1
|
Alatrash R, Herrera BB. The Adaptive Immune Response against Bunyavirales. Viruses 2024; 16:483. [PMID: 38543848 PMCID: PMC10974645 DOI: 10.3390/v16030483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 05/23/2024] Open
Abstract
The Bunyavirales order includes at least fourteen families with diverse but related viruses, which are transmitted to vertebrate hosts by arthropod or rodent vectors. These viruses are responsible for an increasing number of outbreaks worldwide and represent a threat to public health. Infection in humans can be asymptomatic, or it may present with a range of conditions from a mild, febrile illness to severe hemorrhagic syndromes and/or neurological complications. There is a need to develop safe and effective vaccines, a process requiring better understanding of the adaptive immune responses involved during infection. This review highlights the most recent findings regarding T cell and antibody responses to the five Bunyavirales families with known human pathogens (Peribunyaviridae, Phenuiviridae, Hantaviridae, Nairoviridae, and Arenaviridae). Future studies that define and characterize mechanistic correlates of protection against Bunyavirales infections or disease will help inform the development of effective vaccines.
Collapse
Affiliation(s)
- Reem Alatrash
- Rutgers Global Health Institute, Rutgers University, New Brunswick, NJ 08901, USA
- Department of Medicine, Division of Allergy, Immunology, and Infectious Diseases and Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Bobby Brooke Herrera
- Rutgers Global Health Institute, Rutgers University, New Brunswick, NJ 08901, USA
- Department of Medicine, Division of Allergy, Immunology, and Infectious Diseases and Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| |
Collapse
|
2
|
Sunil-Chandra NP, Fahlman Å, Waidyarathna S, Näslund J, Jayasundara MVML, Wesula LO, Bucht G. Evidence of orthohantavirus and leptospira infections in small mammals in an endemic area of Gampaha district in Sri Lanka. ONE HEALTH OUTLOOK 2022; 4:17. [PMID: 36514136 PMCID: PMC9749280 DOI: 10.1186/s42522-022-00073-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Orthohantaviruses and leptospira are emerging zoonotic pathogens of high public health significance. The epidemiology of orthohantavirus infections and leptospirosis is similar and presents related clinical pictures in humans. However, a paucity of data on actual reservoir hosts for orthohantaviruses and leptospira exists. Therefore, this study aimed at determining the occurrence of orthohantaviruses and leptospira in small mammals captured in an endemic region of Sri Lanka. METHODS Rodents and shrews were morphologically and/or genetically identified using morphological keys and DNA barcoding techniques targeting the cytochrome oxidase b subunit gene (Cytb). Lung tissues and sera were subsequently analyzed for the presence of orthohantavirus RNA using qRT-PCR. Sera of rats were tested for IgG antibodies against orthohantaviruses and leptospira. RESULTS Forty-three (43) small mammals representing: Rattus (R.) rattus (black rat) or R. tanezumi (Asian rat), Suncus murinus (Asian house shrew), R. norvegicus (brown rat) and Mus musculus (house mouse) were investigated. No orthohantavirus RNA was detected from the lung tissue or serum samples of these animals. Elevated levels of IgG antibodies against Puumala orthohantavirus (PUUV) and/or Seoul orthohantavirus (SEOV) antigens were detected in sera of 28 (72%) out of the 39 rats analysed. Interestingly, 36 (92%) of the 39 rats also showed presence of anti leptospira-IgG antibodies in their serum, representing dual infection or dual exposure in 26/39 (66.7%) of examined rats. CONCLUSIONS This project targets important public health questions concerning the occupational risk of orthohantavirus infections and/or leptospirosis in an endemic region of Sri Lanka. Most rats (72%) in our study displayed antibodies reacting to orthohantavirus NP antigens, related to PUUV and/or SEOV. No correlation between the orthohantavirus and leptospira IgG antibody levels were noticed. Finally, a combination of both morphological and DNA barcoding approaches revealed that several species of rats may play a role in the maintenance and transmission of orthohantavirus and leptospira in Sri Lanka.
Collapse
Affiliation(s)
- N P Sunil-Chandra
- Department of Medical Microbiology, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka.
