1
|
Alvarado-Melendez EI, de Jong H, Hartman JEM, Ong JY, Wösten MMSM, Wennekes T. Glycoengineering with neuraminic acid analogs to label lipooligosaccharides and detect native sialyltransferase activity in gram-negative bacteria. Glycobiology 2024; 34:cwae071. [PMID: 39244665 DOI: 10.1093/glycob/cwae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/27/2024] [Accepted: 09/06/2024] [Indexed: 09/10/2024] Open
Abstract
Lipooligosaccharides are the most abundant cell surface glycoconjugates on the outer membrane of Gram-negative bacteria. They play important roles in host-microbe interactions. Certain Gram-negative pathogenic bacteria cap their lipooligosaccharides with the sialic acid, N-acetylneuraminic acid (Neu5Ac), to mimic host glycans that among others protects these bacteria from recognition by the hosts immune system. This process of molecular mimicry is not fully understood and remains under investigated. To explore the functional role of sialic acid-capped lipooligosaccharides at the molecular level, it is important to have tools readily available for the detection and manipulation of both Neu5Ac on glycoconjugates and the involved sialyltransferases, preferably in live bacteria. We and others have shown that the native sialyltransferases of some Gram-negative bacteria can incorporate extracellular unnatural sialic acid nucleotides onto their lipooligosaccharides. We here report on the expanded use of native bacterial sialyltransferases to incorporate neuraminic acids analogs with a reporter group into the lipooligosaccharides of a variety of Gram-negative bacteria. We show that this approach offers a quick strategy to screen bacteria for the expression of functional sialyltransferases and the ability to use exogenous CMP-Neu5Ac to decorate their glycoconjugates. For selected bacteria we also show this strategy complements two other glycoengineering techniques, Metabolic Oligosaccharide Engineering and Selective Exo-Enzymatic Labeling, and that together they provide tools to modify, label, detect and visualize sialylation of bacterial lipooligosaccharides.
Collapse
Affiliation(s)
- Erianna I Alvarado-Melendez
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomedical Research, Utrecht University, Universiteitsweg 99, 3584CG, Utrecht, The Netherlands
| | - Hanna de Jong
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomedical Research, Utrecht University, Universiteitsweg 99, 3584CG, Utrecht, The Netherlands
| | - Jet E M Hartman
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomedical Research, Utrecht University, Universiteitsweg 99, 3584CG, Utrecht, The Netherlands
| | - Jun Yang Ong
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomedical Research, Utrecht University, Universiteitsweg 99, 3584CG, Utrecht, The Netherlands
| | - Marc M S M Wösten
- Department of Biomolecular Health Sciences, Division Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584CL, Utrecht, The Netherlands
| | - Tom Wennekes
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomedical Research, Utrecht University, Universiteitsweg 99, 3584CG, Utrecht, The Netherlands
| |
Collapse
|
2
|
Cleary PR, Calvert N, Gee S, Graham C, Gray S, Kaczmarski E, Morphet J, Murphy L, Verlander N, Wood T, Borrow R. Variations in Neisseria meningitidis carriage by socioeconomic status: a cross-sectional study. J Public Health (Oxf) 2015; 38:61-70. [PMID: 25742719 DOI: 10.1093/pubmed/fdv015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Deprivation is associated with an increased risk of invasive Neisseria meningitidis disease, but little is known about the relationship between deprivation and asymptomatic carriage of N. meningitidis. This analysis was conducted to examine the relationship between meningococcal carriage and deprivation. METHODS As part of a rapid meningococcal carriage prevalence study conducted in West Cumbria to investigate an apparent cluster of invasive meningococcal disease, data were collected on lifestyle and social factors, including area-level indicators of socioeconomic status, to identify factors associated with meningococcal carriage. RESULTS In a multivariable log binomial regression model adjusted for age, lower socioeconomic status was significantly associated with higher prevalence of meningococcal carriage. A 1-unit increase in Index of Multiple Deprivation (2010) score was associated with a 1.7% increase in meningococcal carriage prevalence (95% confidence interval 0.3-3.0%). Age was the only significant predictor of carriage of Neisseria lactamica. CONCLUSIONS Living in a deprived area is associated with increased carriage of Group B meningococcus. Deprivation is an important factor to consider in the evaluation of the effectiveness and cost-effectiveness of the introduction of new meningococcal B vaccines and the development and implementation of immunization policies. Further work is required to understand whether deprivation has an effect on meningococcal carriage through other factors such as smoking.
