1
|
Liu X, Yang Y, Zheng X, Liu M, Wang G. Enhancedanti-tumor efficacy through a combination of intramuscularly expressed DNA vaccine and plasmid-encoded PD-1 antibody. Front Immunol 2023; 14:1169850. [PMID: 37138873 PMCID: PMC10150030 DOI: 10.3389/fimmu.2023.1169850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/24/2023] [Indexed: 05/05/2023] Open
Abstract
Immune check inhibitors (ICIs) have moderate response rates (~20%-30%) in some malignancies clinically, and, when used in combination with other immunotherapeutic strategies such as DNA tumor vaccines, there is evidence to suggest that they could optimize the efficacy of cancer treatment. In this study, we validated that intramuscular injection of plasmid DNA (pDNA) encoding OVA combined with pDNA encoding α-PD-1 (abbreviated as α-PD-1 in the following treatment groups) may enhance therapeutic efficacy by means of in situ gene delivery and enhanced muscle-specific potent promoter. Mice treated with pDNA-OVA or pDNA-α-PD-1 alone showed weak tumor inhibition in the MC38-OVA-bearing model. In comparison, the combined treatment of pDNA-OVA and pDNA-α-PD-1 resulted in superior tumor growth inhibition and a significantly improved survival rate of over 60% on day 45. In the B16-F10-OVA metastasis model, the addition of the DNA vaccine enhanced resistance to tumor metastasis and increased the populations of CD8+ T cells in blood and spleen. In conclusion, the current research shows that a combination of pDNA-encoded PD-1 antibody and DNA vaccine expressed in vivo is an efficient, safe, and economical strategy for tumor therapy.
Collapse
Affiliation(s)
- Xun Liu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Yueyao Yang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Xiufeng Zheng
- Department of Medical Oncology/Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ming Liu
- Department of Medical Oncology/Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Gang Wang, ; Ming Liu,
| | - Gang Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Gang Wang, ; Ming Liu,
| |
Collapse
|
2
|
Immune checkpoint blockade in melanoma: Advantages, shortcomings and emerging roles of the nanoparticles. Int Immunopharmacol 2022; 113:109300. [DOI: 10.1016/j.intimp.2022.109300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022]
|
3
|
Naimi A, Mohammed RN, Raji A, Chupradit S, Yumashev AV, Suksatan W, Shalaby MN, Thangavelu L, Kamrava S, Shomali N, Sohrabi AD, Adili A, Noroozi-Aghideh A, Razeghian E. Tumor immunotherapies by immune checkpoint inhibitors (ICIs); the pros and cons. Cell Commun Signal 2022; 20:44. [PMID: 35392976 PMCID: PMC8991803 DOI: 10.1186/s12964-022-00854-y] [Citation(s) in RCA: 204] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/02/2022] [Indexed: 02/07/2023] Open
Abstract
The main breakthrough in tumor immunotherapy was the discovery of immune checkpoint (IC) proteins, which act as a potent suppressor of the immune system by a myriad of mechanisms. After that, scientists focused on the immune checkpoint molecules mainly. Thereby, much effort was spent to progress novel strategies for suppressing these inhibitory axes, resulting in the evolution of immune checkpoint inhibitors (ICIs). Then, ICIs have become a promising approach and shaped a paradigm shift in tumor immunotherapies. CTLA-4 plays an influential role in attenuation of the induction of naïve and memory T cells by engagement with its responding ligands like B7-1 (CD80) and B7-2 (CD86). Besides, PD-1 is predominantly implicated in adjusting T cell function in peripheral tissues through its interaction with programmed death-ligand 1 (PD-L1) and PD-L2. Given their suppressive effects on anti-tumor immunity, it has firmly been documented that ICIs based therapies can be practical and rational therapeutic approaches to treat cancer patients. Nonetheless, tumor inherent or acquired resistance to ICI and some treatment-related toxicities restrict their application in the clinic. The current review will deliver a comprehensive overview of the ICI application to treat human tumors alone or in combination with other modalities to support more desired outcomes and lower toxicities in cancer patients. Video Abstract.
Collapse
Affiliation(s)
- Adel Naimi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Rebar N. Mohammed
- Medical Laboratory Analysis Department, Cihan University Sulaimaniya, Sulaymaniyah, 46001 Kurdistan Region Iraq
- College of Veterinary Medicine, University of Sulaimani, Suleimanyah, Iraq
| | - Ahmed Raji
- College of Medicine, University of Babylon, Department of Pathology, Babylon, Iraq
| | - Supat Chupradit
- Department of Occupational Therapy, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200 Thailand
| | | | - Wanich Suksatan
- Faculty of Nursing, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, 10210 Thailand
| | - Mohammed Nader Shalaby
- Associate Professor of Biological Sciences and Sports Health Department, Faculty of Physical Education, Suez Canal University, Ismailia, Egypt
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| | - Siavash Kamrava
- Department of Surgery, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Navid Shomali
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Armin D. Sohrabi
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Adili
- Department of Oncology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Noroozi-Aghideh
- Department of Hematology, Faculty of Paramedicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Razeghian
- Human Genetics Division, Medical Biotechnology Department, National Institute of Genetics Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
4
|
Khanali J, Azangou-Khyavy M, Asaadi Y, Jamalkhah M, Kiani J. Nucleic Acid-Based Treatments Against COVID-19: Potential Efficacy of Aptamers and siRNAs. Front Microbiol 2021; 12:758948. [PMID: 34858370 PMCID: PMC8630580 DOI: 10.3389/fmicb.2021.758948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/19/2021] [Indexed: 01/10/2023] Open
Abstract
Despite significant efforts, there are currently no approved treatments for COVID-19. However, biotechnological approaches appear to be promising in the treatment of the disease. Accordingly, nucleic acid-based treatments including aptamers and siRNAs are candidates that might be effective in COVID-19 treatment. Aptamers can hamper entry and replication stages of the SARS-CoV-2 infection, while siRNAs can cleave the viral genomic and subgenomic RNAs to inhibit the viral life cycle and reduce viral loads. As a conjugated molecule, aptamer–siRNA chimeras have proven to be dual-functioning antiviral therapy, acting both as virus-neutralizing and replication-interfering agents as well as being a siRNA targeted delivery approach. Previous successful applications of these compounds against various stages of the pathogenesis of diseases and viral infections, besides their advantages over other alternatives, might provide sufficient rationale for the application of these nucleic acid-based drugs against the SARS-CoV-2. However, none of them are devoid of limitations. Here, the literature was reviewed to assess the plausibility of using aptamers, siRNAs, and aptamer–siRNA chimeras against the SARS-CoV-2 based on their previously established effectiveness, and discussing challenges lie in applying these molecules.
Collapse
Affiliation(s)
- Javad Khanali
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Yasaman Asaadi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Monire Jamalkhah
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Jafar Kiani
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Rezaei T, Davoudian E, Khalili S, Amini M, Hejazi M, de la Guardia M, Mokhtarzadeh A. Strategies in DNA vaccine for melanoma cancer. Pigment Cell Melanoma Res 2021; 34:869-891. [PMID: 33089665 DOI: 10.1111/pcmr.12933] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/05/2020] [Accepted: 09/22/2020] [Indexed: 11/29/2022]
Abstract
According to reports of the international agency for cancer on research, although malignant melanoma shows less prevalence than nonmelanoma skin cancers, it is the major cause of skin cancer mortality. Given that, the production of effective vaccines to control melanoma is eminently required. In this regard, DNA-based vaccines have been extensively investigated for melanoma therapy. DNA vaccines are capable of inducing both cellular and humoral branches of immune responses. These vaccines possess some valuable advantages such as lack of severe side effects and high stability compared to conventional vaccination methods. The ongoing studies are focused on novel strategies in the development of DNA vaccines encoding artificial polyepitope immunogens based on the multiple melanoma antigens, the inclusion of molecular adjuvants to increase the level of immune responses, and the improvement of delivery approaches. In this review, we have outlined the recent advances in the field of melanoma DNA vaccines and described their implications in clinical trials as a strong strategy in the prevention and control of melanoma.
Collapse
Affiliation(s)
- Tayebeh Rezaei
- Department of Molecular Medicine and Biotechnology, Faculty of Medicine, Arak University of Medical Science, Arak, Iran
| | - Elham Davoudian
- Department of Microbiology, School of Paramedical Sciences, Ilam University of Medical Sciences, Ilam, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Hejazi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Regulatory T cells and vaccine effectiveness in older adults. Challenges and prospects. Int Immunopharmacol 2021; 96:107761. [PMID: 34162139 DOI: 10.1016/j.intimp.2021.107761] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/24/2021] [Accepted: 05/04/2021] [Indexed: 12/21/2022]
Abstract
Since the discovery of lymphocytes with immunosuppressive activity, increasing interest has arisen in their possible influence on the immune response induced by vaccines. Regulatory T cells (Tregs) are essential for maintaining peripheral tolerance, preventing autoimmune diseases, and limiting chronic inflammatory diseases. However, they also limit beneficial immune responses by suppressing anti-infectious and anti-tumor immunity. Mounting evidence suggests that Tregs are involved, at least in part, in the low effectiveness of immunization against various diseases where it has been difficult to obtain protective vaccines. Interestingly, increased activity of Tregs is associated with aging, suggesting a key role for these cells in the lower vaccine effectiveness observed in older people. In this review, we analyze the impact of Tregs on vaccination, with a focus on older adults. Finally, we address an overview of current strategies for Tregs modulation with potential application to improve the effectiveness of future vaccines targeting older populations.
