1
|
Pirkalkhoran S, Grabowska WR, Kashkoli HH, Mirhassani R, Guiliano D, Dolphin C, Khalili H. Bioengineering of Antibody Fragments: Challenges and Opportunities. Bioengineering (Basel) 2023; 10:bioengineering10020122. [PMID: 36829616 PMCID: PMC9952581 DOI: 10.3390/bioengineering10020122] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Antibody fragments are used in the clinic as important therapeutic proteins for treatment of indications where better tissue penetration and less immunogenic molecules are needed. Several expression platforms have been employed for the production of these recombinant proteins, from which E. coli and CHO cell-based systems have emerged as the most promising hosts for higher expression. Because antibody fragments such as Fabs and scFvs are smaller than traditional antibody structures and do not require specific patterns of glycosylation decoration for therapeutic efficacy, it is possible to express them in systems with reduced post-translational modification capacity and high expression yield, for example, in plant and insect cell-based systems. In this review, we describe different bioengineering technologies along with their opportunities and difficulties to manufacture antibody fragments with consideration of stability, efficacy and safety for humans. There is still potential for a new production technology with a view of being simple, fast and cost-effective while maintaining the stability and efficacy of biotherapeutic fragments.
Collapse
Affiliation(s)
- Sama Pirkalkhoran
- School of Biomedical Science, University of West London, London W5 5RF, UK
| | | | | | | | - David Guiliano
- School of Life Science, College of Liberal Arts and Sciences, University of Westminster, London W1W 6UW, UK
| | - Colin Dolphin
- School of Biomedical Science, University of West London, London W5 5RF, UK
| | - Hanieh Khalili
- School of Biomedical Science, University of West London, London W5 5RF, UK
- School of Pharmacy, University College London, London WC1N 1AX, UK
- Correspondence:
| |
Collapse
|
2
|
Abstract
Single chain variable fragments (scFvs) are generated by joining together the variable heavy and light chain of a monoclonal antibody (mAb) via a peptide linker. They offer some advantages over the parental mAb such as low molecular weight, heterologous production, multimeric form, and multivalency. The scFvs were produced against more than 50 antigens till date using 10 different plant species as the expression system. There were considerable improvements in the expression and purification strategies of scFv in the last 24 years. With the growing demand of scFv in therapeutic and diagnostic fields, its biosynthesis needs to be increased. The easiness in development, maintenance, and multiplication of transgenic plants make them an attractive expression platform for scFv production. The review intends to provide comprehensive information about the use of plant expression system to produce scFv. The developments, advantages, pitfalls, and possible prospects of improvement for the exploitation of plants in the industrial level are discussed.
Collapse
Affiliation(s)
- Padikara Kutty Satheeshkumar
- Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India.
| |
Collapse
|
3
|
Liu X, Li S, Yang W, Mu B, Jiao Y, Zhou X, Zhang C, Fan Y, Chen R. Synthesis of Seed-Specific Bidirectional Promoters for Metabolic Engineering of Anthocyanin-Rich Maize. PLANT & CELL PHYSIOLOGY 2018; 59:1942-1955. [PMID: 29917151 DOI: 10.1093/pcp/pcy110] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/05/2018] [Indexed: 05/03/2023]
Abstract
Tissue-specific promoters play an important role in plant molecular farming. Here, we describe a strategy to modify the tissue specificity of a maize embryo-specific bidirectional promoter PZmBD1. Six types of cis-elements, i.e. RY repeats (R), GCN4 (G), the prolamin box (P), Skn-1 (S), and the ACGT and AACA (A) motifs, were collected and fused to PZmBD1 to generate eight chimeric putative bidirectional promoters. Qualitative and quantitative analysis of reporter genes driven by the promoters showed that two promoters exhibited high seed-specific bidirectional activity in maize transient and stable transformed systems. The stronger one was chosen and fused to the intergenic region of two gene clusters consisting of four anthocyanin biosynthesis-related genes (ZmBz1, ZmBz2, ZmC1 and ZmR2) and seven reporter genes, resulting in the first embryo and endosperm anthocyanin-rich purple maize. Anthocyanin analysis showed that the total anthocyanin content reaches 2,910 mg kg-1 DW in transgenic maize and cyanidin is the major anthocyanin in transgenic maize, as in natural varieties. The expression profile analysis of endogenous genes showed that the anthocyanin biosynthesis pathway was activated by two transgenic transcription factor genes ZmC1 and ZmR2. Our results indicate that both the modification strategy and these functionally characterized tissue-specific bidirectional promoters generated could be used for genetic research and development of plant biotechnology products. The anthocyanin-rich purple maize could provide economic natural colorants for the food and beverage industry, and valuable germplasm for developing anthocyanin-rich fresh corn.
