. Control of several of these pathogens is important for animal health and economic stability in several sectors of the food industry. The research to date on the potential for vaccine development by HHP is presented.
Collapse
Affiliation(s)
- Adrienne E H Shearer
- Department of Animal and Food Sciences, University of Delaware, 044 Townsend Hall, 531 South College Avenue, Newark, Delaware 19716-2150, USA.
| | | |
Collapse
|
19
|
Aertsen A, Meersman F, Hendrickx ME, Vogel RF, Michiels CW. Biotechnology under high pressure: applications and implications. Trends Biotechnol 2009; 27:434-41. [DOI: 10.1016/j.tibtech.2009.04.001] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2009] [Revised: 04/15/2009] [Accepted: 04/17/2009] [Indexed: 11/26/2022]
|
20
|
Silva JL, Foguel D. Hydration, cavities and volume in protein folding, aggregation and amyloid assembly. Phys Biol 2009; 6:015002. [DOI: 10.1088/1478-3975/6/1/015002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Gaspar LP, Mendes YS, Yamamura AMY, Almeida LFC, Caride E, Gonçalves RB, Silva JL, Oliveira AC, Galler R, Freire MS. Pressure-inactivated yellow fever 17DD virus: implications for vaccine development. J Virol Methods 2008; 150:57-62. [PMID: 18420285 DOI: 10.1016/j.jviromet.2008.03.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 03/03/2008] [Accepted: 03/06/2008] [Indexed: 10/22/2022]
Abstract
The successful Yellow Fever (YF) vaccine consists of the live attenuated 17D-204 or 17DD viruses. Despite its excellent record of efficacy and safety, serious adverse events have been recorded and influenced extensive vaccination in endemic areas. Therefore, alternative strategies should be considered, which may include inactivated whole virus. High hydrostatic pressure has been described as a method for viral inactivation and vaccine development. The present study evaluated whether high hydrostatic pressure would inactivate the YF 17DD virus. YF 17DD virus was grown in Vero cells in roller bottle cultures and subjected to 310MPa for 3h at 4 degrees C. This treatment abolished YF infectivity and eliminated the ability of the virus to cause disease in mice. Pressure-inactivated virus elicited low level of neutralizing antibody titers although exhibited complete protection against an otherwise lethal challenge with 17DD virus in the murine model. The data warrant further development of pressure-inactivated vaccine against YF.
Collapse
Affiliation(s)
- Luciane P Gaspar
- Programa de Vacinas Virais, Instituto de Tecnologia em Imunobiológicos, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Santos JLR, Aparicio R, Joekes I, Silva JL, Bispo JAC, Bonafe CFS. Different urea stoichiometries between the dissociation and denaturation of tobacco mosaic virus as probed by hydrostatic pressure. Biophys Chem 2008; 134:214-24. [PMID: 18367310 DOI: 10.1016/j.bpc.2008.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 02/14/2008] [Accepted: 02/17/2008] [Indexed: 10/22/2022]
Abstract
Viruses are very efficient self-assembly structures, but little is understood about the thermodynamics governing their directed assembly. At higher levels of pressure or when pressure is combined with urea, denaturation occurs. For a better understanding of such processes, we investigated the apparent thermodynamic parameters of dissociation and denaturation by assuming a steady-state condition. These processes can be measured considering the decrease of light scattering of a viral solution due to the dissociation process, and the red shift of the fluorescence emission spectra, that occurs with the denaturation process. We determined the apparent urea stoichiometry considering the equilibrium reaction of TMV dissociation and subunit denaturation, which furnished, respectively, 1.53 and 11.1 mol of urea/mol of TMV subunit. The denaturation and dissociation conditions were arrived in a near reversible pathway, allowing the determination of thermodynamic parameters. Gel filtration HPLC, electron microscopy and circular dichroism confirmed the dissociation and denaturation processes. Based on spectroscopic results from earlier papers, the calculation of the apparent urea stoichiometry of dissociation and denaturation of several other viruses resulted in similar values, suggesting a similar virus-urea interaction among these systems.