Collapse
|
7
|
Johnson LE, Frye TP, McNeel DG. Immunization with a prostate cancer xenoantigen elicits a xenoantigen epitope-specific T-cell response. Oncoimmunology 2021; 1:1546-1556. [PMID: 23264901 PMCID: PMC3525610 DOI: 10.4161/onci.22564] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Vaccines encoding xenoantigens, “non-self” proteins that are highly homologous to their autologous counterparts, have been investigated as a means to increase immunogenicity and overcome tolerance to “self” antigens. We have previously shown that DNA vaccines encoding native prostatic acid phosphatase (PAP) were able to elicit PAP-specific T cells in both rats and humans, but required multiple immunization courses. In this study, we investigated in a preclinical model whether immunizations with a DNA vaccine encoding a xenoantigen could elicit a cross-reactive immune response to the native protein, potentially requiring fewer immunizations. Lewis rats were immunized with a DNA vaccine encoding human PAP and splenocytes from immunized rats were screened with a human peptide library containing overlapping, 15-mer PAP-derived peptides using T-cell proliferation and interferon γ (IFNγ) release as measures of the immune response. One dominant PAP-specific, RT1.Al-restricted, epitope was identified. Direct immunization with the immunodominant peptide (HP201–215) containing this epitope demonstrated that it included a naturally presented MHC Class I epitope recognized by CD8+ T cells in Lewis rats. However, no cross-reactive immune response was elicited to the corresponding rat peptide despite a difference of only three amino acids. Immunization with DNA vaccines encoding rat PAP (rPAP) in which this foreign dominant epitope was included as well as with DNA vaccines coding for a variant of the xenoantigen from which this epitope was deleted, did not elicit responses to the native antigen. Overall, these results indicate that the immunization with a xenoantigen-coding DNA vaccine can lead to an immune response which potentially favors foreign epitopes and hence limits any cross-reactive response to the native antigen.
Collapse
Affiliation(s)
- Laura E Johnson
- Department of Medicine; University of Wisconsin; Madison, WI USA
| | | | | |
Collapse
|
8
|
Cai C, Hu Z, Yu X. Accelerator or Brake: Immune Regulators in Malaria. Front Cell Infect Microbiol 2020; 10:610121. [PMID: 33363057 PMCID: PMC7758250 DOI: 10.3389/fcimb.2020.610121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/09/2020] [Indexed: 12/15/2022] Open
Abstract
Malaria is a life-threatening infectious disease, affecting over 250 million individuals worldwide each year, eradicating malaria has been one of the greatest challenges to public health for a century. Growing resistance to anti-parasitic therapies and lack of effective vaccines are major contributing factors in controlling this disease. However, the incomplete understanding of parasite interactions with host anti-malaria immunity hinders vaccine development efforts to date. Recent studies have been unveiling the complexity of immune responses and regulators against Plasmodium infection. Here, we summarize our current understanding of host immune responses against Plasmodium-derived components infection and mainly focus on the various regulatory mechanisms mediated by recent identified immune regulators orchestrating anti-malaria immunity.
Collapse
Affiliation(s)
- Chunmei Cai
- Research Center for High Altitude Medicine, School of Medical, Qinghai University, Xining, China
- Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Qinghai University, Xining, China
| | - Zhiqiang Hu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiao Yu
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Lab of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| |
Collapse
|
9
|
Zhao J, Chen Y, Ding ZY, Liu JY. Safety and Efficacy of Therapeutic Cancer Vaccines Alone or in Combination With Immune Checkpoint Inhibitors in Cancer Treatment. Front Pharmacol 2019; 10:1184. [PMID: 31680963 PMCID: PMC6798079 DOI: 10.3389/fphar.2019.01184] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 09/13/2019] [Indexed: 02/05/2023] Open
Abstract
Therapeutic cancer vaccines have proven to seldom induce dramatic clinical response when used alone, and therefore, they are being studied in combination with additional treatment modalities to achieve optimal treatment activities. Growing preclinical data show that combining vaccines and immune checkpoint inhibitors (ICIs) can prime intensified immunogenicity and modulate immunosuppressive tumor microenvironment. Herein, we focus on the safety and efficacy of approved and promising cancer vaccines alone or combined with ICIs in the treatment of several malignancies. Generally, the majority of clinical trials support the concept of synergy that combination therapy of vaccines and ICIs holds maximized potential to improve clinical outcomes. Importantly, the combination has acceptable safety and minimal additional toxicity compared with single-agent vaccines or ICIs. Additionally, the potential strategies of combining personalized tumor vaccines with ICIs will become priority option and future direction of vaccine development and application and the urgent need to develop effective biomarkers to screen appropriate patient populations and predict response to combination therapy.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Biotherapy, Cancer Center, and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China.,Sichuan Clinical Research Center of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Ye Chen
- Department of Biotherapy, Cancer Center, and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China.,Sichuan Clinical Research Center of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Zhen-Yu Ding
- Department of Biotherapy, Cancer Center, and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China.,Sichuan Clinical Research Center of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Ji-Yan Liu
- Department of Biotherapy, Cancer Center, and National Clinical Research Center for Geriatrics, West China Hospital of Sichuan University, Chengdu, China.,Sichuan Clinical Research Center of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Abstract
Immunomodulatory antibodies that directly trigger and reawaken suppressed T-cell effector function are termed 'checkpoint inhibitors'. CTLA-4 and PD-1/PD-L1 molecules are the most studied inhibitory immune check points against cancer and because of this therapeutic property have entered the clinic for treating a variety of tumor types. The results so far demonstrate a positive impact on cancer remission. Preclinical studies have demonstrated that targeting a number of other T-cell surface molecules including both positive and negative immune regulators, also possesses strong antitumor activity. Some of these molecules have already entered clinical trials. In this report, we briefly highlight the status of these immune checkpoint inhibitors and discuss their side effects and future directions for their use.
Collapse
Affiliation(s)
- Dass S Vinay
- Section of Clinical Immunology, Allergy & Rheumatology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Byoung S Kwon
- Section of Clinical Immunology, Allergy & Rheumatology, School of Medicine, Tulane University, New Orleans, LA 70112, USA.,Eutilex Institute for Biomedical Research, Suite #1401 Daeryung Technotown 17, Gasan digital 1-ro 25, Geumcheon-gu, Seoul Korea
| |
Collapse
|
11
|
Kos S, Lopes A, Preat V, Cemazar M, Lampreht Tratar U, Ucakar B, Vanvarenberg K, Sersa G, Vandermeulen G. Intradermal DNA vaccination combined with dual CTLA-4 and PD-1 blockade provides robust tumor immunity in murine melanoma. PLoS One 2019; 14:e0217762. [PMID: 31150505 PMCID: PMC6544376 DOI: 10.1371/journal.pone.0217762] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 05/19/2019] [Indexed: 01/01/2023] Open
Abstract
We aimed to explore whether the combination of intradermal DNA vaccination, to boost immune response against melanoma antigens, and immune checkpoint blockade, to alleviate immunosuppression, improves antitumor effectiveness in a murine B16F10 melanoma tumor model. Compared to single treatments, a combination of intradermal DNA vaccination (ovalbumin or gp100 plasmid adjuvanted with IL12 plasmid) and immune checkpoint CTLA-4/PD-1 blockade resulted in a significant delay in tumor growth and prolonged survival of treated mice. Strong activation of the immune response induced by combined treatment resulted in a significant antigen-specific immune response, with elevated production of antigen-specific IgG antibodies and increased intratumoral CD8+ infiltration. These results indicate a potential application of the combined DNA vaccination and immune checkpoint blockade, specifically, to enhance the efficacy of DNA vaccines and to overcome the resistance to immune checkpoint inhibitors in certain cancer types.
Collapse
Affiliation(s)
- Spela Kos
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Alessandra Lopes
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Veronique Preat
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
- * E-mail: (GS); (VP)
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Health Sciences, University of Primorska, Izola, Slovenia
| | - Ursa Lampreht Tratar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Bernard Ucakar
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Kevin Vanvarenberg
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Gregor Sersa
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Health Sciences, University of Ljubljana, Ljubljana, Slovenia
- * E-mail: (GS); (VP)
| | - Gaelle Vandermeulen
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
12
|
Immune checkpoint blockade and its combination therapy with small-molecule inhibitors for cancer treatment. Biochim Biophys Acta Rev Cancer 2018; 1871:199-224. [PMID: 30605718 DOI: 10.1016/j.bbcan.2018.12.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 02/05/2023]
Abstract
Initially understood for its physiological maintenance of self-tolerance, the immune checkpoint molecule has recently been recognized as a promising anti-cancer target. There has been considerable interest in the biology and the action mechanism of the immune checkpoint therapy, and their incorporation with other therapeutic regimens. Recently the small-molecule inhibitor (SMI) has been identified as an attractive combination partner for immune checkpoint inhibitors (ICIs) and is becoming a novel direction for the field of combination drug design. In this review, we provide a systematic discussion of the biology and function of major immune checkpoint molecules, and their interactions with corresponding targeting agents. With both preclinical studies and clinical trials, we especially highlight the ICI + SMI combination, with its recent advances as well as its application challenges.
Collapse
|
13
|
Park YJ, Kuen DS, Chung Y. Future prospects of immune checkpoint blockade in cancer: from response prediction to overcoming resistance. Exp Mol Med 2018; 50:1-13. [PMID: 30135516 PMCID: PMC6105674 DOI: 10.1038/s12276-018-0130-1] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/30/2018] [Accepted: 05/15/2018] [Indexed: 12/22/2022] Open
Abstract
Recent advances in the understating of tumor immunology suggest that cancer immunotherapy is an effective treatment against various types of cancer. In particular, the remarkable successes of immune checkpoint-blocking antibodies in clinical settings have encouraged researchers to focus on developing other various immunologic strategies to combat cancer. However, such immunotherapies still face difficulties in controlling malignancy in many patients due to the heterogeneity of both tumors and individual patients. Here, we discuss how tumor-intrinsic cues, tumor environmental metabolites, and host-derived immune cells might impact the efficacy and resistance often seen during immune checkpoint blockade treatment. Furthermore, we introduce biomarkers identified from human and mouse models that predict clinical benefits for immune checkpoint blockers in cancer.