Collapse
Affiliation(s)
- Xiaoqing Liu
- Department of Crop Genomics & Genetic Improvement, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 ZhongGuanCun South Street, Beijing, China
| | - Suzhen Li
- Department of Crop Genomics & Genetic Improvement, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 ZhongGuanCun South Street, Beijing, China
| | - Wenzhu Yang
- Department of Crop Genomics & Genetic Improvement, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 ZhongGuanCun South Street, Beijing, China
| | - Bona Mu
- Department of Crop Genomics & Genetic Improvement, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 ZhongGuanCun South Street, Beijing, China
| | - Yong Jiao
- Department of Crop Genomics & Genetic Improvement, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 ZhongGuanCun South Street, Beijing, China
- Key Laboratory of Crop Biology of Anhui Province, Anhui Agricultural University, Hefei, China
| | - Xiaojin Zhou
- Department of Crop Genomics & Genetic Improvement, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 ZhongGuanCun South Street, Beijing, China
| | - Chunyi Zhang
- Department of Crop Genomics & Genetic Improvement, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 ZhongGuanCun South Street, Beijing, China
| | - Yunliu Fan
- Department of Crop Genomics & Genetic Improvement, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 ZhongGuanCun South Street, Beijing, China
| | - Rumei Chen
- Department of Crop Genomics & Genetic Improvement, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, 12 ZhongGuanCun South Street, Beijing, China
| |
Collapse
|
4
|
Sinibaldi A, Sampaoli C, Danz N, Munzert P, Sonntag F, Centola F, Occhicone A, Tremante E, Giacomini P, Michelotti F. Bloch Surface Waves Biosensors for High Sensitivity Detection of Soluble ERBB2 in a Complex Biological Environment. BIOSENSORS-BASEL 2017; 7:bios7030033. [PMID: 28817097 PMCID: PMC5618039 DOI: 10.3390/bios7030033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/11/2017] [Accepted: 08/15/2017] [Indexed: 01/24/2023]
Abstract
We report on the use of one-dimensional photonic crystals to detect clinically relevant concentrations of the cancer biomarker ERBB2 in cell lysates. Overexpression of the ERBB2 protein is associated with aggressive breast cancer subtypes. To detect soluble ERBB2, we developed an optical set-up which operates in both label-free and fluorescence modes. The detection approach makes use of a sandwich assay, in which the one-dimensional photonic crystals sustaining Bloch surface waves are modified with monoclonal antibodies, in order to guarantee high specificity during the biological recognition. We present the results of exemplary protein G based label-free assays in complex biological matrices, reaching an estimated limit of detection of 0.5 ng/mL. On-chip and chip-to-chip variability of the results is addressed too, providing repeatability rates. Moreover, results on fluorescence operation demonstrate the capability to perform high sensitive cancer biomarker assays reaching a resolution of 0.6 ng/mL, without protein G assistance. The resolution obtained in both modes meets international guidelines and recommendations (15 ng/mL) for ERBB2 quantification assays, providing an alternative tool to phenotype and diagnose molecular cancer subtypes.
Collapse
Affiliation(s)
- Alberto Sinibaldi
- Department of Basic and Applied Science for Engineering, Sapienza University of Rome, Via A. Scarpa 16, 00161 Rome, Italy.
| | - Camilla Sampaoli
- Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144 Rome, Italy.
| | - Norbert Danz
- Fraunhofer Institute for Applied Optics and Precision Engineering IOF, Albert-Einstein-Str. 7, 07745 Jena, Germany.
| | - Peter Munzert
- Fraunhofer Institute for Applied Optics and Precision Engineering IOF, Albert-Einstein-Str. 7, 07745 Jena, Germany.
| | - Frank Sonntag
- Fraunhofer Institute for Material and Beam Technology IWS, Winterbergstr. 28, 01277 Dresden, Germany.
| | - Fabio Centola
- IBI-Istituto Biochimico Italiano Giovanni Lorenzini Spa, Via Fossignano 2, 04011 Aprilia, Italy.
| | - Agostino Occhicone
- Department of Basic and Applied Science for Engineering, Sapienza University of Rome, Via A. Scarpa 16, 00161 Rome, Italy.
| | - Elisa Tremante
- Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144 Rome, Italy.
| | - Patrizio Giacomini
- Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144 Rome, Italy.
| | - Francesco Michelotti
- Department of Basic and Applied Science for Engineering, Sapienza University of Rome, Via A. Scarpa 16, 00161 Rome, Italy.
