1
|
Shakiba Y, Vorobyev PO, Mahmoud M, Hamad A, Kochetkov DV, Yusubalieva GM, Baklaushev VP, Chumakov PM, Lipatova AV. Recombinant Strains of Oncolytic Vaccinia Virus for Cancer Immunotherapy. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:823-841. [PMID: 37748878 DOI: 10.1134/s000629792306010x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/06/2023] [Accepted: 04/24/2023] [Indexed: 09/27/2023]
Abstract
Cancer virotherapy is an alternative therapeutic approach based on the viruses that selectively infect and kill tumor cells. Vaccinia virus (VV) is a member of the Poxviridae, a family of enveloped viruses with a large linear double-stranded DNA genome. The proven safety of the VV strains as well as considerable transgene capacity of the viral genome, make VV an excellent platform for creating recombinant oncolytic viruses for cancer therapy. Furthermore, various genetic modifications can increase tumor selectivity and therapeutic efficacy of VV by arming it with the immune-modulatory genes or proapoptotic molecules, boosting the host immune system, and increasing cross-priming recognition of the tumor cells by T-cells or NK cells. In this review, we summarized the data on bioengineering approaches to develop recombinant VV strains for enhanced cancer immunotherapy.
Collapse
Affiliation(s)
- Yasmin Shakiba
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Pavel O Vorobyev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - Marah Mahmoud
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - Azzam Hamad
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - Dmitriy V Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - Gaukhar M Yusubalieva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
- Federal Research Clinical Center for Specialized Medical Care and Medical Technologies, Federal Medical-Biological Agency (FMBA), Moscow, 115682, Russia
- Federal Center of Brain Research and Neurotechnologies of the FMBA of Russia, Moscow, 117513, Russia
| | - Vladimir P Baklaushev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
- Federal Research Clinical Center for Specialized Medical Care and Medical Technologies, Federal Medical-Biological Agency (FMBA), Moscow, 115682, Russia
- Federal Center of Brain Research and Neurotechnologies of the FMBA of Russia, Moscow, 117513, Russia
| | - Peter M Chumakov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - Anastasia V Lipatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| |
Collapse
|
2
|
Zhu H, Wang M, Du Y, Liu X, Weng X, Li C. 4-1BBL has a Possible Role in Mediating Castration-Resistant Conversion of Prostate Cancer via Up-Regulation of Androgen Receptor. J Cancer 2019; 10:2464-2471. [PMID: 31258752 PMCID: PMC6584334 DOI: 10.7150/jca.29648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 01/05/2019] [Indexed: 11/06/2022] Open
Abstract
4-1BB ligand (4-1BBL) was a transmembrane glycoprotein belonging to the tumor necrosis factor family. It was expressed on activated T lymphocytes and function as a co-stimulatory molecule via cross-linking with 4-1BB (a.k.a, CD137). In addition to its role in immune regulation, 4-1BBL transmitted signals into the cells on which it was expressed (reverse signaling). 4-1BBL represented a promising target for enhancing antitumor immune responses. Recent studies indicated that 4-1BBL also expressed in non-immune cells and possessed different functions in various types of cells. Here, we reported that 4-1BBL didn't express in normal prostate tissues and benign prostatic hyperplasia tissues, but it expressed in prostate cancer (PCa) tissues at moderate level. Expression of 4-1BBL was up-regulated during the transition from PCa to castration resistant prostate cancer (CRPC). Increasing expression of 4-1BBL not only promoted expression of androgen receptor (AR), but also augmented proliferation and invasion ability of prostate cancer cells in androgen deprivation environment. These results were further verified by xenograft tumor experiments. Meanwhile, inhibiting AR signal pathway by chemical antagonist was able to significantly reduce 4-1BBL mediated proliferation and invasion of PCa cells. These novel findings indicated that 4-1BBL might mediate prostate cancer progression to castration-resistant prostate cancer via enhancing expression and function of AR.
Collapse
Affiliation(s)
- Hengcheng Zhu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan University, Jiefang Road 238, Wuhan 430060, Hubei, PR China
| | - Min Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan University, Jiefang Road 238, Wuhan 430060, Hubei, PR China
| | - Yang Du
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan University, Jiefang Road 238, Wuhan 430060, Hubei, PR China
| | - Xiuheng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan University, Jiefang Road 238, Wuhan 430060, Hubei, PR China
| | - Xiaodong Weng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan University, Jiefang Road 238, Wuhan 430060, Hubei, PR China
| | - Chenglong Li
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan University, Jiefang Road 238, Wuhan 430060, Hubei, PR China
| |
Collapse
|
3
|
Li Q, Peng W, Wu J, Wang X, Ren Y, Li H, Peng Y, Tang X, Fu X. Autoinducer-2 of gut microbiota, a potential novel marker for human colorectal cancer, is associated with the activation of TNFSF9 signaling in macrophages. Oncoimmunology 2019; 8:e1626192. [PMID: 31646072 DOI: 10.1080/2162402x.2019.1626192] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/17/2022] Open
Abstract
Objectives: The interaction between the quorum sensing (QS) molecules of gut microbiota and the immunity of colorectal cancer (CRC) has not been investigated before. Methods: We measured the concentration of autoinducer-2 (AI-2) in samples of stool, colorectal tissue, saliva and serum of CRC patients, and compared this to AI-2 levels in colorectal adenoma (AD) and normal colon mucosa (NC). To explore the activated signaling pathways involved, we utilized AI-2 extracted from Fusobacterium nucleatum to stimulate macrophages and validated these in vitro findings in human CRC tissues. Results: The AI-2 concentration in both colorectal tissue and stool of CRC patients was significantly higher when compared to that in AD and NC (all P values < .01). The AI-2 concentration along with the progression of CRC in both tissues and stools was significantly increased (P= .045,P= .0003, respectively). After AI-2 stimulation, TNFSF9 was the most significantly increased protein in macrophage cells (P < .01). TNFSF9 expression was significantly higher in CRC tissues when compared to NCs (P< .0001), which was mainly derived from macrophages in the tumor microenvironment. Moreover, AI-2 level was positively associated with CD3 + T cell numbers (P= .0462), and negatively associated with CD4/CD8 ratio (P= .0113) within CRC tissues. Conclusions: We demonstrated for the first time that AI-2 may serve as a novel marker for screening CRC in the clinic. AI-2 was associated with tumor immunity in CRCs through tumor-associated macrophages and CD4/CD8 ratio in a TNFSF9-dependent manner.
