1
|
McBurney SP, Landucci G, Forthal DN, Ross TM. Evaluation of heterologous vaginal SHIV SF162p4 infection following vaccination with a polyvalent Clade B virus-like particle vaccine. AIDS Res Hum Retroviruses 2012; 28:1063-72. [PMID: 22214267 PMCID: PMC3423648 DOI: 10.1089/aid.2011.0351] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The vast diversity of HIV-1 infections has greatly impeded the development of a successful HIV-1/AIDS vaccine. Previous vaccine work has demonstrated limited levels of protection against SHIV/SIV infection, but protection was observed only when the challenge virus was directly matched to the vaccine strain. As it is likely impossible to directly match the vaccine strain to all infecting strains in nature, it is necessary to develop an HIV-1 vaccine that can protect against a heterologous viral challenge. In this study we investigated the ability of polyvalent and consensus vaccines to protect against a heterologous clade B challenge. Rhesus macaques were vaccinated with ConB or PolyB virus-like particle vaccines. All vaccines were highly immunogenic with high titers of antibody found in all vaccinated groups against SIV Gag. Antibody responses were also observed against a diverse panel of clade B envelopes. Following vaccination nonhuman primates (NHPs) were challenged via the vaginal route with SHIV(SF162p4). The PolyB vaccine induced a 66.7% reduction in the rate of infection as well as causing a two log reduction in viral burden if infection was not blocked. ConB vaccination had no effect on either the infection rate or viral burden. These results indicate that a polyvalent clade-matched vaccine is better able to protect against a heterologous challenge as compared to a consensus vaccine.
Collapse
Affiliation(s)
- Sean P. McBurney
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania
- Graduate Program in Molecular Virology and Microbiology and Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Gary Landucci
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine School of Medicine, Irvine, California
| | - Donald N. Forthal
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine School of Medicine, Irvine, California
| | - Ted M. Ross
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania
- Graduate Program in Molecular Virology and Microbiology and Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
2
|
Pillay S, Shephard EG, Meyers AE, Williamson AL, Rybicki EP. HIV-1 sub-type C chimaeric VLPs boost cellular immune responses in mice. JOURNAL OF IMMUNE BASED THERAPIES AND VACCINES 2010; 8:7. [PMID: 21087527 PMCID: PMC2996383 DOI: 10.1186/1476-8518-8-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 11/19/2010] [Indexed: 11/30/2022]
Abstract
Several approaches have been explored to eradicate HIV; however, a multigene vaccine appears to be the best option, given their proven potential to elicit broad, effective responses in animal models. The Pr55Gag protein is an excellent vaccine candidate in its own right, given that it can assemble into large, enveloped, virus-like particles (VLPs) which are highly immunogenic, and can moreover be used as a scaffold for the presentation of other large non-structural HIV antigens. In this study, we evaluated the potential of two novel chimaeric HIV-1 Pr55Gag-based VLP constructs - C-terminal fusions with reverse transcriptase and a Tat::Nef fusion protein, designated GagRT and GagTN respectively - to enhance a cellular response in mice when used as boost components in two types of heterologous prime-boost vaccine strategies. A vaccine regimen consisting of a DNA prime and chimaeric HIV-1 VLP boosts in mice induced strong, broad cellular immune responses at an optimum dose of 100 ng VLPs. The enhanced cellular responses induced by the DNA prime-VLP boost were two- to three-fold greater than two DNA vaccinations. Moreover, a mixture of GagRT and GagTN VLPs also boosted antigen-specific CD8+ and CD4+ T-cell responses, while VLP vaccinations only induced predominantly robust Gag CD4+ T-cell responses. The results demonstrate the promising potential of these chimaeric VLPs as vaccine candidates against HIV-1.