Collapse
Affiliation(s)
- Young-Jun Park
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
- BK21 Plus program, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Da-Sol Kuen
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
- BK21 Plus program, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yeonseok Chung
- Laboratory of Immune Regulation, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
- BK21 Plus program, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
14
|
Tran T, Blanc C, Granier C, Saldmann A, Tanchot C, Tartour E. Therapeutic cancer vaccine: building the future from lessons of the past. Semin Immunopathol 2018; 41:69-85. [PMID: 29978248 DOI: 10.1007/s00281-018-0691-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 06/11/2018] [Indexed: 12/13/2022]
Abstract
Anti-cancer vaccines have raised many hopes from the start of immunotherapy but have not yet been clinically successful. The few positive results of anti-cancer vaccines have been observed in clinical situations of low tumor burden or preneoplastic lesions. Several new concepts and new results reposition this therapeutic approach in the field of immunotherapy. Indeed, cancers that respond to anti-PD-1/PD-L1 (20-30%) are those that are infiltrated by anti-tumor T cells with an inflammatory infiltrate. However, 70% of cancers do not appear to have an anti-tumor immune reaction in the tumor microenvironment. To induce this anti-tumor immunity, therapeutic combinations between vaccines and anti-PD-1/PD-L1 are being evaluated. In addition, the identification of neoepitopes against which the immune system is less tolerated is giving rise to a new enthusiasm by the first clinical results of the vaccine including these neoepitopes in humans. The ability of anti-cancer vaccines to induce a population of anti-tumor T cells called memory resident T cells that play an important role in immunosurveillance is also a new criterion to consider in the design of therapeutic vaccines.
Collapse
Affiliation(s)
- T Tran
- INSERM U970, Paris Cardiovascular Research Center (PARCC), Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - C Blanc
- INSERM U970, Paris Cardiovascular Research Center (PARCC), Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - C Granier
- INSERM U970, Paris Cardiovascular Research Center (PARCC), Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - A Saldmann
- INSERM U970, Paris Cardiovascular Research Center (PARCC), Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - C Tanchot
- INSERM U970, Paris Cardiovascular Research Center (PARCC), Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Eric Tartour
- INSERM U970, Paris Cardiovascular Research Center (PARCC), Paris, France.
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
- Hôpital Européen Georges Pompidou, Laboratory of Immunology, Assistance Publique des Hôpitaux de Paris, Paris, France.
- Equipe Labellisée Ligue Nationale contre le Cancer, Paris, France.
| |
Collapse
|
15
|
Duperret EK, Wise MC, Trautz A, Villarreal DO, Ferraro B, Walters J, Yan J, Khan A, Masteller E, Humeau L, Weiner DB. Synergy of Immune Checkpoint Blockade with a Novel Synthetic Consensus DNA Vaccine Targeting TERT. Mol Ther 2018; 26:435-445. [PMID: 29249395 PMCID: PMC5835021 DOI: 10.1016/j.ymthe.2017.11.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/14/2017] [Accepted: 11/14/2017] [Indexed: 01/07/2023] Open
Abstract
Immune checkpoint blockade antibodies are setting a new standard of care for cancer patients. It is therefore important to assess any new immune-based therapies in the context of immune checkpoint blockade. Here, we evaluate the impact of combining a synthetic consensus TERT DNA vaccine that has improved capacity to break tolerance with immune checkpoint inhibitors. We observed that blockade of CTLA-4 or, to a lesser extent, PD-1 synergized with TERT vaccine, generating more robust anti-tumor activity compared to checkpoint alone or vaccine alone. Despite this anti-tumor synergy, none of these immune checkpoint therapies showed improvement in TERT antigen-specific immune responses in tumor-bearing mice. αCTLA-4 therapy enhanced the frequency of T-bet+/CD44+ effector CD8+ T cells within the tumor and decreased the frequency of regulatory T cells within the tumor, but not in peripheral blood. CTLA-4 blockade synergized more than Treg depletion with TERT DNA vaccine, suggesting that the effect of CTLA-4 blockade is more likely due to the expansion of effector T cells in the tumor rather than a reduction in the frequency of Tregs. These results suggest that immune checkpoint inhibitors function to alter the immune regulatory environment to synergize with DNA vaccines, rather than boosting antigen-specific responses at the site of vaccination.
Collapse
Affiliation(s)
| | - Megan C Wise
- Inovio Pharmaceuticals, Inc., Plymouth Meeting, PA 19462, USA; University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aspen Trautz
- Vaccine Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | | | | | - Jewell Walters
- Inovio Pharmaceuticals, Inc., Plymouth Meeting, PA 19462, USA
| | - Jian Yan
- Inovio Pharmaceuticals, Inc., Plymouth Meeting, PA 19462, USA
| | - Amir Khan
- Inovio Pharmaceuticals, Inc., Plymouth Meeting, PA 19462, USA
| | - Emma Masteller
- Inovio Pharmaceuticals, Inc., Plymouth Meeting, PA 19462, USA
| | - Laurent Humeau
- Inovio Pharmaceuticals, Inc., Plymouth Meeting, PA 19462, USA
| | - David B Weiner
- Vaccine Center, The Wistar Institute, Philadelphia, PA 19104, USA.
| |
Collapse
|
16
|
Molecular adjuvants that modulate regulatory T cell function in vaccination: A critical appraisal. Pharmacol Res 2017; 129:237-250. [PMID: 29175113 DOI: 10.1016/j.phrs.2017.11.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 12/13/2022]
Abstract
Adjuvants are substances used to enhance the efficacy of vaccines. They influence the magnitude and alter the quality of the adaptive immune response to vaccine antigens by amplifying or modulating different signals involved in the innate immune response. The majority of known adjuvants have been empirically identified. The limited immunogenicity of new vaccine antigens and the need for safer vaccines have increased the importance of identifying single, well-defined adjuvants with known cellular and molecular mechanisms for rational vaccine design. Depletion or functional inhibition of CD4+CD25+FoxP3+ regulatory T cells (Tregs) by molecular adjuvants has become an emergent approach in this field. Different successful results have been obtained for specific vaccines, but there are still unresolved issues such as the risk of autoimmune disease induction, the involvement of cells other than Tregs and optimization for different conditions. This work provides a comprehensive analysis of current approaches to inhibit Tregs with molecular adjuvants for vaccine improvement, highlights the progress being made, and describes ongoing challenges.
Collapse
|
17
|
Abstract
DNA vaccines offer many advantages over other anti-tumor vaccine approaches due to their simplicity, ease of manufacturing, and safety. Results from several clinical trials in patients with cancer have demonstrated that DNA vaccines are safe and can elicit immune responses. However, to date few DNA vaccines have progressed beyond phase I clinical trial evaluation. Studies into the mechanism of action of DNA vaccines in terms of antigen-presenting cell types able to directly present or cross-present DNA-encoded antigens, and the activation of innate immune responses due to DNA itself, have suggested opportunities to increase the immunogenicity of these vaccines. In addition, studies into the mechanisms of tumor resistance to anti-tumor vaccination have suggested combination approaches that can increase the anti-tumor effect of DNA vaccines. This review focuses on these mechanisms of action and mechanisms of resistance using DNA vaccines, and how this information is being used to improve the anti-tumor effect of DNA vaccines. These approaches are then specifically discussed in the context of human prostate cancer, a disease for which DNA vaccines have been and continue to be explored as treatments.
Collapse
Affiliation(s)
- Christopher D Zahm
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Viswa Teja Colluru
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, United States
| | - Douglas G McNeel
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, United States.
| |
Collapse
|
18
|
Miguel A, Sendra L, Noé V, Ciudad CJ, Dasí F, Hervas D, Herrero MJ, Aliño SF. Silencing of Foxp3 enhances the antitumor efficacy of GM-CSF genetically modified tumor cell vaccine against B16 melanoma. Onco Targets Ther 2017; 10:503-514. [PMID: 28176947 PMCID: PMC5271385 DOI: 10.2147/ott.s104393] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The antitumor response after therapeutic vaccination has a limited effect and seems to be related to the presence of T regulatory cells (Treg), which express the immunoregulatory molecules CTLA4 and Foxp3. The blockage of CTLA4 using antibodies has shown an effective antitumor response conducing to the approval of the human anti-CTLA4 antibody ipilimumab by the US Food and Drug Administration. On the other hand, Foxp3 is crucial for Treg development. For this reason, it is an attractive target for cancer treatment. This study aims to evaluate whether combining therapeutic vaccination with CTLA4 or Foxp3 gene silencing enhances the antitumor response. First, the "in vitro" cell entrance and gene silencing efficacy of two tools, 2'-O-methyl phosphorotioate-modified oligonucleotides (2'-OMe-PS-ASOs) and polypurine reverse Hoogsteen hairpins (PPRHs), were evaluated in EL4 cells and cultured primary lymphocytes. Following B16 tumor transplant, C57BL6 mice were vaccinated with irradiated B16 tumor cells engineered to produce granulocyte-macrophage colony-stimulating factor (GM-CSF) and were intraperitoneally treated with CTLA4 and Foxp3 2'-OMe-PS-ASO before and after vaccination. Tumor growth, mice survival, and CTLA4 and Foxp3 expression in blood cells were measured. The following results were obtained: 1) only 2'-OMe-PS-ASO reached gene silencing efficacy "in vitro"; 2) an improved survival effect was achieved combining both therapeutic vaccine and Foxp3 antisense or CTLA4 antisense oligonucleotides (50% and 20%, respectively); 3) The blood CD4+CD25+Foxp3+ (Treg) and CD4+CTLA4+ cell counts were higher in mice that developed tumor on the day of sacrifice. Our data showed that tumor cell vaccine combined with Foxp3 or CTLA4 gene silencing can increase the efficacy of therapeutic antitumor vaccination.