Collapse
Affiliation(s)
- Qing Li
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Wei Peng
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Jiao Wu
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Xianfei Wang
- Department of Gastroenterology, The Second Affiliated Hospital of North Sichuan Medical College, Sichuan, China
| | - Yixing Ren
- Department of Gastrointestinal Surgery, The Affiliated Hospital of North Sichuan Medical College, Sichuan, China
| | - Huan Li
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Yan Peng
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Xiaowei Tang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Xiangsheng Fu
- Department of Gastroenterology, The Affiliated Hospital of North Sichuan Medical College, Sichuan, China
| |
Collapse
|
4
|
Cash H, Shah S, Moore E, Caruso A, Uppaluri R, Van Waes C, Allen C. mTOR and MEK1/2 inhibition differentially modulate tumor growth and the immune microenvironment in syngeneic models of oral cavity cancer. Oncotarget 2015; 6:36400-17. [PMID: 26506415 PMCID: PMC4742185 DOI: 10.18632/oncotarget.5063] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 10/09/2015] [Indexed: 12/21/2022] Open
Abstract
We investigated the effects of mTOR and MEK1/2 inhibition on tumor growth and the tumor microenvironment in immunogenic and poorly immunogenic models of murine oral cancer. In vitro, rapamycin and PD901 inhibited signaling through expected downstream targets, but only PD901 reduced viability and altered function of MOC cells. Following transplantation of MOC cells into immune-competent mice, effects on both cancer and infiltrating immune cells were characterized following rapamycin and/or PD901 treatment for 21 days. In vivo, both rapamycin and PD901 inhibition reduced primary growth of established MOC tumors on treatment. Following withdrawal of PD901, rapid rebound of tumor growth limited survival, whereas durable tumor control was observed following rapamycin treatment in immunogenic MOC1 tumors despite more robust inhibition of oncogenic signaling by PD901. Characterization of the immune microenvironment revealed diminished infiltration and activation of antigen-specific CD8+ T-cells and other immune cells following PD901 but not rapamycin in immunogenic tumors. Subsequent in vitro T-cell assays validated robust inhibition of T-cell expansion and activation following MEK inhibition compared to mTOR inhibition. CD8 cell depletion abrogated rapamycin-induced primary tumor growth inhibition in MOC1 mice. These data have critical implications in the design of combination targeted and immune therapies in oral cancer.
Collapse
Affiliation(s)
- Harrison Cash
- Tumor Biology Section, Head and Neck Surgery Branch, National Institutes of Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Sujay Shah
- Tumor Biology Section, Head and Neck Surgery Branch, National Institutes of Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Ellen Moore
- Tumor Biology Section, Head and Neck Surgery Branch, National Institutes of Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Andria Caruso
- Department of Otolaryngology-Head and Neck Surgery, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Ravindra Uppaluri
- Department of Otolaryngology-Head and Neck Surgery, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Carter Van Waes
- Tumor Biology Section, Head and Neck Surgery Branch, National Institutes of Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Clint Allen
- Tumor Biology Section, Head and Neck Surgery Branch, National Institutes of Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
5
|
MacNeill AL. On the potential of oncolytic virotherapy for the treatment of canine cancers. Oncolytic Virother 2015; 4:95-107. [PMID: 27512674 PMCID: PMC4918385 DOI: 10.2147/ov.s66358] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Over 6 million dogs are diagnosed with cancer in the USA each year. Treatment options for many of these patients are limited. It is important that the veterinary and scientific communities begin to explore novel treatment protocols for dogs with cancer. Oncolytic viral therapy is a promising treatment option that may prove to be relatively inexpensive and effective against several types of cancer. The efficacy of oncolytic virus therapies has been clearly demonstrated in murine cancer models, but the positive outcomes observed in mice are not always seen in human cancer patients. These therapies should be thoroughly evaluated in dogs with spontaneously arising cancers to provide needed information about the potential effectiveness of virus treatment for human cancers and to promote the health of our companion animals. This article provides a review of the results of oncolytic virus treatment of canine cancers.
Collapse
Affiliation(s)
- Amy L MacNeill
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
6
|
Bartkowiak T, Curran MA. 4-1BB Agonists: Multi-Potent Potentiators of Tumor Immunity. Front Oncol 2015; 5:117. [PMID: 26106583 PMCID: PMC4459101 DOI: 10.3389/fonc.2015.00117] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 05/11/2015] [Indexed: 01/12/2023] Open
Abstract
Immunotherapy is a rapidly expanding field of oncology aimed at targeting, not the tumor itself, but the immune system combating the cancerous lesion. Of the many approaches currently under study to boost anti-tumor immune responses; modulation of immune co-receptors on lymphocytes in the tumor microenvironment has thus far proven to be the most effective. Antibody blockade of the T cell co-inhibitory receptor cytotoxic T lymphocyte antigen-4 (CTLA-4) has become the first FDA approved immune checkpoint blockade; however, tumor infiltrating lymphocytes express a diverse array of additional stimulatory and inhibitory co-receptors, which can be targeted to boost tumor immunity. Among these, the co-stimulatory receptor 4-1BB (CD137/TNFSF9) possesses an unequaled capacity for both activation and pro-inflammatory polarization of anti-tumor lymphocytes. While functional studies of 4-1BB have focused on its prominent role in augmenting cytotoxic CD8 T cells, 4-1BB can also modulate the activity of CD4 T cells, B cells, natural killer cells, monocytes, macrophages, and dendritic cells. 4-1BB’s expression on both T cells and antigen presenting cells, coupled with its capacity to promote survival, expansion, and enhanced effector function of activated T cells, has made it an alluring target for tumor immunotherapy. In contrast to immune checkpoint blocking antibodies, 4-1BB agonists can both potentiate anti-tumor and anti-viral immunity, while at the same time ameliorating autoimmune disease. Despite this, 4-1BB agonists can trigger high grade liver inflammation which has slowed their clinical development. In this review, we discuss how the underlying immunobiology of 4-1BB activation suggests the potential for therapeutically synergistic combination strategies in which immune adverse events can be minimized.