| |
Collapse
|
5
|
Detection of soluble ERBB2 in breast cancer cell lysates using a combined label-free/fluorescence platform based on Bloch surface waves. Biosens Bioelectron 2017; 92:125-130. [DOI: 10.1016/j.bios.2017.02.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 02/08/2017] [Accepted: 02/08/2017] [Indexed: 11/17/2022]
|
6
|
Cao X, Yu H, Chen C, Wei J, Wang P. Expression and characterization of recombinant humanized anti-HER2 single-chain antibody in Pichia pastoris for targeted cancer therapy. Biotechnol Lett 2015; 37:1347-54. [DOI: 10.1007/s10529-015-1804-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 02/23/2015] [Indexed: 10/23/2022]
|
7
|
Shamloul M, Trusa J, Mett V, Yusibov V. Optimization and utilization of Agrobacterium-mediated transient protein production in Nicotiana. J Vis Exp 2014:51204. [PMID: 24796351 PMCID: PMC4174718 DOI: 10.3791/51204] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Agrobacterium-mediated transient protein production in plants is a promising approach to produce vaccine antigens and therapeutic proteins within a short period of time. However, this technology is only just beginning to be applied to large-scale production as many technological obstacles to scale up are now being overcome. Here, we demonstrate a simple and reproducible method for industrial-scale transient protein production based on vacuum infiltration of Nicotiana plants with Agrobacteria carrying launch vectors. Optimization of Agrobacterium cultivation in AB medium allows direct dilution of the bacterial culture in Milli-Q water, simplifying the infiltration process. Among three tested species of Nicotiana, N. excelsiana (N. benthamiana × N. excelsior) was selected as the most promising host due to the ease of infiltration, high level of reporter protein production, and about two-fold higher biomass production under controlled environmental conditions. Induction of Agrobacterium harboring pBID4-GFP (Tobacco mosaic virus-based) using chemicals such as acetosyringone and monosaccharide had no effect on the protein production level. Infiltrating plant under 50 to 100 mbar for 30 or 60 sec resulted in about 95% infiltration of plant leaf tissues. Infiltration with Agrobacterium laboratory strain GV3101 showed the highest protein production compared to Agrobacteria laboratory strains LBA4404 and C58C1 and wild-type Agrobacteria strains at6, at10, at77 and A4. Co-expression of a viral RNA silencing suppressor, p23 or p19, in N. benthamiana resulted in earlier accumulation and increased production (15-25%) of target protein (influenza virus hemagglutinin).
Collapse
Affiliation(s)
| | - Jason Trusa
- Fraunhofer USA Center for Molecular Biotechnology
| | - Vadim Mett
- Fraunhofer USA Center for Molecular Biotechnology
| | | |
Collapse
|
8
|
Mazzucchelli S, Sommaruga S, O'Donnell M, Galeffi P, Tortora P, Prosperi D, Colombo M. Dependence of nanoparticle-cell recognition efficiency on the surface orientation of scFv targeting ligands. Biomater Sci 2013; 1:728-735. [DOI: 10.1039/c3bm60068h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Lombardi A, Gianese G, Arcangeli C, Galeffi P, Sperandei M. Bacterial cytoplasm production of an EGFP-labeled single-chain Fv antibody specific for the HER2 human receptor. J Biomol Struct Dyn 2012; 29:425-39. [PMID: 22066531 DOI: 10.1080/07391102.2011.10507396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The human epidermal growth factor receptor 2 (HER2) is the main diagnostic marker of breast and ovary cancers. Here, to obtain a rapid and sensitive immunodiagnostic tool a single-chain antibody (scFv800E6) specific for the HER2 was fused to the N-terminus of the enhanced green fluorescent protein (EGFP) by a flexible linker. The soluble production of the novel scFv800E6-EGFP protein in the cytoplasm of Escherichia coli was investigated at different induction temperatures (25, 30 and 37°C); the intrinsic fluorescent properties and the binding activity to HER2 positive tumour cells of the fusion protein were analysed. Western blotting and fluorescence analysis of SDS-PAGE revealed the presence of two scFv800E6-EGFP forms, with different mobility and optical properties, their ratio depending on the induction temperature. The fluorescent form maintained the optical fluorescence properties of EGFP and exhibited a binding activity to the HER2-expressing cells comparable to that of the non-fused scFv800E6. In addition, to provide an insight into the effect of the induction temperature on the molecular structure, the folding of the fusion protein was assessed at atomic level by performing molecular dynamics simulations of the homology-derived model of scFv800E6-EGFP at 300 K and 310 K. The comparison of the data collected at these two temperatures revealed that the higher temperature affects specific structural elements. To improve the production of the soluble and functional scFv800E6-EGFP protein, "in silico" results could be utilised for ad hoc design of the molecular structure.