Collapse
Affiliation(s)
- P R Cleary
- PHE Field Epidemiology Service, Liverpool L1 1JF, UK
| | - N Calvert
- NHS Cumbria, Penrith, Cumbria CA11 8HX, UK
| | - S Gee
- Cumbria and Lancashire Public Health England Centre, Chorley PR7 1NY, UK
| | - C Graham
- North Cumbria University Hospitals Whitehaven, Cumbria CA28 8JG, UK
| | - S Gray
- PHE Meningococcal Reference Unit, Public Health England (PHE), Manchester M13 9WL, UK
| | - E Kaczmarski
- PHE Meningococcal Reference Unit, Public Health England (PHE), Manchester M13 9WL, UK
| | - J Morphet
- NHS Cumbria, Penrith, Cumbria CA11 8HX, UK
| | - L Murphy
- NHS Cumbria, Penrith, Cumbria CA11 8HX, UK
| | - N Verlander
- Public Health England Centre for Infection Disease Surveillance and Control, London NW9 5EQ, UK
| | - T Wood
- Cumbria and Lancashire Public Health England Centre, Chorley PR7 1NY, UK
| | - R Borrow
- PHE Meningococcal Reference Unit, Public Health England (PHE), Manchester M13 9WL, UK
| |
Collapse
|
3
|
Reinhardt A, Yang Y, Claus H, Pereira C, Cox A, Vogel U, Anish C, Seeberger P. Antigenic Potential of a Highly Conserved Neisseria meningitidis Lipopolysaccharide Inner Core Structure Defined by Chemical Synthesis. ACTA ACUST UNITED AC 2015; 22:38-49. [DOI: 10.1016/j.chembiol.2014.11.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/11/2014] [Accepted: 11/16/2014] [Indexed: 02/08/2023]
|
4
|
Kieber-Emmons T, Saha S, Pashov A, Monzavi-Karbassi B, Murali R. Carbohydrate-mimetic peptides for pan anti-tumor responses. Front Immunol 2014; 5:308. [PMID: 25071769 PMCID: PMC4075079 DOI: 10.3389/fimmu.2014.00308] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 06/17/2014] [Indexed: 11/26/2022] Open
Abstract
Molecular mimicry is fundamental to biology and transcends to many disciplines ranging from immune pathology to drug design. Structural characterization of molecular partners has provided insight into the origins and relative importance of complementarity in mimicry. Chemical complementarity is easy to understand; amino acid sequence similarity between peptides, for example, can lead to cross-reactivity triggering similar reactivity from their cognate receptors. However, conformational complementarity is difficult to decipher. Molecular mimicry of carbohydrates by peptides is often considered one of those. Extensive studies of innate and adaptive immune responses suggests the existence of carbohydrate mimicry, but the structural basis for this mimicry yields confounding details; peptides mimicking carbohydrates in some cases fail to exhibit both chemical and conformational mimicry. Deconvolution of these two types of complementarity in mimicry and its relationship to biological function can nevertheless lead to new therapeutics. Here, we discuss our experience examining the immunological aspects and implications of carbohydrate-peptide mimicry. Emphasis is placed on the rationale, the lessons learned from the methodologies to identify mimics, a perspective on the limitations of structural analysis, the biological consequences of mimicking tumor-associated carbohydrate antigens, and the notion of reverse engineering to develop carbohydrate-mimetic peptides in vaccine design strategies to induce responses to glycan antigens expressed on cancer cells.