Collapse
Affiliation(s)
- Todd Bartkowiak
- Department of Immunology, University of Texas MD Anderson Cancer Center , Houston, TX , USA ; The University of Texas Graduate School of Biomedical Sciences at Houston , Houston, TX , USA
| | - Michael A Curran
- Department of Immunology, University of Texas MD Anderson Cancer Center , Houston, TX , USA ; The University of Texas Graduate School of Biomedical Sciences at Houston , Houston, TX , USA
| |
Collapse
|
7
|
Zamarin D, Wolchok JD. Potentiation of immunomodulatory antibody therapy with oncolytic viruses for treatment of cancer. MOLECULAR THERAPY-ONCOLYTICS 2014; 1:14004. [PMID: 27119094 PMCID: PMC4782939 DOI: 10.1038/mto.2014.4] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 06/30/2014] [Indexed: 02/07/2023]
Abstract
Identification of the immune suppressive mechanisms active within the tumor microenvironment led to development of immunotherapeutic strategies aiming to reverse the immunosuppression and to enhance the function of tumor-infiltrating lymphocytes. Of those, cancer therapy with antibodies targeting the immune costimulatory and coinhibitory receptors has demonstrated significant promise in the recent years, with multiple antibodies entering clinical testing. The responses to these agents, however, have not been universal and have not been observed in all cancer types, calling for identification of appropriate predictive biomarkers and development of combinatorial strategies. Pre-existing immune infiltration in tumors has been demonstrated to have a strong association with response to immunotherapies, with the type I interferon (IFN) pathway emerging as a key player in tumor innate immune recognition and activation of adaptive immunity. These findings provide a rationale for evaluation of strategies targeting the type I IFN pathway as a means to enhance tumor immune recognition and infiltration, which could potentially make them susceptible to therapeutics targeting the cosignaling receptors. To this end in particular, oncolytic viruses (OVs) have been demonstrated to enhance tumor recognition by the immune system through multiple mechanisms, which include upregulation of major histocompatibility complex and costimulatory molecules on cancer cells, immunogenic cell death and antigen release, and activation of the type I IFN pathway. Evidence is now emerging that combination therapies using OVs and agents targeting immune cosignaling receptors such as 4-1BB, PD-1, and CTLA-4 may work in concert to enhance antitumor immunity and therapeutic efficacy. Our evolving understanding of the interplay between OVs and the immune system demonstrates that the virus-induced antitumor immune responses can be harnessed to drive the efficacy of the agents targeting cosignaling receptors and provides a strong rationale for integration of such therapies in clinic.
Collapse
Affiliation(s)
- Dmitriy Zamarin
- Swim Across America Laboratory, Immunology Program, Sloan-Kettering Institute for Cancer Research, New York, New York, USA; Department of Medicine, Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA; Ludwig Center for Cancer Immunotherapy at Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Weill Cornell Medical College and Graduate School of Medical Sciences of Cornell University, New York, New York, USA
| | - Jedd D Wolchok
- Swim Across America Laboratory, Immunology Program, Sloan-Kettering Institute for Cancer Research, New York, New York, USA; Department of Medicine, Melanoma and Immunotherapy Service, Memorial Sloan Kettering Cancer Center, New York, New York, USA; Ludwig Center for Cancer Immunotherapy at Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Weill Cornell Medical College and Graduate School of Medical Sciences of Cornell University, New York, New York, USA
| |
Collapse
|
8
|
|
9
|
Spencer AJ, Furze J, Honeycutt JD, Calvert A, Saurya S, Colloca S, Wyllie DH, Gilbert SC, Bregu M, Cottingham MG, Hill AVS. 4-1BBL enhances CD8+ T cell responses induced by vectored vaccines in mice but fails to improve immunogenicity in rhesus macaques. PLoS One 2014; 9:e105520. [PMID: 25140889 PMCID: PMC4139357 DOI: 10.1371/journal.pone.0105520] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/21/2014] [Indexed: 01/28/2023] Open
Abstract
T cells play a central role in the immune response to many of the world's major infectious diseases. In this study we investigated the tumour necrosis factor receptor superfamily costimulatory molecule, 4-1BBL (CD137L, TNFSF9), for its ability to increase T cell immunogenicity induced by a variety of recombinant vectored vaccines. To efficiently test this hypothesis, we assessed a number of promoters and developed a stable bi-cistronic vector expressing both the antigen and adjuvant. Co-expression of 4-1BBL, together with our model antigen TIP, was shown to increase the frequency of murine antigen-specific IFN-γ secreting CD8(+) T cells in three vector platforms examined. Enhancement of the response was not limited by co-expression with the antigen, as an increase in CD8(+) immunogenicity was also observed by co-administration of two vectors each expressing only the antigen or adjuvant. However, when this regimen was tested in non-human primates using a clinical malaria vaccine candidate, no adjuvant effect of 4-1BBL was observed limiting its potential use as a single adjuvant for translation into a clinical vaccine.
Collapse
Affiliation(s)
| | - Julie Furze
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | - Alice Calvert
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Saroj Saurya
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | - David H. Wyllie
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Sarah C. Gilbert
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Migena Bregu
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | | |
Collapse
|
10
|
Schlom J, Hodge JW, Palena C, Tsang KY, Jochems C, Greiner JW, Farsaci B, Madan RA, Heery CR, Gulley JL. Therapeutic cancer vaccines. Adv Cancer Res 2014; 121:67-124. [PMID: 24889529 PMCID: PMC6324585 DOI: 10.1016/b978-0-12-800249-0.00002-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Therapeutic cancer vaccines have the potential of being integrated in the therapy of numerous cancer types and stages. The wide spectrum of vaccine platforms and vaccine targets is reviewed along with the potential for development of vaccines to target cancer cell "stemness," the epithelial-to-mesenchymal transition (EMT) phenotype, and drug-resistant populations. Preclinical and recent clinical studies are now revealing how vaccines can optimally be used with other immune-based therapies such as checkpoint inhibitors, and so-called nonimmune-based therapeutics, radiation, hormonal therapy, and certain small molecule targeted therapies; it is now being revealed that many of these traditional therapies can lyse tumor cells in a manner as to further potentiate the host immune response, alter the phenotype of nonlysed tumor cells to render them more susceptible to T-cell lysis, and/or shift the balance of effector:regulatory cells in a manner to enhance vaccine efficacy. The importance of the tumor microenvironment, the appropriate patient population, and clinical trial endpoints is also discussed in the context of optimizing patient benefit from vaccine-mediated therapy.