Collapse
Affiliation(s)
- Antonio Miguel
- Department of Pharmacology, Faculty of Medicine, University of Valencia
| | - Luis Sendra
- Department of Pharmacology, Faculty of Medicine, University of Valencia
| | - Verónica Noé
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Barcelona
| | - Carles J Ciudad
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Barcelona
| | - Francisco Dasí
- Research University Hospital of Valencia, INCLIVA Health Research Institute; Department of Physiology, Faculty of Medicine, University of Valencia Foundation
| | | | - María José Herrero
- Department of Pharmacology, Faculty of Medicine, University of Valencia; Pharmacogenetics Unit, Instituto de Investigación Sanitaria La Fe (IIS La Fe)
| | - Salvador F Aliño
- Department of Pharmacology, Faculty of Medicine, University of Valencia; Clinical Pharmacology Unit, ACM Hospital Universitario y Politécnico La Fe, Valencia, Spain
| |
Collapse
|
19
|
Is There Still Room for Cancer Vaccines at the Era of Checkpoint Inhibitors. Vaccines (Basel) 2016; 4:vaccines4040037. [PMID: 27827885 PMCID: PMC5192357 DOI: 10.3390/vaccines4040037] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 10/23/2016] [Accepted: 10/31/2016] [Indexed: 02/07/2023] Open
Abstract
Checkpoint inhibitor (CPI) blockade is considered to be a revolution in cancer therapy, although most patients (70%–80%) remain resistant to this therapy. It has been hypothesized that only tumors with high mutation rates generate a natural antitumor T cell response, which could be revigorated by this therapy. In patients with no pre-existing antitumor T cells, a vaccine-induced T cell response is a rational option to counteract clinical resistance. This hypothesis has been validated in preclinical models using various cancer vaccines combined with inhibitory pathway blockade (PD-1-PDL1-2, CTLA-4-CD80-CD86). Enhanced T cell infiltration of various tumors has been demonstrated following this combination therapy. The timing of this combination appears to be critical to the success of this therapy and multiple combinations of immunomodulating antibodies (CPI antagonists or costimulatory pathway agonists) have reinforced the synergy with cancer vaccines. Only limited results are available in humans and this combined approach has yet to be validated. Comprehensive monitoring of the regulation of CPI and costimulatory molecules after administration of immunomodulatory antibodies (anti-PD1/PD-L1, anti-CTLA-4, anti-OX40, etc.) and cancer vaccines should help to guide the selection of the best combination and timing of this therapy.
Collapse
|
20
|
Lee SH, Danishmalik SN, Sin JI. DNA vaccines, electroporation and their applications in cancer treatment. Hum Vaccin Immunother 2016; 11:1889-900. [PMID: 25984993 DOI: 10.1080/21645515.2015.1035502] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Numerous animal studies and recent clinical studies have shown that electroporation-delivered DNA vaccines can elicit robust Ag-specific CTL responses and reduce disease severity. However, cancer antigens are generally poorly immunogenic, requiring special conditions for immune response induction. To date, many different approaches have been used to elicit Ag-specific CTL and anti-neoplastic responses to DNA vaccines against cancer. In vivo electroporation is one example, whereas others include DNA manipulation, xenogeneic antigen use, immune stimulatory molecule and immune response regulator application, DNA prime-boost immunization strategy use and different DNA delivery methods. These strategies likely increase the immunogenicity of cancer DNA vaccines, thereby contributing to cancer eradication. However, cancer cells are heterogeneous and might become CTL-resistant. Thus, understanding the CTL resistance mechanism(s) employed by cancer cells is critical to develop counter-measures for this immune escape. In this review, the use of electroporation as a DNA delivery method, the strategies used to enhance the immune responses, the cancer antigens that have been tested, and the escape mechanism(s) used by tumor cells are discussed, with a focus on the progress of clinical trials using cancer DNA vaccines.
Collapse
Key Words
- AFP, α-fetoprotein
- APCs, antigen presenting cells
- CEA, carcinoembryonic antigen
- CTLA-4, cytotoxic T lymphocyte-associated antigen-4
- DCs, dendritic cells
- DNA vaccine
- EP, electroporation
- GITR, glucocorticoid-induced tumor necrosis factor receptor family-related gene
- HPV, human papillomavirus
- HSP, heat shock protein
- HSV, herpes simplex virus
- ID, intradermal
- IM, intramuscular
- MAGE, melanoma-associated antigen
- MART, melanoma antigen recognized by T cells
- PAP, prostatic acid phosphatase
- PD, programmed death
- PRAME, preferentially expressed antigen in melanoma
- PSA, prostate-specific antigen
- PSMA, prostate-specific membrane antigen
- WT1, Wilm's tumor
- anti-tumor immunity
- cancer
- hTERT, human telomerase reverse transcriptase
- tumor immune evasion
Collapse
Affiliation(s)
- Si-Hyeong Lee
- a BK21 Plus Graduate Program; Department of Microbiology ; School of Medicine; Kangwon National University ; Chuncheon , Gangwon-do , Korea
| | | | | |
Collapse
|
21
|
Savoia P, Astrua C, Fava P. Ipilimumab (Anti-Ctla-4 Mab) in the treatment of metastatic melanoma: Effectiveness and toxicity management. Hum Vaccin Immunother 2016; 12:1092-101. [PMID: 26889818 PMCID: PMC4963052 DOI: 10.1080/21645515.2015.1129478] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/19/2015] [Accepted: 12/04/2015] [Indexed: 12/25/2022] Open
Abstract
In the last years the onset of new therapies changed the management of malignant melanoma. Anti CTLA-4 antibody ipilimumab was the first drug to achieve a significant improvement in survival of advanced stage melanoma. This new therapeutic agent is characterized by a number of side effects that are totally different from those of traditional chemotherapy, mainly caused by the immune system activation. The purpose of this paper is to underline the central role of ipilimumab in the treatment of metastatic melanoma and to characterize related adverse events in terms of incidence, duration and severity of presentation. The early recognition of these side effects is crucial in order to ensure an appropriate management of the toxicities, thus reducing the long term clinical sequelae and the inappropriate treatment discontinuation.
Collapse
Affiliation(s)
- Paola Savoia
- Department of Medical Sciences, University of Turin, Turin, Italy
- Department of Health Science, “A. Avogadro” University of Eastern Piedmont, Novara, Italy
| | - Chiara Astrua
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Paolo Fava
- Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
22
|
The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nat Rev Clin Oncol 2016; 13:273-90. [PMID: 26977780 DOI: 10.1038/nrclinonc.2016.25] [Citation(s) in RCA: 766] [Impact Index Per Article: 85.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the past decade, advances in the use of monoclonal antibodies (mAbs) and adoptive cellular therapy to treat cancer by modulating the immune response have led to unprecedented responses in patients with advanced-stage tumours that would otherwise have been fatal. To date, three immune-checkpoint-blocking mAbs have been approved in the USA for the treatment of patients with several types of cancer, and more patients will benefit from immunomodulatory mAb therapy in the months and years ahead. Concurrently, the adoptive transfer of genetically modified lymphocytes to treat patients with haematological malignancies has yielded dramatic results, and we anticipate that this approach will rapidly become the standard of care for an increasing number of patients. In this Review, we highlight the latest advances in immunotherapy and discuss the role that it will have in the future of cancer treatment, including settings for which testing combination strategies and 'armoured' CAR T cells are recommended.
Collapse
|
23
|
Abstract
Immunotherapy with immune checkpoint inhibition has been improving the outcomes of patients with many different types of malignancies. Immune checkpoint inhibition has been most extensively studied in patients with advanced melanoma and there are three FDA approved antibodies already widely used in clinical practice (ipilimumab, nivolumab, and pembrolizumab). In this chapter, we review the mechanistic basis behind the development of immune checkpoint blocking antibodies. We then discuss specifics regarding each agent, unique clinical considerations in treating patients with this approach, and future directions, including combination strategies. This chapter is focused on melanoma, but the principles related to this immunotherapy approach are applicable to patients with many types of malignancies.
Collapse
|
24
|
Morse MA, Lyerly HK. Checkpoint blockade in combination with cancer vaccines. Vaccine 2015; 33:7377-7385. [DOI: 10.1016/j.vaccine.2015.10.057] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/18/2015] [Accepted: 10/06/2015] [Indexed: 01/05/2023]
|
25
|
Abstract
DNA vaccination has emerged as an attractive immunotherapeutic approach against cancer
due to its simplicity, stability, and safety. Results from numerous clinical trials have
demonstrated that DNA vaccines are well tolerated by patients and do not trigger major
adverse effects. DNA vaccines are also very cost effective and can be administered
repeatedly for long-term protection. Despite all the practical advantages, DNA vaccines
face challenges in inducing potent antigen specific cellular immune responses as a result
of immune tolerance against endogenous self-antigens in tumors. Strategies to enhance
immunogenicity of DNA vaccines against self-antigens have been investigated including
encoding of xenogeneic versions of antigens, fusion of antigens to molecules that activate
T cells or trigger associative recognition, priming with DNA vectors followed by boosting
with viral vector, and utilization of immunomodulatory molecules. This review will focus
on discussing strategies that circumvent immune tolerance and provide updates on findings
from recent clinical trials.