Collapse
Affiliation(s)
- Alessio Lombardi
- Institute of Biology and Agrarian Biotechnology (IBBA), National Research Council, via Bassini 15, 20133 Milan, Italy
| | | | | | | | | |
Collapse
|
10
|
Brar HK, Bhattacharyya MK. Expression of a single-chain variable-fragment antibody against a Fusarium virguliforme toxin peptide enhances tolerance to sudden death syndrome in transgenic soybean plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:817-24. [PMID: 22397408 DOI: 10.1094/mpmi-12-11-0317] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Plants do not produce antibodies. However, plants can correctly assemble functional antibody molecules encoded by mammalian antibody genes. Many plant diseases are caused by pathogen toxins. One such disease is the soybean sudden death syndrome (SDS). SDS is a serious disease caused by the fungal pathogen Fusarium virguliforme. The pathogen, however, has never been isolated from diseased foliar tissues. Thus, one or more toxins produced by the pathogen have been considered to cause foliar SDS. One of these possible toxins, FvTox1, was recently identified. We investigated whether expression of anti-FvTox1 single-chain variable-fragment (scFv) antibody in transgenic soybean can confer resistance to foliar SDS. We have created two scFv antibody genes, Anti-FvTox1-1 and Anti-FvTox1-2, encoding anti-FvTox1 scFv antibodies from RNAs of a hybridoma cell line that expresses mouse monoclonal anti-FvTox1 7E8 antibody. Both anti-FvTox1 scFv antibodies interacted with an antigenic site of FvTox1 that binds to mouse monoclonal anti-FvTox1 7E8 antibody. Binding of FvTox1 by the anti-FvTox1 scFv antibodies, expressed in either Escherichia coli or transgenic soybean roots, was initially verified on nitrocellulose membranes. Expression of anti-FvTox1-1 in stable transgenic soybean plants resulted in enhanced foliar SDS resistance compared with that in nontransgenic control plants. Our results suggest that i) FvTox1 is an important pathogenicity factor for foliar SDS development and ii) expression of scFv antibodies against pathogen toxins could be a suitable biotechnology approach for protecting crop plants from toxin-induced diseases.
Collapse
Affiliation(s)
- Hargeet K Brar
- Department of Agronomy and Interdepartmental Genetics Graduate Major Program, Iowa State University, Ames, IA 50011-1010, USA
| | | |
Collapse
|
11
|
Fu H, Pang S, Xue P, Yang J, Liu X, Wang Y, Li T, Li H, Li X. High levels of expression of fibroblast growth factor 21 in transgenic tobacco (Nicotiana benthamiana). Appl Biochem Biotechnol 2011; 165:465-75. [PMID: 21505802 DOI: 10.1007/s12010-011-9265-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 04/11/2011] [Indexed: 11/25/2022]
Abstract
Fibroblast growth factor-21 (FGF21) is a hepatic hormone that plays a critical role in metabolism, stimulating fatty acid oxidation in the liver and glucose uptake in adipose tissue. In this study, we produced tobacco plants expressing human recombinant FGF21 (hFGF21) via Agrobacterium-mediated transformation using a potato virus X (PVX)-based vector (pgR107). The vector contained the sequence encoding the human FGF21 gene fused with green florescence protein and a histidine tag. The recombinant plasmid was introduced into leaf cells of Nicotiana benthamiana (a wild Australian tobacco) via Agrobacterium-mediated agroinfiltration. As determined by fluorescence and Western blot of leaf extracts, the hFGF21 gene was correctly translated in tobacco plants. Seven days after agroinfection, the recombinant hFGF21 had accumulated to levels as high as 450 μg g(-1) fresh weight in leaves of agroinfected plants. The recombinant hFGF21 was purified from plant tissues by Ni-NTA affinity chromatography, and the purified hFGF21 stimulated glucose uptake in 3T3/L1 cells. This indicated that the recombinant hFGF21 expressed via the PVX viral vector in N. benthamiana was biologically active.
Collapse
Affiliation(s)
- Hongqi Fu
- Ministry of Education Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, Jilin 130118, China
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Highly efficient production of anti-HER2 scFv antibody variant for targeting breast cancer cells. Appl Microbiol Biotechnol 2011; 91:613-21. [DOI: 10.1007/s00253-011-3306-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 04/01/2011] [Accepted: 04/02/2011] [Indexed: 10/18/2022]
|
13
|
Komarova TV, Kosorukov VS, Frolova OY, Petrunia IV, Skrypnik KA, Gleba YY, Dorokhov YL. Plant-made trastuzumab (herceptin) inhibits HER2/Neu+ cell proliferation and retards tumor growth. PLoS One 2011; 6:e17541. [PMID: 21390232 PMCID: PMC3048398 DOI: 10.1371/journal.pone.0017541] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2010] [Accepted: 02/07/2011] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Plant biotechnology provides a valuable contribution to global health, in part because it can decrease the cost of pharmaceutical products. Breast cancer can now be successfully treated by a humanized monoclonal antibody (mAb), trastuzumab (Herceptin). A course of treatment, however, is expensive and requires repeated administrations of the mAb. Here we used an Agrobacterium-mediated transient expression system to produce trastuzumab in plant cells. METHODOLOGY/PRINCIPAL FINDINGS We describe the cloning and expression of gene constructs in Nicotiana benthamiana plants using intron-optimized Tobacco mosaic virus- and Potato virus X-based vectors encoding, respectively, the heavy and light chains of trastuzumab. Full-size antibodies extracted and purified from plant tissues were tested for functionality and specificity by (i) binding to HER2/neu on the surface of a human mammary gland adenocarcinoma cell line, SK-BR-3, in fluorescence-activated cell sorting assay and (ii) testing the in vitro and in vivo inhibition of HER-2-expressing cancer cell proliferation. We show that plant-made trastuzumab (PMT) bound to the Her2/neu oncoprotein of SK-BR-3 cells and efficiently inhibited SK-BR-3 cell proliferation. Furthermore, mouse intraperitoneal PMT administration retarded the growth of xenografted tumors derived from human ovarian cancer SKOV3 Her2+ cells. CONCLUSIONS/SIGNIFICANCE We conclude that PMT is active in suppression of cell proliferation and tumor growth.