Collapse
Affiliation(s)
- Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
| | - James W Hodge
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Claudia Palena
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kwong-Yok Tsang
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Caroline Jochems
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - John W Greiner
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Benedetto Farsaci
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ravi A Madan
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Christopher R Heery
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - James L Gulley
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
11
|
Goldufsky J, Sivendran S, Harcharik S, Pan M, Bernardo S, Stern RH, Friedlander P, Ruby CE, Saenger Y, Kaufman HL. Oncolytic virus therapy for cancer. Oncolytic Virother 2013; 2:31-46. [PMID: 27512656 DOI: 10.2147/ov.s38901] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The use of oncolytic viruses to treat cancer is based on the selection of tropic tumor viruses or the generation of replication selective vectors that can either directly kill infected tumor cells or increase their susceptibility to cell death and apoptosis through additional exposure to radiation or chemotherapy. In addition, viral vectors can be modified to promote more potent tumor cell death, improve the toxicity profile, and/or generate host antitumor immunity. A variety of viruses have been developed as oncolytic therapeutics, including adenovirus, vaccinia virus, herpesvirus, coxsackie A virus, Newcastle disease virus, and reovirus. The clinical development of oncolytic viral therapy has accelerated in the last few years, with several vectors entering clinical trials for a variety of cancers. In this review, current strategies to optimize the therapeutic effectiveness and safety of the major oncolytic viruses are discussed, and a summary of current clinical trials is provided. Further investigation is needed to characterize better the clinical impact of oncolytic viruses, but there are increasing data demonstrating the potential promise of this approach for the treatment of human and animal cancers.
Collapse
Affiliation(s)
- Joe Goldufsky
- Department of Immunology & Microbiology, Rush University Medical Center, Chicago IL, USA
| | - Shanthi Sivendran
- Department of Hematology/Oncology Medical Specialists, Lancaster General Health, Lancaster, PA, USA
| | - Sara Harcharik
- Department of Medical Oncology, Tisch Cancer Institute, The Mount Sinai School of Medicine, New York, NY, USA
| | - Michael Pan
- Department of Medical Oncology, Tisch Cancer Institute, The Mount Sinai School of Medicine, New York, NY, USA
| | - Sebastian Bernardo
- Department of Medical Oncology, Tisch Cancer Institute, The Mount Sinai School of Medicine, New York, NY, USA
| | - Richard H Stern
- Department of Radiology, Tisch Cancer Institute, The Mount Sinai School of Medicine, New York, NY, USA
| | - Philip Friedlander
- Department of Medical Oncology, Tisch Cancer Institute, The Mount Sinai School of Medicine, New York, NY, USA
| | - Carl E Ruby
- Department of Immunology & Microbiology, Rush University Medical Center, Chicago IL, USA; Department of Surgery, Rush University Medical Center, Chicago IL, USA
| | - Yvonne Saenger
- Department of Medical Oncology, Tisch Cancer Institute, The Mount Sinai School of Medicine, New York, NY, USA
| | - Howard L Kaufman
- Department of Immunology & Microbiology, Rush University Medical Center, Chicago IL, USA; Department of Surgery, Rush University Medical Center, Chicago IL, USA
| |
Collapse
|
12
|
Induction of antitumor immunity ex vivo using dendritic cells transduced with fowl pox vector expressing MUC1, CEA, and a triad of costimulatory molecules (rF-PANVAC). J Immunother 2013; 35:555-69. [PMID: 22892452 DOI: 10.1097/cji.0b013e31826a73de] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The fowl pox vector expressing the tumor-associated antigens, mucin-1 and carcinoembryonic antigen in the context of costimulatory molecules (rF-PANVAC) has shown promise as a tumor vaccine. However, vaccine-mediated expansion of suppressor T-cell populations may blunt clinical efficacy. We characterized the cellular immune response induced by ex vivo dendritic cells (DCs) transduced with (rF)-PANVAC. Consistent with the functional characteristics of potent antigen-presenting cells, rF-PANVAC-DCs demonstrated strong expression of mucin-1 and carcinoembryonic antigen and costimulatory molecules, CD80, CD86, and CD83; decreased levels of phosphorylated STAT3, and increased levels of Tyk2, Janus kinase 2, and STAT1. rF-PANVAC-DCs stimulated expansion of tumor antigen-specific T cells with potent cytolytic capacity. However, rF-PANVAC-transduced DCs also induced the concurrent expansion of FOXP3 expressing CD4CD25 regulatory T cells (Tregs) that inhibited T-cell activation. Moreover, Tregs expressed high levels of Th2 cytokines [interleukin (IL)-10, IL-4, IL-5, and IL-13] together with phosphorylated STAT3 and STAT6. In contrast, the vaccine-expanded Treg population expressed high levels of Th1 cytokines IL-2 and interferon-γ and the proinflammatory receptor-related orphan receptor γt (RORγt) and IL-17A suggesting that these cells may share effector functions with conventional TH17 T cells. These data suggest that Tregs expanded by rF-PANVAC-DCs, exhibit immunosuppressive properties potentially mediated by Th2 cytokines, but simultaneous expression of Th1 and Th17-associated factors suggests a high degree of plasticity.
Collapse
|
13
|
Goulding J, Tahiliani V, Salek-Ardakani S. OX40:OX40L axis: emerging targets for improving poxvirus-based CD8(+) T-cell vaccines against respiratory viruses. Immunol Rev 2012; 244:149-68. [PMID: 22017437 PMCID: PMC3422077 DOI: 10.1111/j.1600-065x.2011.01062.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The human respiratory tract is an entry point for over 200 known viruses that collectively contribute to millions of annual deaths worldwide. Consequently, the World Health Organization has designated respiratory viral infections as a priority for vaccine development. Despite enormous advances in understanding the attributes of a protective mucosal antiviral immune response, current vaccines continue to fail in effectively generating long-lived protective CD8(+) T-cell immunity. To date, the majority of licensed human vaccines afford protection against infectious pathogens through the generation of specific immunoglobulin responses. In recent years, the selective manipulation of specific costimulatory pathways, which are critical in regulating T cell-mediated immune responses, has generated increasing interest. Impressive results in animal models have shown that the tumor necrosis factor receptor (TNFR) family member OX40 (CD134) and its binding partner OX40L (CD252) are key costimulatory molecules involved in the generation of protective CD8(+) T-cell responses at mucosal surfaces, such as the lung. In this review, we highlight these new findings with a particular emphasis on their potential as immunological adjuvants to enhance poxvirus-based CD8(+) T-cell vaccines.