- Sri Lanka Institute of Biotechnology, Homagama, Sri Lanka.
| | - Åsa Fahlman
- Swedish Biodiversity Centre, Department of Rural and Urban Development, Faculty of Natural Resources and Agricultural Sciences, Swedish University of Agricultural Sciences, P.O. Box 7016, SE-750 07, Uppsala, Sweden
| | - Shantha Waidyarathna
- Department of Medical Microbiology, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka
| | - Jonas Näslund
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
| | - M V M L Jayasundara
- Department of Medical Microbiology, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka
| | - Lwande Olivia Wesula
- Department of Clinical Microbiology, Section for Virology, Umeå University, SE-901 85, Umeå, Sweden
| | - Göran Bucht
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
- Department of Clinical Microbiology, Section for Virology, Umeå University, SE-901 85, Umeå, Sweden
| |
Collapse
|
3
|
Jiang DB, Zhang JP, Cheng LF, Zhang GW, Li Y, Li ZC, Lu ZH, Zhang ZX, Lu YC, Zheng LH, Zhang FL, Yang K. Hantavirus Gc induces long-term immune protection via LAMP-targeting DNA vaccine strategy. Antiviral Res 2018; 150:174-182. [PMID: 29273568 DOI: 10.1016/j.antiviral.2017.12.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/14/2017] [Accepted: 12/16/2017] [Indexed: 01/22/2023]
Abstract
Hemorrhagic fever with renal syndrome (HFRS) occurs widely throughout Eurasia. Unfortunately, there is no effective treatment, and prophylaxis remains the best option against the major pathogenic agent, hantaan virus (HTNV), which is an Old World hantavirus. However, the absence of cellular immune responses and immunological memory hampers acceptance of the current inactivated HFRS vaccine. Previous studies revealed that a lysosome-associated membrane protein 1 (LAMP1)-targeting strategy involving a DNA vaccine based on the HTNV glycoprotein Gn successfully conferred long-term immunity, and indicated that further research on Gc, another HTNV antigen, was warranted. Plasmids encoding Gc and lysosome-targeted Gc, designated pVAX-Gc and pVAX-LAMP/Gc, respectively, were constructed. Proteins of interest were identified by fluorescence microscopy following cell line transfection. Five groups of 20 female BALB/c mice were subjected to the following inoculations: inactivated HTNV vaccine, pVAX-LAMP/Gc, pVAX-Gc, and, as the negative controls, pVAX-LAMP or the blank vector pVAX1. Humoral and cellular immunity were assessed by enzyme-linked immunosorbent assays (ELISAs) and 15-mer peptide enzyme-linked immunospot (ELISpot) epitope mapping assays. Repeated immunization with pVAX-LAMP/Gc enhanced adaptive immune responses, as demonstrated by the specific and neutralizing antibody titers and increased IFN-γ production. The inactivated vaccine induced a comparable humoral reaction, but the negative controls only elicited insignificant responses. Using a mouse model of HTNV challenge, the in vivo protection conferred by the inactivated vaccine and Gc-based constructs (with/without LAMP recombination) was confirmed. Evidence of pan-epitope reactions highlighted the long-term cellular response to the LAMP-targeting strategy, and histological observations indicated the safety of the LAMP-targeting vaccines. The long-term protective immune responses induced by pVAX-LAMP/Gc may be due to the advantage afforded by lysosomal targeting after exogenous antigen processing initiation and major histocompatibility complex (MHC) class II antigen presentation trafficking. MHC II-restricted antigen recognition effectively primes HTNV-specific CD4+ T-cells, leading to the promotion of significant immune responses and immunological memory. An epitope-spreading phenomenon was observed, which mirrors the previous result from the Gn study, in which the dominant IFN-γ-responsive hot-spot epitopes were shared between HLA-II and H2d. Importantly, the pan-epitope reaction to Gc indicated that Gc should be with potential for use in further hantavirus DNA vaccine investigations.
Collapse
Affiliation(s)
- Dong-Bo Jiang
- Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Jin-Peng Zhang
- Department of Immunology, Fourth Military Medical University, Xi'an, China; Brigade of Cadet, Fourth Military Medical University, Xi'an, China
| | - Lin-Feng Cheng
- Department of Microbiology, Fourth Military Medical University, Xi'an, China
| | - Guan-Wen Zhang
- Department of Immunology, Fourth Military Medical University, Xi'an, China; Brigade of Cadet, Fourth Military Medical University, Xi'an, China
| | - Yun Li
- Department of Immunology, Fourth Military Medical University, Xi'an, China; Brigade of Cadet, Fourth Military Medical University, Xi'an, China
| | - Zi-Chao Li
- Department of Immunology, Fourth Military Medical University, Xi'an, China; Brigade of Cadet, Fourth Military Medical University, Xi'an, China
| | - Zhen-Hua Lu
- Department of Immunology, Fourth Military Medical University, Xi'an, China; Brigade of Cadet, Fourth Military Medical University, Xi'an, China
| | - Zi-Xin Zhang
- Department of Immunology, Fourth Military Medical University, Xi'an, China; Brigade of Cadet, Fourth Military Medical University, Xi'an, China
| | - Yu-Chen Lu
- Department of Immunology, Fourth Military Medical University, Xi'an, China; Brigade of Cadet, Fourth Military Medical University, Xi'an, China
| | - Lian-He Zheng
- Department of Orthopedics, Tangdu Hospital, Xi'an, China.