Collapse
Affiliation(s)
- Thomas Kieber-Emmons
- Department of Pathology and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Somdutta Saha
- Department of Pathology and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Anastas Pashov
- Stephan Angelov Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Behjatolah Monzavi-Karbassi
- Department of Pathology and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Ramachandran Murali
- Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
5
|
Bernardini G, Braconi D, Martelli P, Santucci A. Postgenomics ofNeisseria meningitidisfor vaccines development. Expert Rev Proteomics 2014; 4:667-77. [DOI: 10.1586/14789450.4.5.667] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Gorringe AR. CanNeisseria lactamicaantigens provide an effective vaccine to prevent meningococcal disease? Expert Rev Vaccines 2014; 4:373-9. [PMID: 16026250 DOI: 10.1586/14760584.4.3.373] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Neisseria lactamica is a commensal organism that is closely related to Neisseria meningitidis, the causative agent of meningococcal disease. N. lactamica has many antigens in common with N. meningitidis, but it lacks a polysaccharide capsule and the serosubtyping antigen PorA. Carriage studies have demonstrated that N. lactamica is carried in the nasopharynx of young children at a time when meningococcal carriage is rare. However, natural immunity to meningococcal disease develops during this period and carriage of commensal Neisseria is implicated in the development of this immunity. Recent studies have characterized the antigens which may be responsible for inducing a crossreactive antibody response and have demonstrated that N. lactamica-based vaccines can protect in experimental models of meningococcal disease. The potential for these vaccines to be effective in preventing meningococcal disease is discussed.
Collapse
Affiliation(s)
- Andrew R Gorringe
- Centre for Emergency Preparedness and Response, Health Protection Agency, Porton Down, Salisbury, SP4 0JG, UK.
| |
Collapse
|
7
|
Neisseria meningitidis serogroup B lipooligosaccharide genotyping reveals high prevalence of L2 strains in Spain and unexpected relationship with factor H-binding protein expression. Microbes Infect 2012; 14:979-88. [PMID: 22565133 DOI: 10.1016/j.micinf.2012.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 04/06/2012] [Accepted: 04/11/2012] [Indexed: 12/14/2022]
Abstract
Neisseria meningitidis may be classified according to the lipooligosaccharide immunotype. We show that this classification can be achieved by PCR genotyping of the genes involved in the lipooligosaccharide inner-core biosynthesis, lpt3, lpt6, lgtG and lot3. Genotyping data correlated well (90-100%) with mass spectrometry data and was, therefore, applied to screen a random subset of recent N. meningitidis serogroup B isolates from Europe. Analysis of the proportion of the different lipooligosaccharide types highlighted the predominance of L3 strains. Surprisingly, high rates of L2 type strains were found in Spain (17%, versus 2.5% in Germany and 1.9% in the United Kingdom). Therefore, we also investigated further these Spanish L2 strains in an attempt to explain such prevalence despite the known sensitivity of L2 immunotype to complement. We explored the hypothesis that these strains express high amounts of factor H-binding protein (fHbp), but we found, on the contrary, that L2 strains express low or undetectable amounts of fHbp. Our findings suggest that, in addition to a genetic analysis, a multivalent approach may be necessary to estimate the effectiveness of a N. meningitidis serogroup B vaccine.
Collapse
|
8
|
Mistretta N, Seguin D, Thiébaud J, Vialle S, Blanc F, Brossaud M, Talaga P, Norheim G, Moreau M, Rokbi B. Genetic and structural characterization of L11 lipooligosaccharide from Neisseria meningitidis serogroup A strains. J Biol Chem 2010; 285:19874-83. [PMID: 20421293 DOI: 10.1074/jbc.m110.100636] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The lipooligosaccharide (LOS) of immunotype L11 is unique within serogroup A meningococci. In order to resolve its molecular structure, we conducted LOS genotyping by PCR analysis of genes responsible for alpha-chain sugar addition (lgtA, -B, -C, -E, -H, and -F) and inner core substituents (lgtG, lpt-3, and lpt-6). For this study, we selected seven strains belonging to subgroup III, a major clonal complex responsible for meningococcal meningitis epidemics in Africa. In addition, we sequenced the homopolymeric tract regions of three phase-variable genes (lgtA, lgtG, and lot-3) to predict gene functionality. The fine structure of the L11 LOS of each strain was determined using composition and glycosyl linkage analyses, NMR, and mass spectrometry. The masses of the dephosphorylated oligosaccharides were consistent with an oligosaccharide composed of two hexoses, one N-acetyl-hexosamine, two heptoses, and one KDO, as proposed previously. The molar composition of LOS showed two glucose residues to be present, in agreement with lgtH sequence prediction. Despite phosphoethanolaminetransferase genes lpt-3 and lpt-6 being present in all seven Neisseria meningitidis strains, phosphoethanolamine (PEtn) was found at both O-3 and O-6 of HepII among the three ST-5 strains, whereas among the four ST-7 strains, only one PEtn was found and located at O-3 of the HepII. The L11 LOS was found to be O-acetylated, as was indicated by the presence of the lot-3 gene being in-frame in all of the seven N. meningitidis strains. To our knowledge, these studies represent the first full genetic and structural characterization of the L11 LOS of N. meningitidis. These investigations also suggest the presence of further regulatory mechanisms affecting LOS structure microheterogeneity in N. meningitidis related to PEtn decoration of the inner core.