Collapse
Affiliation(s)
- John Goulding
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, San Diego, CA, USA
| | | | | |
Collapse
|
14
|
Combination immunotherapy with 4-1BBL and CTLA-4 blockade for the treatment of prostate cancer. Clin Dev Immunol 2012; 2012:439235. [PMID: 22312406 PMCID: PMC3270651 DOI: 10.1155/2012/439235] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 09/16/2011] [Accepted: 10/09/2011] [Indexed: 01/06/2023]
Abstract
Immune regulation has been shown to be involved in the progressive growth of some murine tumours. Interruption of immune regulatory pathways via activation of 4-1BB or cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) blockade appears to be a promising strategy for cancer immunotherapy. In this study, we examined the effectiveness of 4-1BBL-expressing tumor cell vaccine in combination with CTLA-4 blockade on rejection of murine prostate cancer RM-1. We found that the combination of both a vaccine consisting of 4-1BBL-expressing RM-1 cells and CTLA-4 blockade resulted in regression of RM-1 tumors and a significant increase in survival of the tumour cell recipients, compared to that of either treatment alone. The combined vaccination resulted in higher CTL against RM-1 cells and increased secretion of IFN-γ, TNF-α, and IL-2 in the mix-cultured supernatant. These results suggest that combining activation of 4-1BB and blockade of CTLA-4 may offer a new strategy for prostate cancer immunotherapy.
Collapse
|
15
|
Kuang Y, Weng X, Liu X, Zhu H, Chen Z, Chen H. Effects of 4-1BB signaling on the biological function of murine dendritic cells. Oncol Lett 2011; 3:477-481. [PMID: 22740935 DOI: 10.3892/ol.2011.506] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 11/14/2011] [Indexed: 11/06/2022] Open
Abstract
4-1BB signaling has profound effects on the T cell-induced cell immune response, but its biological function in dendritic cells (DCs) has remained largely uncharacterized. In this study, we investigated the function of 4-1BB in murine DCs with an agonistic mAb to 4-1BB. Interleukin (IL)-6 and IL-12 production was assessed by an enzyme-linked immunosorbent assay (ELISA). Co-stimulatory molecules (CD80 and CD86) in DCs were analyzed by flow cytometry. The results showed that 4-1BB was strongly expressed in DCs during the maturation process. Triggering 4-1BB increased the secretion of IL-6 and IL-12 and the upregulation of co-stimulatory molecules (CD80 and CD86) from DCs, indicating that agonistic mAb to 4-1BB directly improves the activation of DCs. Moreover, triggering 4-1BB induced a higher survival rate of DCs compared to that of hamster IgG isotype control, due to the upregulated expression of Bcl-2 and Bcl-xL. To further assess the role of 4-1BB on DCs stimulating T-cell proliferation, allogeneic mixed lymphocyte reactions were analyzed. The agonistic anti-4-1BB mAb induced a higher T-cell proliferation. These results suggest that 4-1BB affects the duration, DC-T interaction and immunogenicity of DCs.
Collapse
Affiliation(s)
- Youlin Kuang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, P.R. China
| | | | | | | | | | | |
Collapse
|
16
|
Weng X, Kuang Y, Liu X, Chen Z, Zhu H, Chen H, Jiang B, Shen H. Construction of a recombinant adenovirus co-expressing truncated human prostate-specific membrane antigen and mouse 4-1BBL genes and its effect on dendritic cells. Braz J Med Biol Res 2011; 44:186-92. [PMID: 21243315 DOI: 10.1590/s0100-879x2011007500002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 12/17/2010] [Indexed: 11/21/2022] Open
Abstract
Our aim was to construct a recombinant adenovirus co-expressing truncated human prostate-specific membrane antigen (tPSMA) and mouse 4-1BBL genes and to determine its effect on dendritic cells (DCs) generated from bone marrow suspensions harvested from C57BL/6 mice for which the effect of 4-1BBL on DCs is not clear, especially during DCs processing tumor-associated antigen. Replication deficient adenovirus AdMax™ Expression System was used to construct recombinant adenovirus Ad-tPSMA-internal ribosome entry site-mouse 4-1BBL (Ad-tPSMA-IRES-m4-1BBL) and Ad-enhanced green fluorescent protein. Day 7 proliferating DC aggregates generated from C57BL/6 mice were collected as immature DCs and further mature DCs were obtained by lipopolysaccharide activated immature DCs. After DCs were exposed to the recombinant adenovirus with 250 multiplicity of infection, the expression of tPSMA and m4-1BBL proteins were detected by Western blot, and the apoptosis and phenotype of DCs were analyzed by flow cytometry. Cytokines (IL-6 and IL-12) in the supernatant were detected by enzyme-linked immunosorbent assay (ELISA). Proliferation of T cells was detected by allogeneic mixed lymphocyte reactions. The tPSMA and m4-1BBL proteins were expressed correctly. The apoptosis rate of DCs transfected with Ad-tPSMA-IRES-m4-1BBL was 14.6%, lower than that of control DCs. The expression of co-stimulatory molecules [CD80 (81.6 ± 5.4%) and CD86 (80.13 ± 2.81%)] up-regulated in Ad-tPSMA-IRES-m4-1BBL-pulsed DCs, and the level of IL-6 (3960.2 ± 50.54 pg/mL) and IL-12 (249.57 ± 12.51 pg/mL) production in Ad-tPSMA-IRES-m4-1BBL-transduced DCs were significantly higher (P < 0.05) than those in control DCs. Ad-tPSMA-IRES-m4-1BBL induced higher T-cell proliferation (OD(450) = 0.614 ± 0.018), indicating that this recombinant adenovirus can effectively enhance the activity of DCs.
Collapse
Affiliation(s)
- Xiaodong Weng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan University, China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Pardee AD, Wesa AK, Storkus WJ. Integrating costimulatory agonists to optimize immune-based cancer therapies. Immunotherapy 2010; 1:249-64. [PMID: 20046961 DOI: 10.2217/1750743x.1.2.249] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
While immunotherapy for cancer has become increasingly popular, clinical benefits for such approaches remain limited. This is likely due to tumor-associated immune suppression, particularly in the advanced-disease setting. Thus, a major goal of novel immunotherapeutic design has become the coordinate reversal of existing immune dysfunction and promotion of specific tumoricidal T-cell function. Costimulatory members of the TNF-receptor family are important regulators of T-cell-mediated immunity. Notably, agonist ligation of these receptors restores potent antitumor immunity in the tumor-bearing host. Current Phase I/II evaluation of TNF-receptor agonists as single-modality therapies will illuminate their safety, mechanism(s) of action, and best use in prospective combinational immunotherapy approaches capable of yielding superior benefits to cancer patients.