Collapse
Key Words
- APCs, antigen presenting cells
- CEA, carcinoembryonic antigen
- CIN, cervical intraepithelial neoplasia
- CT antigens, cancer-testis antigens
- CTLs, cytotoxic lymphocytes
- DNA vaccines
- DOM, fragment c domain
- EP, electroporation
- GITR, glucocorticoid-induced tumor necrosis factor receptor family-related genes
- HER2, Her2/neu
- HSP70, heat shock protein 70
- IFNs, interferons
- IRF, interferon regulatory factor
- Id, idiotype
- MHC, major histocompatibility complex
- Mam-A, Mammaglobin-A
- NHP, non-human primate
- PAP, Prostatic acid phosphatase
- PMED, particle mediated epidermal delivery
- PSMA, prostate-specific membrane antigen
- SCT, single-chain trimer
- STING, stimulator of interferon genes
- TAAs, tumor-associated antigens
- TBK1, Tank-binding kinase 1
- TLRs, Toll-like receptors
- TT, tetanus toxin
- Trp2, tyrosinase related protein 2
- cellular immune response
- hTERT, human telomerase reverse transcriptase
- humoral immune response
- immune tolerance
- phTERT, optimized full-length hTERT
- tumor antigens
- vaccine delivery
Collapse
Affiliation(s)
- Benjamin Yang
- a Department of Pathology ; Johns Hopkins University ; Baltimore , MD USA
| | | | | | | | | |
Collapse
|
26
|
Biomarkers for glioma immunotherapy: the next generation. J Neurooncol 2015; 123:359-72. [PMID: 25724916 DOI: 10.1007/s11060-015-1746-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 02/16/2015] [Indexed: 12/11/2022]
Abstract
The term "biomarker" historically refers to a single parameter, such as the expression level of a gene or a radiographic pattern, used to indicate a broader biological state. Molecular indicators have been applied to several aspects of cancer therapy: to describe the genotypic and phenotypic state of neoplastic tissue for prognosis, to predict susceptibility to anti-proliferative agents, to validate the presence of specific drug targets, and to evaluate responsiveness to therapy. For glioblastoma (GBM), immunohistochemical and radiographic biomarkers accessible to the clinical lab have informed traditional regimens, but while immunotherapies have emerged as potentially disruptive weapons against this diffusely infiltrating, heterogeneous tumor, biomarkers with strong predictive power have not been fully established. The cancer immunotherapy field, through the recently accelerated expansion of trials, is currently leveraging this wealth of clinical and biological data to define and revise the use of biomarkers for improving prognostic accuracy, personalization of therapy, and evaluation of responses across the wide variety of tumors. Technological advancements in DNA sequencing, cytometry, and microscopy have facilitated the exploration of more integrated, high-dimensional profiling of the disease system-incorporating both immune and tumor parameters-rather than single metrics, as biomarkers for therapeutic sensitivity. Here we discuss the utility of traditional GBM biomarkers in immunotherapy and how the impending transformation of the biomarker paradigm-from single markers to integrated profiles-may offer the key to bringing predictive, personalized immunotherapy to GBM patients.
Collapse
|
27
|
Klyushnenkova EN, Riabov VB, Kouiavskaia DV, Wietsma A, Zhan M, Alexander RB. Breaking immune tolerance by targeting CD25+ regulatory T cells is essential for the anti-tumor effect of the CTLA-4 blockade in an HLA-DR transgenic mouse model of prostate cancer. Prostate 2014; 74:1423-32. [PMID: 25111463 DOI: 10.1002/pros.22858] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 06/17/2014] [Indexed: 11/11/2022]
Abstract
INTRODUCTION Recent studies suggest that the cancer immunotherapy based on the blockade of the CTLA-4-mediated inhibitory pathway is efficacious only in select populations, predominantly for immunogenic tumors or when delivered in combination with modalities that can break immunologic tolerance to tumor antigens. METHODS We studied the effect of CD25+ cell depletion and CTLA-4 blockade on the growth of Transgenic Mouse Adenocarcinoma of Prostate (TRAMP)-PSA tumor cells in DR2bxPSA F1 mice. In these mice, immunological tolerance to PSA was established in a context of the HLA-DRB1*1501(DR2b) allele. RESULTS In our model, single administration of anti-CD25 antibody prior to tumor inoculation significantly increased IFN-γ production in response to the CD8 T cell epitope PSA65-73 , and delayed TRAMP-PSA tumor growth compared to mice treated with isotype control antibodies. In contrast, the anti-tumor effect of the anti-CTLA-4 antibody as a monotherapy was marginal. The combinatory treatment with anti-CD25/anti-CTLA-4 antibodies significantly enhanced anti-tumor immunity and caused more profound delay in tumor growth compared to each treatment alone. The proportion of tumor-free animals was higher in the group that received combination treatment (21%) compared to other groups (2-7%). The enhanced anti-tumor immunity in response to the CD25 depletion or CTLA-4 blockade was only seen in the immunogenic TRAMP-PSA tumor model, whereas the effect was completely absent in mice bearing poorly immunogenic TRAMP-C1 tumors. DISCUSSION Our data suggest that breaking immunological tolerance to "self" antigens is essential for the therapeutic effect of CTLA-4 blockade. Such combinatory treatment may be a promising approach for prostate cancer immunotherapy.
Collapse
Affiliation(s)
- Elena N Klyushnenkova
- Department of Surgery, Division of Urology, University of Maryland, Baltimore, Maryland; VA Maryland Health Care System, Baltimore, Maryland
| | | | | | | | | | | |
Collapse
|
28
|
Avogadri F, Zappasodi R, Yang A, Budhu S, Malandro N, Hirschhorn-Cymerman D, Tiwari S, Maughan MF, Olmsted R, Wolchok JD, Merghoub T. Combination of alphavirus replicon particle-based vaccination with immunomodulatory antibodies: therapeutic activity in the B16 melanoma mouse model and immune correlates. Cancer Immunol Res 2014; 2:448-58. [PMID: 24795357 DOI: 10.1158/2326-6066.cir-13-0220] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Induction of potent immune responses to self-antigens remains a major challenge in tumor immunology. We have shown that a vaccine based on alphavirus replicon particles (VRP) activates strong cellular and humoral immunity to tyrosinase-related protein-2 (TRP2) melanoma antigen, providing prophylactic and therapeutic effects in stringent mouse models. Here, we report that the immunogenicity and efficacy of this vaccine is increased in combination with either antagonist anti-CTL antigen-4 (CTLA-4) or agonist anti-glucocorticoid-induced TNF family-related gene (GITR) immunomodulatory monoclonal antibodies (mAb). In the challenging therapeutic setting, VRP-TRP2 plus anti-GITR or anti-CTLA-4 mAb induced complete tumor regression in 90% and 50% of mice, respectively. These mAbs had similar adjuvant effects in priming an adaptive immune response against the vaccine-encoded antigen, augmenting, respectively, approximately 4- and 2-fold the TRP2-specific CD8(+) T-cell response and circulating Abs, compared with the vaccine alone. Furthermore, while both mAbs increased the frequency of tumor-infiltrating CD8(+) T cells, anti-CTLA-4 mAb also increased the quantity of intratumor CD4(+)Foxp3(-) T cells expressing the negative costimulatory molecule programmed death-1 (PD-1). Concurrent GITR expression on these cells suggests that they might be controlled by anti-GITR mAbs, thus potentially explaining their differential accumulation under the two treatment conditions. These findings indicate that combining immunomodulatory mAbs with alphavirus-based anticancer vaccines can provide therapeutic antitumor immune responses in a stringent mouse model, suggesting potential utility in clinical trials. They also indicate that tumor-infiltrating CD4(+)Foxp3(-)PD-1(+) T cells may affect the outcome of immunomodulatory treatments.
Collapse
Affiliation(s)
- Francesca Avogadri
- Authors' Affiliations: AlphaVax, Inc., Research Triangle Park, North Carolina
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Tosti G, Cocorocchio E, Pennacchioli E. Anti-cytotoxic T lymphocyte antigen-4 antibodies in melanoma. Clin Cosmet Investig Dermatol 2013; 6:245-56. [PMID: 24204168 PMCID: PMC3804494 DOI: 10.2147/ccid.s24246] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Approaches aimed at enhancement of the tumor specific response have provided proof for the rationale of immunotherapy in cancer, both in animal models and in humans. Ipilimumab, an anti-cytotoxic T lymphocyte antigen-4 (CTLA-4) antibody, is a new generation immunotherapeutic agent that has shown activity in terms of disease free and overall survival in metastatic melanoma patients. Its use was approved by the US Food and Drug Administration in March 2011 to treat patients with late stage melanoma that has spread or that cannot be removed by surgery. The mechanism of action of CTLA-4 antibodies in the activation of an antitumor immune response and selected clinical studies of ipilimumab in advanced melanoma patients are discussed. Ipilimumab treatment has been associated with immune related adverse events due to T-cell activation and proliferation. Most of these serious adverse effects are associated with the gastrointestinal tract and include severe diarrhea and colitis. The relationship between immune related adverse events and antitumor activity associated with ipilimumab was explored in clinical studies. Potential biomarkers predictive for clinical response and survival in patients treated with anti-CTLA-4 therapy are presently under investigation. Besides the conventional patterns of response and stable disease as defined by standard Response Evaluation Criteria in Solid Tumors criteria, in subsets of patients, ipilimumab has shown patterns of delayed clinical activity which were associated with an improved overall survival. For this reason a new set of response criteria for tumor immunotherapy has been proposed, which was termed immune related response criteria. These new criteria are presently used to better analyze clinical activity of immunotherapeutic regimens. Ipilimumab is currently under investigation in combination with other treatments, such as chemotherapy, target agents, radiotherapy, and other immuno-therapeutic regimens.
Collapse
Affiliation(s)
- Giulio Tosti
- Divisione Melanomi e Sarcomi, Istituto Europeo di Oncologia, Milano, Italy
| | | | | |
Collapse
|
30
|
Abstract
Ipilimumab is a monoclonal antibody directed against cytotoxic T-lymphocyte antigen-4 that has been approved by the US Food and Drug Administration for the treatment of metastatic melanoma. Phase III trials have demonstrated an overall survival benefit with its use when compared with standard treatments and other investigational therapies. However, the drug poses a notable challenge, given its propensity for toxicity, and requires close surveillance when administered in clinical practice. This review discusses the mechanism of action for ipilimumab, its preclinical data, and the clinical trials that led to its approval by the Food and Drug Administration in 2011.