Collapse
Affiliation(s)
- Tatiana V. Komarova
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Vyacheslav S. Kosorukov
- N.N. Blokhin National Cancer Research Center, Russian Academy of Medical Sciences, Moscow, Russia
| | - Olga Y. Frolova
- N.I. Vavilov Institute of General Genetics, Russian Academy of Science, Moscow, Russia
| | - Igor V. Petrunia
- N.I. Vavilov Institute of General Genetics, Russian Academy of Science, Moscow, Russia
| | - Ksenia A. Skrypnik
- N.N. Blokhin National Cancer Research Center, Russian Academy of Medical Sciences, Moscow, Russia
| | - Yuri Y. Gleba
- Nomad Bioscience GmbH, Biozentrum Halle, Halle (Saale), Germany
| | - Yuri L. Dorokhov
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
- N.I. Vavilov Institute of General Genetics, Russian Academy of Science, Moscow, Russia
| |
Collapse
|
14
|
Uil TG, de Vrij J, Vellinga J, Rabelink MJWE, Cramer SJ, Chan OYA, Pugnali M, Magnusson M, Lindholm L, Boulanger P, Hoeben RC. A lentiviral vector-based adenovirus fiber-pseudotyping approach for expedited functional assessment of candidate retargeted fibers. J Gene Med 2010; 11:990-1004. [PMID: 19757488 DOI: 10.1002/jgm.1395] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Many studies aimed at retargeting adenovirus (Ad) rationally focus on genetic modification of fiber, which is the primary receptor-binding protein of Ad. Retargeted fibers ultimately require functional validation in the viral context. METHODS Lentiviral vectors (LV) were used to express fiber variants in cells. Infections with a fiber gene-deleted Ad vector yielded fiber-pseudotyped viruses. An enzyme-linked immunosorbent assay and slot blot-based assays probed target binding-ability of retargeted fibers. Differential treatments with an alkylating agent prior to western blot analysis allowed for examination of intra- and extracellular redox states of fibers. RESULTS In the present study, LV-based fiber-pseudotyping of Ad is presented as an accelerated means to test new fibers. LV-mediated gene transfer yielded stable and uniform populations of fiber variant-expressing cells. These populations were found to effectively support fiber-pseudotyping of Ad. As a secondary objective of the study, we functionally assessed a chimeric fiber harboring a tumor antigen-directed single-chain antibody fragment (scFv). This fiber was shown to trimerize and achieve a degree of binding to its antigenic target. However, its capsid incorporation ability was impaired and, moreover, it was unable to confer a detectable level of target binding upon Ad. Importantly, subsequent analyses of this fiber revealed the improper folding of its scFv constituent. CONCLUSIONS LV-based fiber-pseudotyping was established as a convenient method for testing modified fibers for functionality within Ad particles. Furthermore, a new chimeric fiber was found to be inadequate for Ad retargeting. The folding difficulties encountered for this particular fiber might be generally inherent to the use (i.e. for genetic Ad capsid incorporation) of complex, disulfide bridge-containing natural ligands.
Collapse
Affiliation(s)
- Taco G Uil
- Leiden University Medical Center, Department of Molecular Cell Biology, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Tiwari S, Verma PC, Singh PK, Tuli R. Plants as bioreactors for the production of vaccine antigens. Biotechnol Adv 2009; 27:449-67. [PMID: 19356740 PMCID: PMC7126855 DOI: 10.1016/j.biotechadv.2009.03.006] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 03/27/2009] [Accepted: 03/31/2009] [Indexed: 12/12/2022]
Abstract
Plants have been identified as promising expression systems for commercial production of vaccine antigens. In phase I clinical trials several plant-derived vaccine antigens have been found to be safe and induce sufficiently high immune response. Thus, transgenic plants, including edible plant parts are suggested as excellent alternatives for the production of vaccines and economic scale-up through cultivation. Improved understanding of plant molecular biology and consequent refinement in the genetic engineering techniques have led to designing approaches for high level expression of vaccine antigens in plants. During the last decade, several efficient plant-based expression systems have been examined and more than 100 recombinant proteins including plant-derived vaccine antigens have been expressed in different plant tissues. Estimates suggest that it may become possible to obtain antigen sufficient for vaccinating millions of individuals from one acre crop by expressing the antigen in seeds of an edible legume, like peanut or soybean. In the near future, a plethora of protein products, developed through ‘naturalized bioreactors’ may reach market. Efforts for further improvements in these technologies need to be directed mainly towards validation and applicability of plant-based standardized mucosal and edible vaccines, regulatory pharmacology, formulations and the development of commercially viable GLP protocols. This article reviews the current status of developments in the area of use of plants for the development of vaccine antigens.