Collapse
Affiliation(s)
- Angela D Pardee
- University of Pittsburgh School of Medicine, PA, Pittsburgh, USA
| | | | | |
Collapse
|
18
|
Antitumor Immune Response Induced by DNA Vaccine Encoding Human Prostate-specific Membrane Antigen and Mouse 4-1BBL. Urology 2010; 76:510.e1-6. [DOI: 10.1016/j.urology.2010.02.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 01/11/2010] [Accepted: 02/15/2010] [Indexed: 01/07/2023]
|
19
|
Youlin K, Xiaodong W, Xiuheng L, Zhiyuan C, Hengcheng Z, Hui C, Botao J. The change of immunoactivity of dendritic cells induced by mouse 4-1BBL recombinant adenovirus. Yonsei Med J 2010; 51:594-8. [PMID: 20499429 PMCID: PMC2880276 DOI: 10.3349/ymj.2010.51.4.594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
PURPOSE The purpose of this study is to construct a recombinant adenovirus vector carrying mouse 4-1BBL and observe its effects in dendritic cells. MATERIALS AND METHODS Mouse 4-1BBL cDNA was taken from the plasmid pcDNA3-m4- 1BBL and subcloned into adenovirus shuttle plasmid pAdTrack-CMV, and then transformed into competent BJ5183 with plasmid pAdEasy-1. After recombination in E.coli, Ad-4-1BBL was packaged and amplified in HEK 293 cells. The expression of 4-1BBL in Ad-4-1BBL-transfected mouse prostate cancer cell line RM-1 was detected by reverse transcription polymerase chain reaction (RT-PCR) and Western blot. After the co-culture of dendritic cells (DCs) with Ad-4-1BBL-transfected RM-1 cells, interleukin (IL)-6 and IL-12 production were assessed by enzyme-linked immunosorbent assay (ELISA) and co-stimulatary molecules (CD80 and CD86) on DCs were analyzed by flow cytometry. RESULTS The levels of IL-6 (3,960 pg/mL) and IL-12 (249 pg/mL) production in Ad-m4-1BBL-pulsed DCs were more than those in none-pulsed DCs. The differences were statistically significant (p < 0.05). The expression of co-stimulatary molecules (CD80 and CD86) was up-regulated in Ad-m4-1BBL-pulsed DCs. CONCLUSION The results indicated the recombinant mouse 4-1BBL can effectively activate DCs.
Collapse
Affiliation(s)
- Kuang Youlin
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Weng Xiaodong
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Liu Xiuheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Chen Zhiyuan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Zhu Hengcheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Chen Hui
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Jiang Botao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
20
|
Kim PS, Ahmed R. Features of responding T cells in cancer and chronic infection. Curr Opin Immunol 2010; 22:223-30. [PMID: 20207527 DOI: 10.1016/j.coi.2010.02.005] [Citation(s) in RCA: 227] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 02/10/2010] [Indexed: 01/06/2023]
Abstract
Ever since T cell exhaustion was initially characterized and thoroughly analyzed in the murine LCMV model, such a functional impairment has been validated in other chronic viral infections such as HIV, HCV, and HBV. In tumor immunology, it has always been postulated that tumor-reactive T cells could also become functionally exhausted owing to the high tumor-antigen load and accompanying inhibitory mechanisms. However, the empirical evidences for this hypothesis have not been as extensive as in chronic infection perhaps because much of the focus on T cell dysfunction in tumor immunology has been, and appropriately so, on breaking or bypassing immune tolerance and anergy to tumor/self antigens. On the basis of recent reports, it is becoming clear that T cell exhaustion also plays a crucial role in the impairment of antitumor immunity. In this review, we will comparatively evaluate the T cell responses in cancer and chronic infection, and the therapeutic strategies and interventions for both diseases.
Collapse
Affiliation(s)
- Peter S Kim
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
21
|
Kuang Y, Weng X, Liu X, Zhu H, Chen Z, Jiang B, Chen H. Anti-tumor immune response induced by dendritic cells transduced with truncated PSMA IRES 4-1BBL recombinant adenoviruses. Cancer Lett 2010; 293:254-62. [PMID: 20149524 DOI: 10.1016/j.canlet.2010.01.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 12/28/2009] [Accepted: 01/17/2010] [Indexed: 10/19/2022]
Abstract
Up-regulation of receptor-ligand pairs during interaction of a peptide-bound MHC complex on dendritic cells (DCs) with cognate TCR may amplify, sustain, and drive diversity in the ensuing T cell immune response. Members of the TNF ligand superfamily and the TNFR superfamily contribute to this costimulatory molecule signaling. In the present study, we used replication deficient adenoviruses to introduce a tumor-associated Ag (a truncated human prostate-specific membrane antigen (tPSMA)) and the T cell costimulatory molecule 4-1BBL into murine DCs, and observed the ability of these recombinant DCs to elicit tPSMA-directed T-cell responses in vitro and anti-tumor immunity to RM-1-tPSMA in a murine tumor model. Infection of DCs with Ad-tPSMA-IRES-m4-1BBL induced tPSMA-specific proliferative responses and up-regulated CD80 and CD86 s signaling molecules. The cytotoxic T lymphocytes activated by the Ad-tPSMA-IRES-m4-1BBL-transfected DCs showed significantly higher IFN-gamma production and cytotoxicity against the RM-1 cells transfected with tPSMA. Moreover, vaccination of mice with Ad-tPSMA-IRES-m4-1BBL-transfected DCs induced a potent protective and therapeutic anti-tumor immunity to RM-1-tPSMA in a tumor model. These results demonstrated that development of DCs engineered to express tPSMA and 4-1BBL by recombinant adenovirus-mediated gene transfer may offer a new strategy for prostate cancer immunotherapy.