Collapse
Affiliation(s)
- Sirika Pillay
- Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, University Ave, Rondebosch 7701, South Africa.
| | | | | | | | | |
Collapse
|
3
|
Caputo A, Gavioli R, Bellino S, Longo O, Tripiciano A, Francavilla V, Sgadari C, Paniccia G, Titti F, Cafaro A, Ferrantelli F, Monini P, Ensoli F, Ensoli B. HIV-1 Tat-based vaccines: an overview and perspectives in the field of HIV/AIDS vaccine development. Int Rev Immunol 2009; 28:285-334. [PMID: 19811313 DOI: 10.1080/08830180903013026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The HIV epidemic continues to represent one of the major problems worldwide, particularly in the Asia and Sub-Saharan regions of the world, with social and economical devastating effects. Although antiretroviral drugs have had a dramatically beneficial impact on HIV-infected individuals that have access to treatment, it has had a negligible impact on the global epidemic. Hence, the inexorable spreading of the HIV pandemic and the increasing deaths from AIDS, especially in developing countries, underscore the urgency for an effective vaccine against HIV/AIDS. However, the generation of such a vaccine has turned out to be extremely challenging. Here we provide an overview on the rationale for the use of non-structural HIV proteins, such as the Tat protein, alone or in combination with other HIV early and late structural HIV antigens, as novel, promising preventative and therapeutic HIV/AIDS vaccine strategies.
Collapse
Affiliation(s)
- Antonella Caputo
- Department of Histology, Microbiology and Medical Biotechnology, University of Padova, Padova, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Voltan R, Castaldello A, Brocca-Cofano E, De Michele R, Triulzi C, Altavilla G, Tondelli L, Laus M, Sparnacci K, Reali E, Gavioli R, Ensoli B, Caputo A. Priming with a very low dose of DNA complexed with cationic block copolymers followed by protein boost elicits broad and long-lasting antigen-specific humoral and cellular responses in mice. Vaccine 2009; 27:4498-507. [PMID: 19450649 DOI: 10.1016/j.vaccine.2009.05.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 05/08/2009] [Accepted: 05/10/2009] [Indexed: 11/18/2022]
Abstract
Cationic block copolymers spontaneously assemble via electrostatic interactions with DNA molecules in aqueous solution giving rise to micellar structures that protect the DNA from enzymatic degradation both in vitro and in vivo. In addition, we have previously shown that they are safe, not immunogenic and greatly increased antigen-specific CTL responses following six intramuscular inoculations of a very low dose (1microg) of the vaccine DNA as compared to naked DNA. Nevertheless, they failed to elicit detectable humoral responses against the antigen. To gain further insight in the potential application of this technology, here we show that a shorter immunization protocol based on two DNA intramuscular inoculations of 1microg of DNA delivered by these copolymers and a protein boost elicits in mice broad (both humoral and cellular) and long-lasting responses and increases the antigen-specific Th1-type T cell responses and CTLs as compared to priming with naked DNA. These results indicate that cationic block copolymers represent a promising adjuvant and delivery technology for DNA vaccination strategies aimed at combating intracellular pathogens.
Collapse
Affiliation(s)
- Rebecca Voltan
- Department of Histology, Microbiology and Medical Biotechnology, University of Padova, Padova, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Caputo A, Gavioli R, Bellino S, Longo O, Tripiciano A, Francavilla V, Sgadari C, Paniccia G, Titti F, Cafaro A, Ferrantelli F, Monini P, Ensoli F, Ensoli B. HIV-1 Tat-Based Vaccines: An Overview and Perspectives in the Field of HIV/AIDS Vaccine Development. Int Rev Immunol 2009. [DOI: 10.1080/08830180903013026 10.1080/08830180903013026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
6
|
McBurney SP, Ross TM. Viral sequence diversity: challenges for AIDS vaccine designs. Expert Rev Vaccines 2008; 7:1405-17. [PMID: 18980542 DOI: 10.1586/14760584.7.9.1405] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Among the greatest challenges facing AIDS vaccine development is the intrinsic diversity among circulating populations of HIV-1 in various geographical locations and the need to develop vaccines that can elicit enduring protective immunity to variant HIV-1 strains. While variation is observed in all of the viral proteins, the greatest diversity is localized to the viral envelope glycoproteins, evidently reflecting the predominant role of these proteins in eliciting host immune recognition and responses that result in progressive evolution of the envelope proteins during persistent infection. Interestingly, while envelope glycoprotein variation is widely assumed to be a major obstacle to AIDS vaccine development, there is very little experimental data in animal or human lentivirus systems addressing this critical issue. In this review, the state of vaccine development to address envelope diversity will be presented, focusing on the use of centralized and polyvalent sequence design as mechanisms to elicit broadly reactive immune responses.