| | - Fang-Lin Zhang
- Department of Microbiology, Fourth Military Medical University, Xi'an, China.
| | - Kun Yang
- Department of Immunology, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
4
|
Warvsten A, Björnfors M, Arvidsson M, Vaziri-Sani F, Jönsson I, Olsson GE, Ahlm C, Larsson HE, Lernmark Å, Nilsson AL. Islet autoantibodies present in association with Ljungan virus infection in bank voles (Myodes glareolus) in northern Sweden. J Med Virol 2016; 89:24-31. [PMID: 27283793 DOI: 10.1002/jmv.24597] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2016] [Indexed: 01/27/2023]
Abstract
Bank voles are known reservoirs for Puumala hantavirus and probably also for Ljungan virus (LV), a suggested candidate parechovirus in type 1 diabetes etiology and pathogenesis. The aim of this study was to determine whether wild bank voles had been exposed to LV and if exposure associated to autoantibodies against insulin (IAA), glutamic acid decarboxylase 65 (GADA), or islet autoantigen-2 (IA-2A). Serum samples from bank voles (Myodes glareolus) captured in early summer or early winter of 1997 and 1998, respectively, were analyzed in radio binding assays for antibodies against Ljungan virus (LVA) and Puumala virus (PUUVA) as well as for IAA, GADA, and IA-2A. LVA was found in 25% (189/752), IAA in 2.5% (18/723), GADA in 2.6% (15/615), and IA-2A in 2.5% (11/461) of available bank vole samples. LVA correlated with both IAA (P = 0.007) and GADA (P < 0.001), but not with IA-2A (P = 0.999). There were no correlations with PUUVA, detected in 17% of the bank voles. Compared to LVA negative bank voles, LVA positive animals had higher levels of both IAA (P = 0.002) and GADA (P < 0.001), but not of IA-2A (P = 0.205). Levels of LVA as well as IAA and GADA were higher in samples from bank voles captured in early summer. In conclusion, LVA was detected in bank voles and correlated with both IAA and GADA but not with IA-2A. These observations suggest that exposure to LV may be associated with islet autoimmunity. It remains to be determined if islet autoantibody positive bank voles may develop diabetes in the wild. J. Med. Virol. 89:24-31, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Anna Warvsten
- Department of Clinical Sciences, Skåne University Hospital SUS, Lund University/CRC, Malmö, Sweden
| | - Martin Björnfors
- Department of Clinical Sciences, Skåne University Hospital SUS, Lund University/CRC, Malmö, Sweden
| | - Michael Arvidsson
- Department of Clinical Sciences, Skåne University Hospital SUS, Lund University/CRC, Malmö, Sweden
| | - Fariba Vaziri-Sani
- Department of Clinical Sciences, Skåne University Hospital SUS, Lund University/CRC, Malmö, Sweden
| | - Ida Jönsson
- Department of Clinical Sciences, Skåne University Hospital SUS, Lund University/CRC, Malmö, Sweden
| | - Gert E Olsson
- Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Clas Ahlm
- Department of Clinical Microbiology, Infectious Diseases, Umeå University, Umeå, Sweden
| | - Helena Elding Larsson
- Department of Clinical Sciences, Skåne University Hospital SUS, Lund University/CRC, Malmö, Sweden
| | - Åke Lernmark
- Department of Clinical Sciences, Skåne University Hospital SUS, Lund University/CRC, Malmö, Sweden
| | - Anna-Lena Nilsson
- Department of Clinical Sciences, Skåne University Hospital SUS, Lund University/CRC, Malmö, Sweden. .,Department of Paediatrics, Östersund Hospital, Östersund, Sweden.