Collapse
Affiliation(s)
- Youlin Kuang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | | | | | | | | | | | | |
Collapse
|
22
|
Kim HS, Kim-Schulze S, Kim DW, Kaufman HL. Host lymphodepletion enhances the therapeutic activity of an oncolytic vaccinia virus expressing 4-1BB ligand. Cancer Res 2009; 69:8516-25. [PMID: 19843856 DOI: 10.1158/0008-5472.can-09-2522] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Oncolytic viral vectors have shown promise as antitumor therapeutic agents but their effectiveness is complicated by induction of antiviral antibody responses and rapid host clearance of recombinant vectors. We developed a recombinant oncolytic vaccinia virus expressing the 4-1BBL T-cell costimulatory molecule (rV-4-1BBL) and showed modest tumor regression in the poorly immunogenic B16 murine melanoma model. To improve the therapeutic potential of this vector, we tested the antitumor activity of local intratumoral injection in the setting of host lymphodepletion, which has been shown to augment vaccination and adoptive T-cell therapy. In this model, rV-4-1BBL injection in the setting of lymphodepletion promoted MHC class I expression, reduced antiviral antibody titers, promoted viral persistence, and rescued effector-memory CD8(+) T cells, significantly improving the therapeutic effectiveness of the oncolytic vector. These data suggest that vaccination with rV-4-1BBL in the setting of host nonmyeloablative lymphodepletion represents a logical strategy for improving oncolytic vaccination in melanoma, and perhaps other cancers as well.
Collapse
Affiliation(s)
- Hong Sung Kim
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, New York10029 =, USA
| | | | | | | |
Collapse
|
23
|
Abstract
Tumor immunotherapy harnesses the potential of the host immune system to recognize and eradicate neoplastic tissue. The efficiency of the immune system in mediating tumor regression depends on the induction of antigen-specific T-cell responses through physiologic immune surveillance, priming by vaccination, or following adoptive transfer of T-cells. Although a variety of tumor-associated antigens have been identified and many immunotherapeutic strategies have been tested, objective clinical responses are rare. The reasons for this include the inability of current immunotherapy approaches to generate efficient T-cell responses, the presence of regulatory cells that inhibit T-cell responses, and other tumor escape mechanisms. The activation of effector T-cells depends on interactions between the T-cell receptor (TCR) and cognate antigen presented as peptides within the major histocompatibility complex (MHC) and costimulatory signals delivered by CD28, which binds to B7.1 and B7.2. More recently, several new molecular receptors and ligands have been identified that integrate into stimulatory or inhibitory activity for T-cells. These signals have been loosely associated with the costimulatory molecules but actually represent a diverse group of molecular pathways that have unique and overlapping functions. This review will focus on these pathways and emphasize their role in mediating T-cell activation for the purpose of enhancing tumor immunotherapy. As we gain a better understanding of the molecular and cellular consequences of T-cell signaling through the costimulatory pathways, a more rational approach to the activation or inhibition of T-cell responses can be developed for the treatment of cancer and other immune-mediated diseases.
Collapse
Affiliation(s)
- Robert C Ward
- The Tumor Immunology Laboratory, Division of Surgical Oncology, Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
24
|
Ye JX, Zhang YT, Zhang XG, Ren DM, Chen WC. Recombinant attenuated Salmonella harboring 4-1BB ligand gene enhances cellular immunity. Vaccine 2009; 27:1717-23. [PMID: 19187795 DOI: 10.1016/j.vaccine.2009.01.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2008] [Revised: 01/10/2009] [Accepted: 01/12/2009] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To transfect antigen presenting cells (APCs) with 4-1BB ligand DNA by attenuated Salmonella enterica serovar Typhimurium in vivo, and to observe the effects of ectogenous 4-1BBL on the immune functions of infected rats. METHODS Attenuated Salmonella typhimurium (vaccine strain) carrying plasmids pIRES2-EGFP-4-1BBL was constructed and used to infect HepG2 hepatoma cells. The expression of reporter gene, green fluorescent protein (GFP) and rat 4-1BBL in the transfected cells was detected by double-immunofluorescence staining. Rats were fed with the recombinant bacteria intragastrically on three occasions in 2 weeks, and were then sacrificed. The transcription and expression of GFP and 4-1BBL genes in splenocytes were measured by RT-PCR and flow cytometry. The phenotypes of T cells in peripheral blood and splenocytes were determined by flow cytometry. The content of IFN-gamma in the cultural supernatant of splenocytes stimulated by PHA was measured by ELISA. RESULTS The recombinant bacteria harboring 4-1BBL had the same invasive abilities as the original bacteria, and it was able to deliver exogenous genes into HepG2 cells, where the GFP and 4-1BBL were successfully expressed. There were significant upregulations of CD3(+)CD8(+) T cells (P=0.018) and CD3(+)CD25(+) T cells (P=0.019) in the peripheral blood cells as well as CD3(+)CD8(+) T cells (P=0.022), and CD3(+)CD25(+) T cells (P=0.008) in splenocytes of the infected rats. The rats had more 4-1BBL expression detected in the spleen. IFN-gamma released by PHA-stimulated splenocytes increased significantly by the recombinant bacteria as compared with controls (P=0.002). CONCLUSION Salmonella serovar Typhimurium containing 4-1BBL can transfect target genes into antigen presenting cells in vivo, and the expression of exogenous 4-1BBL enhances cellular immunity markedly.
Collapse
Affiliation(s)
- Jian-Xin Ye
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Key Laboratory of Clinical Immunology of Jiangsu Province, Suzhou 215006, China
| | | | | | | | | |
Collapse
|
25
|
Cottingham MG, Andersen RF, Spencer AJ, Saurya S, Furze J, Hill AVS, Gilbert SC. Recombination-mediated genetic engineering of a bacterial artificial chromosome clone of modified vaccinia virus Ankara (MVA). PLoS One 2008; 3:e1638. [PMID: 18286194 PMCID: PMC2242847 DOI: 10.1371/journal.pone.0001638] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Accepted: 01/25/2008] [Indexed: 12/29/2022] Open
Abstract
The production, manipulation and rescue of a bacterial artificial chromosome clone of Vaccinia virus (VAC-BAC) in order to expedite construction of expression vectors and mutagenesis of the genome has been described (Domi & Moss, 2002, PNAS99 12415–20). The genomic BAC clone was ‘rescued’ back to infectious virus using a Fowlpox virus helper to supply transcriptional machinery. We apply here a similar approach to the attenuated strain Modified Vaccinia virus Ankara (MVA), now widely used as a safe non-replicating recombinant vaccine vector in mammals, including humans. Four apparently full-length, rescuable clones were obtained, which had indistinguishable immunogenicity in mice. One clone was shotgun sequenced and found to be identical to the parent. We employed GalK recombination-mediated genetic engineering (recombineering) of MVA-BAC to delete five selected viral genes. Deletion of C12L, A44L, A46R or B7R did not significantly affect CD8+ T cell immunogenicity in BALB/c mice, but deletion of B15R enhanced specific CD8+ T cell responses to one of two endogenous viral epitopes (from the E2 and F2 proteins), in accordance with published work (Staib et al., 2005, J. Gen. Virol.86, 1997–2006). In addition, we found a higher frequency of triple-positive IFN-γ, TNF-α and IL-2 secreting E3-specific CD8+ T-cells 8 weeks after vaccination with MVA lacking B15R. Furthermore, a recombinant vaccine capable of inducing CD8+ T cells against an epitope from Plasmodium berghei was created using GalK counterselection to insert an antigen expression cassette lacking a tandem marker gene into the traditional thymidine kinase locus of MVA-BAC. MVA continues to feature prominently in clinical trials of recombinant vaccines against diseases such as HIV-AIDS, malaria and tuberculosis. Here we demonstrate in proof-of-concept experiments that MVA-BAC recombineering is a viable route to more rapid and efficient generation of new candidate mutant and recombinant vaccines based on a clinically deployable viral vector.