Collapse
Affiliation(s)
- Utkarsh H Acharya
- Department of Medicine, Division of Hematology-Oncology, University of
Arizona Cancer Center, Tucson, AZ, USA
| | - Joanne M Jeter
- Department of Medicine, Division of Hematology-Oncology, University of
Arizona Cancer Center, Tucson, AZ, USA
| |
Collapse
|
31
|
Callahan MK, Postow MA, Wolchok JD. Immunomodulatory therapy for melanoma: ipilimumab and beyond. Clin Dermatol 2013; 31:191-9. [PMID: 23438382 DOI: 10.1016/j.clindermatol.2012.08.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In 2011, the U.S. Food and Drug Administration approved the first new therapy for melanoma in more than a decade, ipilimumab (Yervoy). Ipilimumab is a novel antibody that blocks cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), a regulatory molecule expressed on activated T cells. Blockade of this important immune checkpoint can lead to durable tumor regression, and phase III studies show an overall survival benefit for patients with advanced melanoma. During the clinical development of ipilimumab, several unique features of this immunotherapy were identified, including the remarkable durability of responses and a distinct side-effects profile. We review the preclinical and clinical development of CTLA-4-blocking antibodies and describe current practices using ipilimumab for the treatment of advanced melanoma. Unique clinical issues related to ipilimumab will be summarized. Lastly, we will briefly preview combination therapies that incorporate ipilimumab and new checkpoint-targeting antibodies currently in clinical development.
Collapse
Affiliation(s)
- Margaret K Callahan
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA
| | | | | |
Collapse
|
32
|
Callahan MK, Postow MA, Wolchok JD. Immunomodulatory therapy for melanoma: ipilimumab and beyond. Clin Dermatol 2013. [PMID: 23438382 DOI: 10.1016/j.clindermatol] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In 2011, the U.S. Food and Drug Administration approved the first new therapy for melanoma in more than a decade, ipilimumab (Yervoy). Ipilimumab is a novel antibody that blocks cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), a regulatory molecule expressed on activated T cells. Blockade of this important immune checkpoint can lead to durable tumor regression, and phase III studies show an overall survival benefit for patients with advanced melanoma. During the clinical development of ipilimumab, several unique features of this immunotherapy were identified, including the remarkable durability of responses and a distinct side-effects profile. We review the preclinical and clinical development of CTLA-4-blocking antibodies and describe current practices using ipilimumab for the treatment of advanced melanoma. Unique clinical issues related to ipilimumab will be summarized. Lastly, we will briefly preview combination therapies that incorporate ipilimumab and new checkpoint-targeting antibodies currently in clinical development.
Collapse
Affiliation(s)
- Margaret K Callahan
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10065, USA
| | | | | |
Collapse
|
33
|
Mocellin S, Nitti D. CTLA-4 blockade and the renaissance of cancer immunotherapy. Biochim Biophys Acta Rev Cancer 2013; 1836:187-96. [PMID: 23748107 DOI: 10.1016/j.bbcan.2013.05.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 05/27/2013] [Indexed: 12/18/2022]
Abstract
Cytotoxic T-lymphocyte associated antigen 4 (CTLA-4) plays a key role in restraining the adaptive immune response of T-cells towards a variety of antigens including tumor associated antigens (TAAs). The blockade of this immune checkpoint elicits an effective anticancer immune response in a range of preclinical models, suggesting that naturally occurring (or therapeutically induced) TAA specific lymphocytes need to be "unleashed" in order to properly fight against malignant cells. Therefore, investigators have tested this therapeutic hypothesis also in humans: the favorable results obtained with this strategy in patients with advanced cutaneous melanoma are revolutionizing the management of this highly aggressive disease and are fueling new enthusiasm on cancer immunotherapy in general. Here we summarize the biology of CTLA-4, overview the experimental data supporting the rational for targeting CTLA-4 to treat cancer and review the main clinical findings on this novel anticancer approach. Moreover, we critically discuss the current challenges and potential developments of this promising field of cancer immunotherapy.
Collapse
Affiliation(s)
- Simone Mocellin
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Italy.
| | | |
Collapse
|
34
|
Lesterhuis WJ, Salmons J, Nowak AK, Rozali EN, Khong A, Dick IM, Harken JA, Robinson BW, Lake RA. Synergistic effect of CTLA-4 blockade and cancer chemotherapy in the induction of anti-tumor immunity. PLoS One 2013. [PMID: 23626745 DOI: 10.1371/journal.pone.0061895.s009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Several chemotherapeutics exert immunomodulatory effects. One of these is the nucleoside analogue gemcitabine, which is widely used in patients with lung cancer, ovarian cancer, breast cancer, mesothelioma and several other types of cancer, but with limited efficacy. We hypothesized that the immunopotentiating effects of this drug are partly restrained by the inhibitory T cell molecule CTLA-4 and thus could be augmented by combining it with a blocking antibody against CTLA-4, which on its own has recently shown beneficial clinical effects in the treatment of patients with metastatic melanoma. Here we show, using two non-immunogenic murine tumor models, that treatment with gemcitabine chemotherapy in combination with CTLA-4 blockade results in the induction of a potent anti-tumor immune response. Depletion experiments demonstrated that both CD4(+) and CD8(+) T cells are required for optimal therapeutic effect. Mice treated with the combination exhibited tumor regression and long-term protective immunity. In addition, we show that the efficacy of the combination is moderated by the timing of administration of the two agents. Our results show that immune checkpoint blockade and cytotoxic chemotherapy can have a synergistic effect in the treatment of cancer. These results provide a basis to pursue combination therapies with anti-CTLA-4 and immunopotentiating chemotherapy and have important implications for future studies in cancer patients. Since both drugs are approved for use in patients our data can be immediately translated into clinical trials.
Collapse
Affiliation(s)
- W Joost Lesterhuis
- National Centre for Asbestos Related Diseases, The University of Western Australia, Crawley WA, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Lesterhuis WJ, Salmons J, Nowak AK, Rozali EN, Khong A, Dick IM, Harken JA, Robinson BW, Lake RA. Synergistic effect of CTLA-4 blockade and cancer chemotherapy in the induction of anti-tumor immunity. PLoS One 2013; 8:e61895. [PMID: 23626745 PMCID: PMC3633941 DOI: 10.1371/journal.pone.0061895] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 03/14/2013] [Indexed: 01/05/2023] Open
Abstract
Several chemotherapeutics exert immunomodulatory effects. One of these is the nucleoside analogue gemcitabine, which is widely used in patients with lung cancer, ovarian cancer, breast cancer, mesothelioma and several other types of cancer, but with limited efficacy. We hypothesized that the immunopotentiating effects of this drug are partly restrained by the inhibitory T cell molecule CTLA-4 and thus could be augmented by combining it with a blocking antibody against CTLA-4, which on its own has recently shown beneficial clinical effects in the treatment of patients with metastatic melanoma. Here we show, using two non-immunogenic murine tumor models, that treatment with gemcitabine chemotherapy in combination with CTLA-4 blockade results in the induction of a potent anti-tumor immune response. Depletion experiments demonstrated that both CD4+ and CD8+ T cells are required for optimal therapeutic effect. Mice treated with the combination exhibited tumor regression and long-term protective immunity. In addition, we show that the efficacy of the combination is moderated by the timing of administration of the two agents. Our results show that immune checkpoint blockade and cytotoxic chemotherapy can have a synergistic effect in the treatment of cancer. These results provide a basis to pursue combination therapies with anti-CTLA-4 and immunopotentiating chemotherapy and have important implications for future studies in cancer patients. Since both drugs are approved for use in patients our data can be immediately translated into clinical trials.
Collapse
Affiliation(s)
- W. Joost Lesterhuis
- National Centre for Asbestos Related Diseases, The University of Western Australia, Crawley WA, Australia and Tumour Immunology Group, School of Medicine and Pharmacology, Sir Charles Gairdner Hospital, University of Western Australia, Nedlands, Western Australia, Australia
- Department of Medical Oncology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Joanne Salmons
- National Centre for Asbestos Related Diseases, The University of Western Australia, Crawley WA, Australia and Tumour Immunology Group, School of Medicine and Pharmacology, Sir Charles Gairdner Hospital, University of Western Australia, Nedlands, Western Australia, Australia
| | - Anna K. Nowak
- National Centre for Asbestos Related Diseases, The University of Western Australia, Crawley WA, Australia and Tumour Immunology Group, School of Medicine and Pharmacology, Sir Charles Gairdner Hospital, University of Western Australia, Nedlands, Western Australia, Australia
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Esdy N. Rozali
- National Centre for Asbestos Related Diseases, The University of Western Australia, Crawley WA, Australia and Tumour Immunology Group, School of Medicine and Pharmacology, Sir Charles Gairdner Hospital, University of Western Australia, Nedlands, Western Australia, Australia
| | - Andrea Khong
- National Centre for Asbestos Related Diseases, The University of Western Australia, Crawley WA, Australia and Tumour Immunology Group, School of Medicine and Pharmacology, Sir Charles Gairdner Hospital, University of Western Australia, Nedlands, Western Australia, Australia
| | - Ian M. Dick
- National Centre for Asbestos Related Diseases, The University of Western Australia, Crawley WA, Australia and Tumour Immunology Group, School of Medicine and Pharmacology, Sir Charles Gairdner Hospital, University of Western Australia, Nedlands, Western Australia, Australia
| | - Julie A. Harken
- National Centre for Asbestos Related Diseases, The University of Western Australia, Crawley WA, Australia and Tumour Immunology Group, School of Medicine and Pharmacology, Sir Charles Gairdner Hospital, University of Western Australia, Nedlands, Western Australia, Australia
| | - Bruce W. Robinson
- National Centre for Asbestos Related Diseases, The University of Western Australia, Crawley WA, Australia and Tumour Immunology Group, School of Medicine and Pharmacology, Sir Charles Gairdner Hospital, University of Western Australia, Nedlands, Western Australia, Australia
- Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Richard A. Lake
- National Centre for Asbestos Related Diseases, The University of Western Australia, Crawley WA, Australia and Tumour Immunology Group, School of Medicine and Pharmacology, Sir Charles Gairdner Hospital, University of Western Australia, Nedlands, Western Australia, Australia
- * E-mail:
| |
Collapse
|
36
|
Modulation of tumor immunity by soluble and membrane-bound molecules at the immunological synapse. Clin Dev Immunol 2013; 2013:450291. [PMID: 23533456 PMCID: PMC3606757 DOI: 10.1155/2013/450291] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 01/15/2013] [Indexed: 12/31/2022]
Abstract
To circumvent pathology caused by infectious microbes and tumor growth, the host immune system must constantly clear harmful microorganisms and potentially malignant transformed cells. This task is accomplished in part by T-cells, which can directly kill infected or tumorigenic cells. A crucial event determining the recognition and elimination of detrimental cells is antigen recognition by the T cell receptor (TCR) expressed on the surface of T cells. Upon binding of the TCR to cognate peptide-MHC complexes presented on the surface of antigen presenting cells (APCs), a specialized supramolecular structure known as the immunological synapse (IS) assembles at the T cell-APC interface. Such a structure involves massive redistribution of membrane proteins, including TCR/pMHC complexes, modulatory receptor pairs, and adhesion molecules. Furthermore, assembly of the immunological synapse leads to intracellular events that modulate and define the magnitude and characteristics of the T cell response. Here, we discuss recent literature on the regulation and assembly of IS and the mechanisms evolved by tumors to modulate its function to escape T cell cytotoxicity, as well as novel strategies targeting the IS for therapy.