Collapse
Affiliation(s)
- Noëlle Mistretta
- Sanofi Pasteur, 1541 Avenue Marcel Mérieux, 69280 Marcy l'Etoile, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Genetically modified L3,7 and L2 lipooligosaccharides from Neisseria meningitidis serogroup B confer a broad cross-bactericidal response. Infect Immun 2009; 77:2084-93. [PMID: 19289516 DOI: 10.1128/iai.01108-08] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Currently available Neisseria meningitidis serogroup B (MenB) vaccines are based on outer membrane vesicles (OMVs) that are obtained from wild-type strains. They are purified with the aim of decreasing the lipooligosaccharide (LOS) content and hence reduce the reactogenicity of the vaccine even though LOS is a potential protective antigen. In <2-year-old children, these MenB vaccines confer protection only against strains expressing homologous PorA, a major and variable outer membrane protein. Our objective was to develop a safe LOS-based vaccine against MenB. To this end, we used modified porA knockout strains expressing genetically detoxified (msbB gene-deleted) L2 and L3,7 LOSs, allowing the production of LOS-enriched OMVs. The vaccine-induced antibodies were found to be bactericidal against nearly all invasive strains, irrespective of capsular serogroup. In addition, we have also demonstrated that LOS lacking the terminal galactose (with a lgtB mutation; truncated L3 LOS), but not LOS produced without the galE gene, induced a bactericidal antibody response in mice similar to that seen for LOS containing the full lacto-N-neotetraose (L3,7 LOS). In conclusion, a bivalent detoxified LOS OMV-based vaccine demonstrated the potential to afford a broad cross-protection against meningococcal disease.
Collapse
|
10
|
Abstract
Neisseria meningitidis is the leading cause of bacterial meningitis in the United States and worldwide. A serogroup A/C/W-135/Y polysaccharide meningococcal vaccine has been licensed in the United States since 1981 but has not been used universally outside of the military. On 14 January 2005, a polysaccharide conjugate vaccine that covers meningococcal serogroups A, C, W-135, and Y was licensed in the United States for 11- to 55-year-olds and is now recommended for the routine immunization of adolescents and other high-risk groups. This review covers the changing epidemiology of meningococcal disease in the United States, issues related to vaccine prevention, and recommendations on the use of the new vaccine.
Collapse
Affiliation(s)
- Lee H Harrison
- Infectious Diseases Epidemiology Research Unit, 521 Parran Hall, 130 Desoto St., University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
11
|
Abstract
Meningococcal disease, presenting primarily as septicaemia and meningitis, continues to be a devastating problem around the world. Over the last century, vaccine development has been undertaken in earnest for the prevention of this disease. Polysaccharide vaccines have been available for almost 40 years, yet they are poorly immunogenic in young children who are at the highest risk. Since their introduction into some routine immunisation schedules in 1999, polysaccharide-protein conjugate vaccines for the prevention of serogroup C meningococcal infection have proven efficacious. A quadrivalent polysaccharide-protein conjugate vaccine against serogroups A, C, W135 and Y, which is being introduced in the US this year, is hoped to control disease caused by these serogroups. To date, however, the development of a universally safe, immunogenic and effective serogroup B Neisseria meningitidis vaccine has remained a challenge. This review details the many conventional vaccine strategies and the more recent genome-derived technological approaches being used in serogroup B vaccine development. The future prevention of serogroup B disease will rely on both outer membrane vesicle vaccines being used for serosubtype-specific outbreaks and new vaccines containing multiple other antigens. Investment by the pharmaceutical industry in preclinical research and development provides hope that an efficacious serogroup B meningococcal vaccine can be developed.
Collapse
Affiliation(s)
- Kirsten P Perrett
- Oxford Vaccine Group, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Headington, Oxford, OX3 7LJ, UK.
| | | |
Collapse
|