Collapse
Affiliation(s)
- Jose L R Santos
- Laboratório de Termodinâmica de Proteínas, Departamento de Bioquímica, Instituto de Biologia, Universidade Estadual de Campinas, CP 6109, Brazil
| | | | | | | | | | | |
Collapse
|
23
|
Guan D, Joerger RD, Kniel KE, Calci KR, Hicks DT, Pivarnik LF, Hoover DG. Effect of high hydrostatic pressure on four genotypes of F-specific RNA bacteriophages. J Appl Microbiol 2007; 102:51-6. [PMID: 17184319 DOI: 10.1111/j.1365-2672.2006.03064.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIMS The pressure responses of four genotypes of F-specific RNA bacteriophages, f2, GA, Qbeta and SP, were evaluated with respect to pressure magnitude, treatment temperature and suspending medium. METHOD AND RESULTS The pressure responses were studied with respect to pressure magnitude (350 to 600 MPa), treatment temperature (-10 to 50 degrees C) and suspending media. Phages f2 and GA had much higher pressure resistances than Qbeta and SP. Pressure resistances of Qbeta and SP were enhanced with increase in salt concentrations in the range of 350 to 600 MPa from -10 to 50 degrees C in PBS. Qbeta and SP had greater pressure resistances when suspended in phosphate-buffered saline (PBS) with added glucose (5%, w/w), UHT whole milk and Dulbecco's Modified Eagle's Medium plus 10% fetal bovine sera than they did in PBS. Two surfactants, sucrose laurate and monolaurin, and one chelating agent, ethylenediamine tetraacetic acid (EDTA), increased the pressure resistance of Qbeta and SP, but had modest effect on either f2 or GA. CONCLUSIONS Four representative F-specific RNA bacteriophages, f2 (serotype I), GA (serotype II), Qbeta (serotype III) and SP (serotype IV) showed different resistances to hydrostatic pressure in the range of 350-600 MPa. SIGNIFICANCE AND IMPACT OF THE STUDY This study screened for practical surrogates of HAV for validation of commercial high hydrostatic pressure processing.
Collapse
Affiliation(s)
- D Guan
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Effects of high hydrostatic pressure on Eimeria acervulina pathogenicity, immunogenicity and structural integrity. INNOV FOOD SCI EMERG 2007. [DOI: 10.1016/j.ifset.2007.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Gonçalves RB, Mendes YS, Soares MR, Katpally U, Smith TJ, Silva JL, Oliveira AC. VP4 protein from human rhinovirus 14 is released by pressure and locked in the capsid by the antiviral compound WIN. J Mol Biol 2006; 366:295-306. [PMID: 17161425 PMCID: PMC1995025 DOI: 10.1016/j.jmb.2006.11.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2006] [Revised: 11/05/2006] [Accepted: 11/08/2006] [Indexed: 11/29/2022]
Abstract
Rhinoviruses are the major causative agents of the common cold in humans. Here, we studied the stability of human rhinovirus type 14 (HRV14) under conditions of high hydrostatic pressure, low temperature, and urea in the absence and presence of an antiviral drug. Capsid dissociation and changes in the protein conformation were monitored by fluorescence spectroscopy, light scattering, circular dichroism, gel filtration chromatography, mass spectrometry and infectivity assays. The data show that high pressure induces the dissociation of HRV14 and that this process is inhibited by WIN 52084. MALDI-TOF mass spectrometry experiments demonstrate that VP4, the most internal viral protein, is released from the capsid by pressure treatment. This release of VP4 is concomitant with loss of infectivity. Our studies also show that at least one antiviral effect of the WIN drugs involves the locking of VP4 inside the capsid by blocking the dynamics associated with cell attachment.
Collapse
Affiliation(s)
- Rafael B. Gonçalves
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica, CCS, Universidade Federal do Rio de Janeiro, RJ, Brazil, 21941-590
| | - Ygara S. Mendes
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica, CCS, Universidade Federal do Rio de Janeiro, RJ, Brazil, 21941-590
| | - Marcia R. Soares
- Unidade Multidisciplinar de Genômica, IBCCF, UFRJ, RJ, Brazil, 21941-590
| | - Umesh Katpally
- Donald Danforth Plant Science Center, 63132, Saint Louis, MO, USA
| | - Thomas J. Smith
- Donald Danforth Plant Science Center, 63132, Saint Louis, MO, USA
| | - Jerson L. Silva
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica, CCS, Universidade Federal do Rio de Janeiro, RJ, Brazil, 21941-590
- § To whom correspondence should be addressed: Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Av. Bauhinia, 400 - CCS/Sl. E1-008, Cidade Universitária, 21941-590, Rio de Janeiro, RJ, Brazil. Tel./Fax: + 55 21 2562-6756; e-mail: ;
| | - Andréa C. Oliveira
- Programa de Biologia Estrutural, Instituto de Bioquímica Médica, CCS, Universidade Federal do Rio de Janeiro, RJ, Brazil, 21941-590
- § To whom correspondence should be addressed: Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Av. Bauhinia, 400 - CCS/Sl. E1-008, Cidade Universitária, 21941-590, Rio de Janeiro, RJ, Brazil. Tel./Fax: + 55 21 2562-6756; e-mail: ;
| |
Collapse
|
26
|
|
27
|
Affiliation(s)
- M F Patterson
- Department of Agriculture and Rural Development, Northern Ireland and Queen's University, Newforge Road, Belfast BT9 5PX, Northern Ireland, UK
| |
Collapse
|