Collapse
Affiliation(s)
| | | | | | - Rakesh Tuli
- Corresponding author. National Botanical Research Institute, Council of Scientific and Industrial Research, Rana Pratap Marg, Lucknow-226001 (U.P.) India. Tel.: +91 522 2205848; fax: +91 522 2205839.
| |
Collapse
|
16
|
Arcangeli C, Cantale C, Galeffi P, Gianese G, Paparcone R, Rosato V. Understanding structural/functional properties of immunoconjugates for cancer therapy by computational approaches. J Biomol Struct Dyn 2008; 26:35-48. [PMID: 18533724 DOI: 10.1080/07391102.2008.10507221] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Monoclonal antibodies coupled to highly toxic molecules (immunoconjugates) are currently being developed for cancer therapy. We have used an in silico procedure for evaluating some physicochemical properties of two tumor-targeting anti-HER2 immunoconjugates: (a) the single-chain antibody scFv(FRP5) linked to a bacterial toxin, that has been recently progressed to phase I clinical trial in human cancer; (b) the putative molecule formed by the intrinsically stable scFv(800E6), which has been proposed as toxin carrier to cancer cells in human therapy, joined to the same toxin of (a). Structural models of the immunoconjugates have been built by homology modeling and assessed by molecular dynamics simulations. The trajectories have been analyzed to extract some biochemical properties and to assess the potential effects of the toxin on the structure and dynamics of the anti-HER2 antibodies. The results of the computational approach indicate that the antibodies maintain their correct folding even in presence of the toxin, whereas a certain stiffness in correspondence of some structural regions is observed. Furthermore, the toxin does not seem to affect the antibody solubility, whereas it enhances the structural stability. The proposed computational approach represent a promising tool for analyzing some physicochemical properties of immunoconjugates and for predicting the effects of the linked toxin on structure, dynamics, and functionality of the antibodies.
Collapse
Affiliation(s)
- C Arcangeli
- Computing and Modeling Unit, ENEA Casaccia Research Center, Via Anguillarese 301, 00123 S.Maria di Galeria, Italy.
| | | | | | | | | | | |
Collapse
|
17
|
David KM, Couch D, Braun N, Brown S, Grosclaude J, Perrot-Rechenmann C. The auxin-binding protein 1 is essential for the control of cell cycle. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 50:197-206. [PMID: 17376160 DOI: 10.1111/j.1365-313x.2007.03038.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The phytohormone auxin has been known for >50 years to be required for entry into the cell cycle. Despite the critical effects exerted by auxin on the control of cell division, the molecular mechanism by which auxin controls this pathway is poorly understood, and how auxin is perceived upstream of any change in the cell cycle is unknown. Auxin Binding Protein 1 (ABP1) is considered to be a candidate auxin receptor, triggering early modification of ion fluxes across the plasma membrane in response to auxin. ABP1 has also been proposed to mediate auxin-dependent cell expansion, and is essential for early embryonic development. We investigated whether ABP1 has a role in the cell cycle. Functional inactivation of ABP1 in the model plant cell system BY2 was achieved through cellular immunization via the conditional expression of a single-chain fragment variable (scFv). This scFv was derived from a well characterized anti-ABP1 monoclonal antibody previously shown to block the activity of the protein. We demonstrate that functional inactivation of ABP1 results in cell-cycle arrest, and provide evidence that ABP1 plays a critical role in regulation of the cell cycle by acting at both the G1/S and G2/M checkpoints. We conclude that ABP1 is essential for the auxin control of cell division and is likely to constitute the first step of the auxin-signalling pathway mediating auxin effects on the cell cycle.
Collapse
Affiliation(s)
- Karine M David
- Institut des Sciences du Végétal, CNRS, 91198 Gif sur Yvette, France
| | | | | | | | | | | |
Collapse
|
18
|
Sheludko YV, Sindarovska YR, Gerasymenko IM, Bannikova MA, Kuchuk NV. Comparison of several Nicotiana species as hosts for high-scale Agrobacterium-mediated transient expression. Biotechnol Bioeng 2007; 96:608-14. [PMID: 16983697 DOI: 10.1002/bit.21075] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Agrobacterium-mediated transient expression may be regarded as a promising method for inexpensive large-scale production of recombinant proteins. We optimized the protocol of transient expression in Nicotiana benthamiana and compared six Australian species of Nicotiana as hosts for transient expression. The transient expression of GFP under 35S CaMV promoter was observed in all species tested, although the GFP content in leaves of N. benthamiana, N. exigua, and N. excelsior was significantly higher (3.8, 3.7, and 2.0% TSP, respectively). Usage of viral-based expression system resulted in considerable increase of GFP accumulation in N. excelsior and N. benthamiana (63.5 and 16.2% TSP, respectively). We displayed that N. excelsior has the best characteristics in regard to biomass yield as well as GFP accumulation level for both types of the expression cassettes tested.