Collapse
|
37
|
Mocellin S, Benna C, Pilati P. Coinhibitory molecules in cancer biology and therapy. Cytokine Growth Factor Rev 2013; 24:147-61. [PMID: 23380546 DOI: 10.1016/j.cytogfr.2013.01.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Accepted: 01/09/2013] [Indexed: 12/31/2022]
Abstract
The adaptive immune response is controlled by checkpoints represented by coinhibitory molecules, which are crucial for maintaining self-tolerance and minimizing collateral tissue damage under physiological conditions. A growing body of preclinical evidence supports the hypothesis that unleashing this immunological break might be therapeutically beneficial in the fight against cancer, as it would elicit an effective antitumor immune response. Remarkably, recent clinical trials have demonstrated that this novel strategy can be highly effective in the treatment of patients with cancer, as shown by the paradigmatic case of ipilimumab (a monoclonal antibody blocking the coinhibitory molecule cytotoxic T lymphocyte associated antigen-4 [CTLA4]) that is opening a new era in the therapeutic approach to a chemoresistant tumor such as cutaneous melanoma. In this review we summarize the biology of coinhibitory molecules, overview the experimental and clinical attempts to interfere with these immune checkpoints to treat cancer and critically discuss the challenges posed by such a promising antitumor modality.
Collapse
Affiliation(s)
- Simone Mocellin
- Department of Surgery, Oncology and Gastroenterology, University of Padova, via Giustiniani 2, 35128 Padova, Italy.
| | | | | |
Collapse
|
38
|
Olson BM, Jankowska-Gan E, Becker JT, Vignali DAA, Burlingham WJ, McNeel DG. Human prostate tumor antigen-specific CD8+ regulatory T cells are inhibited by CTLA-4 or IL-35 blockade. THE JOURNAL OF IMMUNOLOGY 2012; 189:5590-601. [PMID: 23152566 DOI: 10.4049/jimmunol.1201744] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Regulatory T cells play important roles in cancer development and progression by limiting the generation of innate and adaptive anti-tumor immunity. We hypothesized that in addition to natural CD4(+)CD25(+) regulatory T cells (Tregs) and myeloid-derived suppressor cells, tumor Ag-specific Tregs interfere with the detection of anti-tumor immunity after immunotherapy. Using samples from prostate cancer patients immunized with a DNA vaccine encoding prostatic acid phosphatase (PAP) and a trans-vivo delayed-type hypersensitivity (tvDTH) assay, we found that the detection of PAP-specific effector responses after immunization was prevented by the activity of PAP-specific regulatory cells. These regulatory cells were CD8(+)CTLA-4(+), and their suppression was relieved by blockade of CTLA-4, but not IL-10 or TGF-β. Moreover, Ag-specific CD8(+) Tregs were detected prior to immunization in the absence of PAP-specific effector responses. These PAP-specific CD8(+)CTLA-4(+) suppressor T cells expressed IL-35, which was decreased after blockade of CTLA-4, and inhibition of either CTLA-4 or IL-35 reversed PAP-specific suppression of tvDTH response. PAP-specific CD8(+)CTLA-4(+) T cells also suppressed T cell proliferation in an IL-35-dependent, contact-independent fashion. Taken together, these findings suggest a novel population of CD8(+)CTLA-4(+) IL-35-secreting tumor Ag-specific Tregs arise spontaneously in some prostate cancer patients, persist during immunization, and can prevent the detection of Ag-specific effector responses by an IL-35-dependent mechanism.
Collapse
Affiliation(s)
- Brian M Olson
- University of Wisconsin Carbone Cancer Center, Madison, WI 53705, USA
| | | | | | | | | | | |
Collapse
|
39
|
McNeel DG, Becker JT, Johnson LE, Olson BM. DNA Vaccines for Prostate Cancer. CURRENT CANCER THERAPY REVIEWS 2012; 8:254-263. [PMID: 24587772 DOI: 10.2174/157339412804143113] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Delivery of plasmid DNA encoding an antigen of interest has been demonstrated to be an effective means of immunization, capable of eliciting antigen-specific T cells. Plasmid DNA vaccines offer advantages over other anti-tumor vaccine approaches in terms of simplicity, manufacturing, and possibly safety. The primary disadvantage is their poor transfection efficiency and subsequent lower immunogenicity relative to other genetic vaccine approaches. However, multiple preclinical models demonstrate anti-tumor efficacy, and many efforts are underway to improve the immunogenicity and anti-tumor effect of these vaccines. Clinical trials using DNA vaccines as treatments for prostate cancer have begun, and to date have demonstrated safety and immunological effect. This review will focus on DNA vaccines as a specific means of antigen delivery, advantages and disadvantages of this type of immunization, previous experience in preclinical models and human trials specifically conducted for the treatment of prostate cancer, and future directions for the application of DNA vaccines to prostate cancer immunotherapy.
Collapse
Affiliation(s)
- Douglas G McNeel
- Department of Medicine, University of Wisconsin Carbone Cancer Center, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Jordan T Becker
- Department of Medicine, University of Wisconsin Carbone Cancer Center, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Laura E Johnson
- Department of Medicine, University of Wisconsin Carbone Cancer Center, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Brian M Olson
- Department of Medicine, University of Wisconsin Carbone Cancer Center, 1111 Highland Avenue, Madison, WI 53705, USA
| |
Collapse
|
40
|
Jeter JM, Cranmer LD, Hersh EM. Ipilimumab pharmacotherapy in patients with metastatic melanoma. CLINICAL MEDICINE INSIGHTS-ONCOLOGY 2012; 6:275-86. [PMID: 22904648 PMCID: PMC3418148 DOI: 10.4137/cmo.s7245] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Immune augmentation with ipilimumab, an anti-CTLA-4 monoclonal antibody, has joined the ranks of approved immunologic agents for the treatment of metastatic melanoma. Phase III studies of ipilimumab in metastatic melanoma have demonstrated an overall survival advantage as compared to other approved and investigational therapies. However, the adverse effects associated with this medication are unique and often require management with steroids or other immunosuppressants. In addition, the time to response differs with ipilimumab as compared to traditional chemotherapy, and alternative means of assessment of response have been proposed. In this review, we will summarize the basic science of this treatment, its preclinical evaluation, and the clinical trials leading to its approval. We will also discuss the details regarding its use, assessment of response to this drug and other immune-related therapies, and further directions for investigation.
Collapse
Affiliation(s)
- Joanne M Jeter
- Department of Medicine, Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | | | | |
Collapse
|
41
|
Abstract
A promising cancer vaccine involves the fusion of dendritic cells (DCs) with tumor cells such that a broad array of tumor antigens are presented in the context of DC-mediated costimulation and stimulatory cytokines. In diverse animal models, vaccination with DC/tumor fusions results in protection from an otherwise lethal challenge of tumor cells and eradication of established disease. In phase I clinical studies, vaccination with DC/tumor fusions was well tolerated, and induced immunologic responses in the majority of patients and clinical responses in a subset. Vaccine efficacy may be blunted by the immunosuppressive milieu characteristic of patients with malignancy, including the increased presence of regulatory T cells, and inhibitory pathways such as the PD-1/PDL-1 pathway. A current focus of research interest lies in enhancing response to cancer vaccines, by combining vaccination with tumor cytoreduction, regulatory T-cell depletion, and blockade of critical inhibitory pathways.
Collapse
Affiliation(s)
- David Avigan
- Division of Hematology Oncology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
| | | | | |
Collapse
|
42
|
Abstract
Despite significant scientific knowledge in the field of cancer immunology, therapeutic strategies using cancer vaccines to generate anti-tumor immunity have historically resulted in only modest clinical benefit. Disappointing results from prior cancer vaccine trials are likely due to multifactorial causes. Perhaps the most important is the role of inherent tumor-induced immune suppression and enhanced immunologic tolerance. Current research directed toward understanding the mechanisms of immunologic tolerance has led to the development of promising therapeutic immune regulatory antibodies that inhibit immunologic checkpoints and subsequently enhance immunologic anti-tumor activity. This review discusses the prior challenges associated with cancer vaccines and describes how, by breaking immune inhibition and facilitating immune stimulation, immune regulatory antibodies show great promise in the treatment of a variety of tumors.