Collapse
Affiliation(s)
- Matthew G Cottingham
- Wellcome Trust Centre for Human Genetics and The Jenner Institute, University of Oxford, Oxford, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
26
|
Kaufman HL, Kim-Schulze S, Manson K, DeRaffele G, Mitcham J, Seo KS, Kim DW, Marshall J. Poxvirus-based vaccine therapy for patients with advanced pancreatic cancer. J Transl Med 2007; 5:60. [PMID: 18039393 PMCID: PMC2217514 DOI: 10.1186/1479-5876-5-60] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Accepted: 11/26/2007] [Indexed: 12/25/2022] Open
Abstract
Purpose An open-label Phase 1 study of recombinant prime-boost poxviruses targeting CEA and MUC-1 in patients with advanced pancreatic cancer was conducted to determine safety, tolerability and obtain preliminary data on immune response and survival. Patients and methods Ten patients with advanced pancreatic cancer were treated on a Phase I clinical trial. The vaccination regimen consisted of vaccinia virus expressing tumor antigens carcinoembryonic antigen (CEA) and mucin-1 (MUC-1) with three costimulatory molecules B7.1, ICAM-1 and LFA-3 (TRICOM) (PANVAC-V) and fowlpox virus expressing the same antigens and costimulatory molecules (PANVAC-F). Patients were primed with PANVAC-V followed by three booster vaccinations using PANVAC-F. Granulocyte-macrophage colony-stimulating factor (GM-CSF) was used as a local adjuvant after each vaccination and for 3 consecutive days thereafter. Monthly booster vaccinations for up to 12 months were provided for patients without progressive disease. Peripheral blood was collected before, during and after vaccinations for immune analysis. Results The most common treatment-related adverse events were mild injection-site reactions. Antibody responses against vaccinia virus was observed in all 10 patients and antigen-specific T cell responses were observed in 5 out of 8 evaluable patients (62.5%). Median overall survival was 6.3 months and a significant increase in overall survival was noted in patients who generated anti CEA- and/or MUC-1-specific immune responses compared with those who did not (15.1 vs 3.9 months, respectively; P = .002). Conclusion Poxvirus vaccination is safe, well tolerated, and capable of generating antigen-specific immune responses in patients with advanced pancreatic cancer.
Collapse
Affiliation(s)
- Howard L Kaufman
- The Tumor Immunology Laboratory, Division of Surgical Oncology, Columbia University, New York, NY, USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
The primary focus of our work is the initiation of an antiviral immune response. While we employ many experimental systems to address this fundamental issue, much of our work revolves around the use of vaccinia virus. Concerns over the negative effects of vaccination have prevented the return of the smallpox immunization program to the general population and underscored the importance of understanding the primary immune response to vaccinia virus. This response is comprised of a complex symphony of immune system components employing a variety of different mechanisms. In this review, we will both highlight the roles of many of these components and touch on the applications of vaccinia virus in the laboratory and the clinic.
Collapse
Affiliation(s)
- Matthew A Fischer
- Department of Microbiology and Immunology, Pennsylvania State University, Milton S. Hershey College of Medicine, Hershey, PA 17033, USA
| | | |
Collapse
|
28
|
Xiao H, Huang B, Yuan Y, Li D, Han LF, Liu Y, Gong W, Wu FH, Zhang GM, Feng ZH. Soluble PD-1 Facilitates 4-1BBL–Triggered Antitumor Immunity against Murine H22 Hepatocarcinoma In vivo. Clin Cancer Res 2007; 13:1823-30. [PMID: 17325342 DOI: 10.1158/1078-0432.ccr-06-2154] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The use of costimulatory molecules targeting distinct T-cell signaling pathways has provided a means for triggering and enhancing antitumor immunity; however, it is still not fully understood what types of costimulatory molecules are suitable for the combination in tumor therapy. Our purpose in this study is to establish an effective antitumor immune approach by using costimulatory molecule 4-1BBL in combination with soluble PD-1. EXPERIMENTAL DESIGN The murine H22 hepatocarcinoma served as an ectopic tumor model. Local gene transfer was done by injection with naked plasmid p4-1BBL and/or psPD-1. The synergistic mechanism of dual-gene therapy was elucidated by detecting the change of gene expression of immunoregulatory factors in tumor microenvironment. The effects of immunotherapy were evaluated by testing the function of tumor-specific T cells, measuring tumor weight or volume, survival of mice, and H&E staining of tissues. RESULTS 4-1BBL expressed by normal nonimmune cells effectively enhanced antitumor immune response but up-regulated PD-L1 and did not reduce IL-10 and transforming growth factor-beta (TGF-beta). sPD-1 synergized with 4-1BBL to establish efficient antitumor immune environment, including down-regulation of IL-10 and TGF-beta, further up-regulation of interleukin (IL)-2 and IFN-gamma, and higher CD8(+) T-cell infiltration. The combined treatment by 4-1BBL/sPD-1 eradicated tumors from mice with small amounts of preexistent tumor cells or tumors from approximately 60% of individuals with larger amounts of preexistent tumor cells. CONCLUSIONS Our findings in this report imply a great potential of 4-1BBL in combination with sPD-1 in tumor therapeutics with the in vivo existent tumor cells as antigens.
Collapse
Affiliation(s)
- Han Xiao
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|