Collapse
Affiliation(s)
- Y V Sheludko
- Institute of Cell Biology and Genetic Engineering, Zabolotnogo Str. 148, Kyiv 03143, Ukraine.
| | | | | | | | | |
Collapse
|
19
|
Semenyuk EG, Stremovskiy OA, Edelweiss EF, Shirshikova OV, Balandin TG, Buryanov YI, Deyev SM. Expression of single-chain antibody-barstar fusion in plants. Biochimie 2007; 89:31-8. [PMID: 16938381 DOI: 10.1016/j.biochi.2006.07.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2006] [Accepted: 07/05/2006] [Indexed: 01/21/2023]
Abstract
We successfully cloned and expressed a single-chain antibody (425scFv), that is directed to human epidermal growth factor receptor HER1 (EGFR) in transgenic tobacco plants as a fusion with bacterial barstar gene (425scFv-barstar). Plant-produced recombinant 425scFv-barstar was recovered using barstar-barnase system. Based on barstar-barnase affinity, during purification of the plant-produced 425scFv-barstar, we generated bispecific scFv-antibody heterodimers from individual single-chain fragments initially produced in different host systems with binding activity to both HER1 and HER2/neu tumor antigens. We demonstrated by flow cytometry and indirect immunofluorescent microscopy that both the components of heterodimer retain its specific cell-binding activity.
Collapse
Affiliation(s)
- Ekaterina G Semenyuk
- Branch of Shemiakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 6 Nauki Avenue, Pushchino, Moscow region 142290, Russia
| | | | | | | | | | | | | |
Collapse
|
20
|
Galeffi P, Lombardi A, Pietraforte I, Novelli F, Di Donato M, Sperandei M, Tornambé A, Fraioli R, Martayan A, Natali PG, Benevolo M, Mottolese M, Ylera F, Cantale C, Giacomini P. Functional expression of a single-chain antibody to ErbB-2 in plants and cell-free systems. J Transl Med 2006; 4:39. [PMID: 17010186 PMCID: PMC1592514 DOI: 10.1186/1479-5876-4-39] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Accepted: 09/29/2006] [Indexed: 12/03/2022] Open
Abstract
Background Aberrant signaling by ErbB-2 (HER 2, Neu), a member of the human Epidermal Growth Factor (EGF) receptor family, is associated with an aggressive clinical behaviour of carcinomas, particularly breast tumors. Antibodies targeting the ErbB-2 pathway are a preferred therapeutic option for patients with advanced breast cancer, but a worldwide deficit in the manufacturing capacities of mammalian cell bioreactors is foreseen. Methods Herein, we describe a multi-platform approach for the production of recombinant Single chain Fragments of antibody variable regions (ScFvs) to ErbB-2 that involves their functional expression in (a) bacteria, (b) transient as well as stable transgenic tobacco plants, and (c) a newly developed cell-free transcription-translation system. Results An ScFv (ScFv800E6) was selected by cloning immunoglobulin sequences from murine hybridomas, and was expressed and fully functional in all the expression platforms, thereby representing the first ScFv to ErbB-2 produced in hosts other than bacteria and yeast. ScFv800E6 was optimized with respect to redox synthesis conditions. Different tags were introduced flanking the ScFv800E6 backbone, with and without spacer arms, including a novel Strep II tag that outperforms conventional streptavidin-based detection systems. ScFv800E6 was resistant to standard chemical radiolabeling procedures (i.e. Chloramine T), displayed a binding ability extremely similar to that of the parental monovalent Fab' fragment, as well as a flow cytometry performance and an equilibrium binding affinity (Ka approximately 2 × 108 M-1) only slightly lower than those of the parental bivalent antibody, suggesting that its binding site is conserved as compared to that of the parental antibody molecule. ScFv800E6 was found to be compatible with routine reagents for immunohistochemical staining. Conclusion ScFv800E6 is a useful reagent for in vitro biochemical and immunodiagnostic applications in oncology, and a candidate for future in vivo studies.