Collapse
|
43
|
Targeting costimulatory molecules to improve antitumor immunity. J Biomed Biotechnol 2012; 2012:926321. [PMID: 22500111 PMCID: PMC3303883 DOI: 10.1155/2012/926321] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 10/12/2011] [Accepted: 11/16/2011] [Indexed: 12/12/2022] Open
Abstract
The full activation of T cells necessitates the concomitant activation of two signals, the engagement of T-cell receptor by peptide/major histocompatibility complex II and an additional signal delivered by costimulatory molecules. The best characterized costimulatory molecules belong to B7/CD28 and TNF/TNFR families and play crucial roles in the modulation of immune response and improvement of antitumor immunity. Unfortunately, tumors often generate an immunosuppressive microenvironment, where T-cell response is attenuated by the lack of costimulatory molecules on the surface of cancer cells. Thus, targeting costimulatory pathways represent an attractive therapeutic strategy to enhance the antitumor immunity in several human cancers. Here, latest therapeutic approaches targeting costimulatory molecules will be described.
Collapse
|
44
|
Wang XY, Zuo D, Sarkar D, Fisher PB. Blockade of cytotoxic T-lymphocyte antigen-4 as a new therapeutic approach for advanced melanoma. Expert Opin Pharmacother 2011; 12:2695-706. [PMID: 22077831 PMCID: PMC3711751 DOI: 10.1517/14656566.2011.629187] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION The incidence of melanoma continues to rise, and prognosis in patients with metastatic melanoma remains poor. The cytotoxic T-lymphocyte antigen-4 (CTLA-4) serves as one of the primary immune check points and downregulates T-cell activation pathways. Enhancing T-cell activation by antibody blockade of CTLA-4 provides a new approach to overcome tumor-induced immune tolerance. Recently, anti-CTLA-4 therapy demonstrated significant clinical benefits in patients with metastatic melanoma, which led to the approval of ipilimumab by the FDA in early 2011. AREAS COVERED The fundamental concepts underlying CTLA-4 blockade-potentiated immune activation are presented in this paper, along with the scientific rationale for and the preclinical evidence supporting CTLA-4-targeted cancer immunotherapy. It also provides an update on clinical trials with anti-CTLA-4 inhibitors and discusses the associated autoimmune toxicity. EXPERT OPINION Given that overall survival is the only validated end point for anti-CTLA-4 therapy, the clinical implications of the antigen or tumor-specific immunity in patients remain to be clarified. Additional research is necessary to elucidate the prognostic significance of immune-related side effects and significantly optimize the treatment regimens. An improved understanding of the mechanisms of action of CTLA-4 antibodies may also culminate in wide-ranging clinical applications of this new therapy for other tumor types.
Collapse
Affiliation(s)
- Xiang-Yang Wang
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA23298, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA23298, USA
- VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA23298, USA
| | - Daming Zuo
- Department of Immunology, Southern Medical University, Guangzhou, 510515, China
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA23298, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA23298, USA
- VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA23298, USA
| | - Paul B. Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA23298, USA
- VCU Institute of Molecular Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA23298, USA
- VCU Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA23298, USA
| |
Collapse
|
45
|
Immunotherapy of prostate cancer: identification of new treatments and targets for therapy, and role of WAP domain-containing proteins. Biochem Soc Trans 2011; 39:1433-6. [DOI: 10.1042/bst0391433] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Prostate adenocarcinoma is present in over 80% of men over the age of 80 and is by far the most common cancer of men. Although radical prostatectomy is curative in early disease, the risks of incontinence and impotence can affect the quality of life of patients. Early intervention with localized immunotherapy represents a potential solution as lymphocyte infiltration does occur in prostate cancer lesions, and immunotherapy with dendritic cell vaccines can significantly increase survival in late stage disease. However, lymphocytic infiltrates in the cancerous prostates have an anergic character arising from the suppressive effects of the microenvironment resulting from a conversion of effector cells into regulatory T-cells. Although TGFβ (transforming growth factor β) and IL-10 (interleukin-10) are known to be strong suppressor molecules associated with prostate cancer, they are among many possible suppressive factors. We discuss the possible role of alternative suppressor molecules, including the WAP (whey acidic protein) homologue ps20 that is expressed on prostate stroma and other WAP domain-containing proteins in the immunosuppressive prostate cancer milieu and discuss novel immunotherapeutic strategies to combat this disease.
Collapse
|
46
|
Bose A, Taylor JL, Alber S, Watkins SC, Garcia JA, Rini BI, Ko JS, Cohen PA, Finke JH, Storkus WJ. Sunitinib facilitates the activation and recruitment of therapeutic anti-tumor immunity in concert with specific vaccination. Int J Cancer 2011; 129:2158-70. [PMID: 21170961 DOI: 10.1002/ijc.25863] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 12/06/2010] [Indexed: 12/21/2022]
Abstract
The multikinase inhibitor sunitinib malate (SUT) has been reported to reduce levels of myeloid suppressor cells and Treg cells in cancer patients, hypothetically diminishing intrinsic impediments for active immunization against tumor-associated antigens in such individuals. The goal of this study was to identify longitudinal immune molecular and cellular changes associated with tumor regression and disease-free status after the treatment of established day 7 s.c. MO5 (B16.OVA) melanomas with SUT alone (1 mg/day via oral gavage for 7 days), vaccination using ovalbumin (OVA) peptide-pulsed dendritic cell [vaccine (VAC)] alone, or the combination of SUT and VAC (SUT/VAC). We observed superior anti-tumor efficacy for SUT/VAC combination approaches, particularly when SUT was applied at the time of the initial vaccination or the VAC boost. Treatment effectiveness was associated with the acute loss of (and/or failure to recruit) cells bearing myeloid-derived suppressor cells or Treg phenotypes within the tumor microenvironment (TME) and the corollary, prolonged enhancement of Type-1 anti-OVA CD8(+) T cell responses in the tumor-draining lymph node and the TME. Enhanced Type-1 T cell infiltration of tumors was associated with treatment-induced expression of vascular cell adhesion molecule-1 (VCAM-1) and CXCR3 ligand chemokines in vascular/peri-vascular cells within the TME, with SUT/VAC therapy benefits conditionally negated upon adminsitration of CXCR3 or VCAM-1 blocking antibodies. These data support the ability of a short 7 day course of SUT to (re)condition the TME to become more receptive to the recruitment and prolonged therapeutic action of (VAC-induced) anti-tumor Tc1 cells.
Collapse
Affiliation(s)
- Anamika Bose
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Prostate cancer continues to be one of the most serious afflictions of men of advanced age, remaining the most commonly diagnosed and second leading cause of cancer-related deaths in American men. The treatment options for patients with incurable metastatic, castrate-resistant disease have long focused on various chemotherapeutic approaches, which provide a slight survival benefit while being associated with potentially significant side effects. However, the recent approval of sipuleucel-T has given patients with advanced disease an additional treatment option that has demonstrated benefit without the side effects associated with chemotherapy. Sipuleucel-T is an antigen-presenting cell-based active immunotherapy that utilizes a patient’s own immune cells, presumably to activate an antigen-specific immune response against tumor cells. This review focuses on the development and implementation of sipuleucel-T as a therapy for prostate cancer. Specifically, we present some of the issues associated with the management of advanced prostate cancer, the research and development that led to the approval of sipuleucel-T, how the approval of sipuleucel-T could change the clinical management of prostate cancer, and current and future areas of investigation that are being pursued with regard to sipuleucel-T and other treatments for advanced prostate cancer.
Collapse
Affiliation(s)
- Brian M Olson
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | | |
Collapse
|
48
|
Abstract
In this age of promise of new therapies for cancer, immunotherapy is emerging as an exciting treatment option for patients. Vaccines and cytokines are being tested extensively in clinical trials, and strategies using monoclonal antibodies and cell transfer are mediating dramatic regression of tumors in patients with certain malignancies. However, although initially advocated as being more specific for cancer and having fewer side effects than conventional therapies, it is becoming increasingly clear that many immunotherapies can lead to immune reactions against normal tissues. Immunotoxicities resulting from treatment can range from relatively minor conditions, such as skin depigmentation, to severe toxicities against crucial organ systems, such as liver, bowel, and lung. Treatment-related toxicity has correlated with better responses in some cases, and it is probable that serious adverse events from immune-mediated reactions will increase in frequency and severity as immunotherapeutic approaches become more effective. This review introduces immunotherapeutic approaches to cancer treatment, provides details of toxicities arising from therapy, and discusses future potential ways to avoid or circumvent these side effects.
Collapse
|
49
|
Expression of inducible co-stimulator on peripheral blood T lymphocytes in patients with lupus nephritis. Rheumatol Int 2011; 32:2051-5. [DOI: 10.1007/s00296-011-1922-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2010] [Accepted: 03/27/2011] [Indexed: 01/11/2023]
|
50
|
Oosterhoff D, Sluijter BJR, Hangalapura BN, de Gruijl TD. The dermis as a portal for dendritic cell-targeted immunotherapy of cutaneous melanoma. Curr Top Microbiol Immunol 2011; 351:181-220. [PMID: 21681685 DOI: 10.1007/82_2011_136] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Complete surgical excision at an early stage remains the only curative treatment for cutaneous melanoma with few available adjuvant therapy options. Nevertheless, melanoma is a relatively immunogenic tumor type and particularly amenable to immunotherapeutic approaches. A dense network of cutaneous dendritic cells (DC) may account for the reported efficacy of vaccination through the skin and provide an attractive target for the immunotherapy of melanoma. Several phenotypically distinct DC subsets are discernable in the skin, among others, epidermal Langerhans cells and dermal DC. Upon appropriate activation both subsets can efficiently migrate to melanoma-draining lymph nodes (LN) to prime T cell-mediated responses. Unfortunately, from an early stage, melanoma development is characterized by strong immune suppression, facilitating unchecked tumor growth and spread. Particularly the primary tumor site and the first-line tumor-draining LN, the so-called sentinel LN, bear the brunt of this melanoma-induced immune suppression-and these are exactly the sites where anti-melanoma effector T cell responses should be primed by DC in order to prevent early metastasis. Through local immunopotentiation or through DC-targeted vaccination, the dermis may be utilized as a portal to activate DC and kick-start or boost effective T cell-mediated anti-melanoma immunity, even in the face of this immune suppression.
Collapse
Affiliation(s)
- D Oosterhoff
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|