Collapse
Affiliation(s)
- Sean P McBurney
- University of Pittsburgh, School of Medicine, Center for Vaccine Research, Program in Molecular Virology and Microbiology, Pittsburgh, PA 15261, USA.
| | | |
Collapse
|
7
|
zur Megede J, Sanders-Beer B, Silvera P, Golightly D, Bowlsbey A, Hebblewaite D, Sites D, Nieves-Duran L, Srivastava R, Otten GR, Rabussay D, Zhang L, Ulmer JB, Barnett SW, Donnelly JJ. A therapeutic SIV DNA vaccine elicits T-cell immune responses, but no sustained control of viremia in SIVmac239-infected rhesus macaques. AIDS Res Hum Retroviruses 2008; 24:1103-16. [PMID: 18620495 DOI: 10.1089/aid.2008.0055] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The immunologic and virologic outcome of therapeutic DNA-vaccines administered during antiretroviral therapy (ART) using electroporation with or without (interleukin) IL-2 treatment was evaluated in the SIVmac239/macaque model. Rhesus macaques inoculated with pathogenic SIVmac239 were treated with ART [(R(-9-(2-phosphonomethoxypropyl) adenine) (PMPA), FTC, Zerit] from weeks 13 to 41 postinfection (wpi). Group 1 (n = 7) received ART only, groups 2 and 3 (each n = 6) additionally received SIVmac239-derived gp140Env, GagPol, and TatRevNef plasmids by in vivo electroporation at 22, 26, 30, and 34 wpi, and group 3 also IL-2 for 14 days after each vaccination. Endpoints evaluated were viral load, Gag(181189)-specific CD8+ T-cell responses in MamuA01+ animals, lymphoproliferative responses, and CD4 T-cell counts. Viremia in all animals dropped below 200 RNA copies/ml during ART. Frequencies of Gag(181189)-specific CD8+ T cells prior to ART were detectable in all three groups (1.27-3.01%) and increased significantly (p < 0.01) postvaccination with maximum responses after the fourth immunization (0.2% versus 3.49-7.15%). Gag(181189)-specific CD8+ T-cell frequencies increased post-ART cessation in all groups and remained at significantly higher levels (p < 0.001) until the end of the study (75 wpi) in both groups of vaccinated animals. Lymphoproliferative responses were detected against Gag in a limited number of animals after vaccination and post-ART. However, plasma RNA viral loads rebounded after ART termination to similar levels in all three groups, but remained below 10(5) copies/ml until the end of the study, which could be a late effect of the triple drug therapy.
Collapse
Affiliation(s)
- Jan zur Megede
- Novartis Vaccines & Diagnostics Inc., Emeryville, California
| | - Brigitte Sanders-Beer
- Southern Research Institute, Frederick, Maryland
- Present address: BIOQUAL, Inc., Rockville, Maryland
| | | | | | | | | | | | | | | | - Gillis R. Otten
- Novartis Vaccines & Diagnostics Inc., Emeryville, California
| | | | - Lei Zhang
- Inovio Biomedical Corp., San Diego, California
| | | | | | | |
Collapse
|
8
|
Ilyinskii PO, Meriin AB, Gabai VL, Usachev EV, Prilipov AG, Thoidis G, Shneider AM. The proteosomal degradation of fusion proteins cannot be predicted from the proteosome susceptibility of their individual components. Protein Sci 2008; 17:1077-85. [PMID: 18411420 DOI: 10.1110/ps.083443908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
It is assumed that the proteosome-processing characteristics of fusion constructs can be predicted from the sum of the proteosome sensitivity of their components. In the present study, we observed that a fusion construct consisting of proteosome-degradable proteins does not necessarily result in a proteosome-degradable chimera. Conversely, fusion of proteosome-resistant proteins may result in a proteosome-degradable composite. We previously demonstrated that conserved influenza proteins can be unified into a single fusion antigen that is protective, and that vaccination with combinations of proteosome-resistant and proteosome-degradable antigens resulted in an augmented T-cell response. In the present study we constructed proteosome-degradable mutants of conserved influenza proteins NP, M1, NS1, and M2. These were then fused into multipartite proteins in different positions. The stability and degradation profiles of these fusion constructs were demonstrated to depend on the relative position of the individual proteins within the chimeric molecule. Combining unstable sequences of either NP and M1 or NS1 and M2 resulted in either rapidly proteosome degraded or proteosome-resistant bipartite fusion mutants. However, further unification of the proteosome-degradable forms into a single four-partite fusion molecule resulted in relatively stable chimeric proteins. Conversely, the addition of proteosome-resistant wild-type M2 to proteosome-resistant NP-M1-NS1 fusion protein lead to the decreased stability of the resulting four-partite multigene products, which in one case was clearly proteosome dependent. Additionally, a highly destabilized form of M1 failed to destabilize the wild-type NP. Collectively, we did not observe any additive effect leading to proteosomal degradation/nondegradation of a multigene construct.