Collapse
Affiliation(s)
- Patrizia Galeffi
- ENEA BIOTEC-GEN, CR Casaccia Via Anguillarese 301, 00060 Rome, Italy
| | - Alessio Lombardi
- ENEA BIOTEC-GEN, CR Casaccia Via Anguillarese 301, 00060 Rome, Italy
| | - Immacolata Pietraforte
- ENEA BIOTEC-GEN, CR Casaccia Via Anguillarese 301, 00060 Rome, Italy
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Flavia Novelli
- ENEA BIOTEC-GEN, CR Casaccia Via Anguillarese 301, 00060 Rome, Italy
| | - Monica Di Donato
- ENEA BIOTEC-GEN, CR Casaccia Via Anguillarese 301, 00060 Rome, Italy
| | - Maria Sperandei
- ENEA BIOTEC-GEN, CR Casaccia Via Anguillarese 301, 00060 Rome, Italy
| | - Andrea Tornambé
- ENEA BIOTEC-GEN, CR Casaccia Via Anguillarese 301, 00060 Rome, Italy
| | - Rocco Fraioli
- Laboratory of Immunology, Regina Elena Cancer Institute CRS, Via delle Messi d'Oro 156, 00158 Rome, Italy
| | - Aline Martayan
- Laboratory of Immunology, Regina Elena Cancer Institute CRS, Via delle Messi d'Oro 156, 00158 Rome, Italy
| | - Pier Giorgio Natali
- Laboratory of Immunology, Regina Elena Cancer Institute CRS, Via delle Messi d'Oro 156, 00158 Rome, Italy
| | - Maria Benevolo
- Laboratory of Pathology, Regina Elena Cancer Institute, Istituti Fisioterapici Ospitalieri, Via E. Chianesi 53, 00144 Rome, Italy
| | - Marcella Mottolese
- Laboratory of Pathology, Regina Elena Cancer Institute, Istituti Fisioterapici Ospitalieri, Via E. Chianesi 53, 00144 Rome, Italy
| | - Francisco Ylera
- Roche Diagnostics GmbH, Nonnenwald 2, D-82372 Penzberg, Germany
| | - Cristina Cantale
- ENEA BIOTEC-GEN, CR Casaccia Via Anguillarese 301, 00060 Rome, Italy
| | - Patrizio Giacomini
- Laboratory of Immunology, Regina Elena Cancer Institute CRS, Via delle Messi d'Oro 156, 00158 Rome, Italy
| |
Collapse
|
21
|
Abstract
In recent years, with the development of genetics molecular biology and plant biotechnology, the vaccination (e.g. genetic engineering subunit vaccine, living vector vaccine, nucleic acid vaccine) programs are taking on a prosperous evolvement. In particular, the technology of the use of transgenic plants to produce human or animal therapeutic vaccines receives increasing attention. Expressing vaccine candidates in vegetables and fruits open up a new avenue for producing oral/edible vaccines. Transgenic plant vaccine disquisitions exhibit a tempting latent exploiting foreground. There are a lot of advantages for transgenic plant vaccines, such as low cost, easiness of storage, and convenient immune-inoculation. Some productions converged in edible tissues, so they can be consumed directly without isolation and purification. Up to now, many transgenic plant vaccine productions have been investigated and developed. In this review, recent advances on plant-derived recombinant protein expression systems, infectious targets, and delivery systems are presented. Some issues of high concern such as biosafety and public health are also discussed. Special attention is given to the prospects and limitations on transgenic plant vaccines.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Bioreactors
- Carica/immunology
- Carica/metabolism
- Edible Grain/immunology
- Edible Grain/metabolism
- Eukaryota/immunology
- Eukaryota/metabolism
- Fruit/immunology
- Fruit/metabolism
- Genetic Vectors
- Humans
- Musa/immunology
- Musa/metabolism
- Plant Viruses/immunology
- Plants, Genetically Modified/immunology
- Plants, Genetically Modified/metabolism
- Recombinant Proteins/biosynthesis
- Vaccines, Edible/administration & dosage
- Vaccines, Edible/biosynthesis
- Vaccines, Edible/genetics
- Vaccines, Edible/immunology
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/biosynthesis
- Vaccines, Subunit/genetics
- Vaccines, Subunit/immunology
- Vegetables/immunology
- Vegetables/metabolism
Collapse
Affiliation(s)
- Mei Han
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
| | | | | | | |
Collapse
|
22
|
Lombardi A, Sperandei M, Cantale C, Giacomini P, Galeffi P. Functional expression of a single-chain antibody specific for the HER2 human oncogene in a bacterial reducing environment. Protein Expr Purif 2005; 44:10-5. [PMID: 16125411 DOI: 10.1016/j.pep.2005.05.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2005] [Revised: 05/16/2005] [Accepted: 05/17/2005] [Indexed: 11/15/2022]
Abstract
Recombinant antibody fragments represent useful tools for cancer diagnosis and therapy. Aberrant expression of the HER2 receptor is implicated in metastatic breast and ovary cancers, two malignancies with a high prevalence in young women. In this study, we focussed on a single-chain fragment of variable antibody regions specific for HER2 (scFv800E6) that can be expressed in a functional form in the cytoplasm of Escherichia coli. ScFv800E6 was extracted from bacterial cultures following induction at different temperatures and purified. The yield of both soluble and insoluble forms was measured. We found that scFv800E6 was functional when expressed in the soluble fraction in the bacteria cytosol. In addition, scFv800E6 extracted from inclusion bodies was easily refolded and largely recovered its functionality. Thus, scFv800E6 is intrinsically capable of efficient and functional folding in a reducing environment and represents one of the few described antibody fragments with a framework well adapted for cytoplasmic expression.
Collapse
Affiliation(s)
- Alessio Lombardi
- ENEA, BIOTEC-GEN Unit, CR Casaccia, Via Anguillarese 301, 00060 Rome, Italy
| | | | | | | | | |
Collapse
|