Collapse
|
9
|
Hirao LA, Wu L, Khan AS, Hokey DA, Yan J, Dai A, Betts MR, Draghia-Akli R, Weiner DB. Combined effects of IL-12 and electroporation enhances the potency of DNA vaccination in macaques. Vaccine 2008; 26:3112-20. [PMID: 18430495 DOI: 10.1016/j.vaccine.2008.02.036] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
DNA vaccines are a promising technology. Historically, however, the ability of DNA vaccines to induce high response rates and strong immune responses, especially antibody responses, in non-human primates and human clinical trials has proven suboptimal. Here, we performed a pilot study in rhesus macaques to evaluate whether we could improve the immunogenicity of DNA vaccines through the use of adjuvant technology and improved delivery systems. The study consisted of four groups of animals that received: DNA by intramuscular (IM) injection, DNA with plasmid-encoded IL-12 by IM injection, DNA by IM injection with in vivo electroporation (EP), and DNA with IL-12 by IM EP. Each group was immunized three times with optimized HIV gag and env constructs. Vaccine immunogenicity was assessed by IFNgamma ELISpot, CFSE proliferation, polyfunctional flow cytometry, and antibody ELISA. Similar to previous studies, use of IL-12 as an adjuvant increased the gag and env-specific cellular responses. The use of EP to enhance plasmid delivery resulted in dramatically higher cellular as well as humoral responses. Interestingly, the use of EP to administer the DNA and IL-12 adjuvant combination resulted in the induction of higher, more efficient responses such that a 10-fold increase in antigen-specific IFNgamma(+) cells compared to IM DNA immunization was observed after a single immunization. In addition to increases in the magnitude of IFNgamma production in the initial and memory responses, the combined approach resulted in enhancements in the proliferative capacity of antigen-specific CD8(+) T cells and the amount of polyfunctional cells capable of producing IL-2 and TNFalpha in addition to IFNgamma. These data suggest that adjuvant and improved delivery methods may be able to overcome previous immunogenicity limitations in DNA vaccine technology.
Collapse
Affiliation(s)
- Lauren A Hirao
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, 422 Curie Boulevard, 505 SCL, Philadelphia, PA 19104, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Multiplex RT-PCR amplification of HIV genes to create a completely autologous DC-based immunotherapy for the treatment of HIV infection. PLoS One 2008; 3:e1489. [PMID: 18231576 PMCID: PMC2211536 DOI: 10.1371/journal.pone.0001489] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Accepted: 12/13/2007] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Effective therapy for HIV-infected individuals remains an unmet medical need. Promising clinical trials with dendritic cell (DC)-based immunotherapy consisting of autologous DC loaded with autologous virus have been reported, however, these approaches depend on large numbers of HIV virions to generate sufficient doses for even limited treatment regimens. METHODOLOGY/PRINCIPAL FINDINGS The present study describes a novel approach for RT-PCR amplification of HIV antigens. Previously, RT-PCR amplification of autologous viral sequences has been confounded by the high mutation rate of the virus which results in unreliable primer-template binding. To resolve this problem we developed a multiplex RT-PCR strategy that allows reliable strain-independent amplification of highly polymorphic target antigens from any patient and requires neither viral sequence data nor custom-designed PCR primers for each individual. We demonstrate the application of our RT-PCR process to amplify translationally-competent RNA encoding regions of Gag, Vpr, Rev and Nef. The products amplified using this method represent a complex mixture of autologous antigens encoded by viral quasispecies. We further demonstrate that DCs electroporated with in vitro-transcribed HIV RNAs are capable of stimulating poly-antigen-specific CD8+ T cell responses in vitro. CONCLUSION/SIGNIFICANCE This study describes a strategy to overcome patient to patient viral diversity enabling strain-independent RT-PCR amplification of RNAs encoding sequence divergent quasispecies of Gag, Vpr, Rev and Nef from small volumes of infectious plasma. The approach allows creation of a completely autologous therapy that does not require advance knowledge of the HIV genomic sequences, does not have yield limitations and has no intact virus in the final product. The simultaneous use of autologous viral antigens and DCs may provoke broad patient-specific immune responses that could potentially induce effective control of viral loads in the absence of conventional antiretroviral drug therapy.
Collapse
|
11
|
Yan J, Yoon H, Kumar S, Ramanathan MP, Corbitt N, Kutzler M, Dai A, Boyer JD, Weiner DB. Enhanced cellular immune responses elicited by an engineered HIV-1 subtype B consensus-based envelope DNA vaccine. Mol Ther 2007; 15:411-21. [PMID: 17235321 DOI: 10.1038/sj.mt.6300036] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
An important goal for human immunodeficiency virus (HIV) vaccines is to develop immunogens that induce broader and more potent cellular immune responses. In this study of DNA vaccine potency, we constructed a novel subtype B env gene (EY2E1-B) with the goal of increasing vaccine antigen immune potency. The vaccine cassette was designed based on subtype B-specific consensus sequence with several modifications, including codon optimization, RNA optimization, the addition of a Kozak sequence, and a substituted immunoglobulin E leader sequence. The V1 and V2 loops were shortened and the cytoplasmic tail was truncated to prevent envelope recycling. Three different strains of mice (BALB/c, C57BL/6, and HLA-A2 transgenic mice) were immunized three times with pEY2E1-B or the primary DNA immunogen pEK2P-B alone. The analysis of specific antibody responses suggested that EY2E1-B could induce a moderate subtype B-specific antibody response. Moreover, this construct was up to four times more potent at driving cellular immune responses. Epitope mapping results indicated that there is an increase in the breadth and magnitude of cross-reactive cellular responses induced by the EY2E1-B immunogen. These properties suggest that such a synthetic immunogen deserves further examination for its potential to serve as a component antigen in an HIV vaccine cocktail.
Collapse
Affiliation(s)
- Jian Yan
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Kumar M, Jain SK, Pasha ST, Chattopadhaya D, Lal S, Rai A. Genomic diversity in the regulatory nef gene sequences in Indian isolates of HIV type 1: emergence of a distinct subclade and predicted implications. AIDS Res Hum Retroviruses 2006; 22:1206-19. [PMID: 17209762 DOI: 10.1089/aid.2006.22.1206] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The regulatory functional nef gene is known to mediate a cascade of events during pathogenesis in HIV infection. Variability in the nef gene sequences of HIV-1 A and B subtypes has been well documented. Reasonable data are also available on the pattern of genomic changes in the nef gene of African strains of HIV-1 subtype C, but very little is known about heterogeneity in the nef gene of Indian strains of HIV-1 subtype C, which accounts for 90% of the estimated 5.2 million cases of HIV infection in India. This is a huge number and, therefore, it is important to reveal the extent of sequence variability in the nef gene of HIV-1 subtypes circulating in different parts of India. We carried out full-length nef gene (approximately 620 bp) sequencing on a large number of clinical isolates of HIV-1 circulating in different geographic regions of India. Comparative and phylogenetic analysis revealed 88% (38/43) of cases was HIV-1 subtype C; four cases were diagnosed as subtype A and only one as subtype B. Although most of the crucial functional motifs of the nef gene were conserved, we did observe a few important variations in juxtapositions to functional domains. Interestingly, analyzed nef sequences showed an evolving pattern of segregation away from those reported from other parts of the world, to form a distinct Indian subclade. Deduced amino acid (aa) sequences used to predict HLA binding epitopes for consensus nef gene sequences of Indian strains of HIV-1 revealed two HLA subtype binding domains, GAFDLSFFL (at aa 83) and LTFGWCFKL (at aa 136), in high frequency. The findings from the present study may encourage use of nef gene in molecular diagnostics/genotyping, keeping track of the evolutionary trend and pinpointing the emergence of recombinant strains, and in the future, designing a multiepitope HIV vaccine suitable for the Indian population.
Collapse
Affiliation(s)
- Manoj Kumar
- National Institute of Communicable Diseases, Delhi-110054, India.
| | | | | | | | | | | |
Collapse
|