| |
Collapse
|
5
|
Pan W, Bian G, Wang K, Feng T, Dai J. Effects of Different Doses of Nucleocapsid Protein from Hantaan Virus A9 Strain on Regulation of Interferon Signaling. Viral Immunol 2015; 28:448-54. [PMID: 26196448 PMCID: PMC4599133 DOI: 10.1089/vim.2015.0004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Hantaan virus A9 strain (HTNV A9) is an etiologic agent of hemorrhagic fever with renal syndrome in China. The virulence of the pathogenic hantaviruses is determined by their ability to alter key signaling pathways of early interferon (IFN) induction within cells. The potential role of HTNV A9 structural proteins, such as nucleocapsid (N) and envelope glycoproteins (Gn and Gc), in regulating human's innate antiviral immune response has not yet been clarified. In this study, we investigated the effect of HTNV A9 N protein on the regulation of the IFN pathway. We found that A9 N protein can influence the host innate immune response by regulating the activation of IFNβ. The A9 N protein stimulates IFN response in low doses, whereas significantly inhibits IFNβ production at high doses. Furthermore, A9 N protein constitutively inhibits nuclear factor kappa B activation. A high dose of A9 N protein could inhibit either Poly IC-induced IFNβ or vesicular stomatitis virus-induced IFNβ and interferon-stimulated gene production. Our results indicate that HTNV A9 N protein helps virus establish successful infection by downregulating the IFN response and shed new light to the understanding of the interaction between the host innate immunity and virus during Hantaan virus infection.
Collapse
Affiliation(s)
- Wen Pan
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University , Suzhou City, People's Republic of China
| | - Gang Bian
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University , Suzhou City, People's Republic of China
| | - Kezhen Wang
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University , Suzhou City, People's Republic of China
| | - Tingting Feng
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University , Suzhou City, People's Republic of China
| | - Jianfeng Dai
- Jiangsu Key Laboratory of Infection and Immunity, Institute of Biology and Medical Sciences, Soochow University , Suzhou City, People's Republic of China
| |
Collapse
|
6
|
Animal Models for the Study of Rodent-Borne Hemorrhagic Fever Viruses: Arenaviruses and Hantaviruses. BIOMED RESEARCH INTERNATIONAL 2015; 2015:793257. [PMID: 26266264 PMCID: PMC4523679 DOI: 10.1155/2015/793257] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 06/14/2015] [Indexed: 11/20/2022]
Abstract
Human pathogenic hantaviruses and arenaviruses are maintained in nature by persistent infection of rodent carrier populations. Several members of these virus groups can cause significant disease in humans that is generically termed viral hemorrhagic fever (HF) and is characterized as a febrile illness with an increased propensity to cause acute inflammation. Human interaction with rodent carrier populations leads to infection. Arenaviruses are also viewed as potential biological weapons threat agents. There is an increased interest in studying these viruses in animal models to gain a deeper understating not only of viral pathogenesis, but also for the evaluation of medical countermeasures (MCM) to mitigate disease threats. In this review, we examine current knowledge regarding animal models employed in the study of these viruses. We include analysis of infection models in natural reservoirs and also discuss the impact of strain heterogeneity on the susceptibility of animals to infection. This information should provide a comprehensive reference for those interested in the study of arenaviruses and hantaviruses not only for MCM development but also in the study of viral pathogenesis and the biology of these viruses in their natural reservoirs.
Collapse
|
7
|
Induction of specific humoral and cellular immune responses in a mouse model following gene fusion of HSP70C and Hantaan virus Gn and S0.7 in an adenoviral vector. PLoS One 2014; 9:e88183. [PMID: 24505421 PMCID: PMC3913774 DOI: 10.1371/journal.pone.0088183] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 01/02/2014] [Indexed: 02/06/2023] Open
Abstract
Heat shock proteins (HSPs) display adjuvant functions when given as fusion proteins to enhance vaccination efficiency. To evaluate enhanced potency of Hantaan virus (HTNV) glycoprotein (GP) and nucleocapsid protein (NP) immunogenicity by heat shock protein 70 (HSP70), a recombinant adenovirus rAd-GnS0.7-pCAG-HSP70C expression vector was developed by genetically linking the HSP70 C-terminal gene (HSP70 359-610 aa, HSP70C) to the Gn and 0.7 kb fragment of the NP (aa1-274-S0.7). C57BL/6 mice were immunized with these recombinant adenoviral vectors. A series of immunological assays determined the immunogenicity of the recombinant adenoviral vectors. The results showed that rAd-GnS0.7-pCAG-HSP70C induced a stronger humoral and cellular immune response than other recombinant adenoviruses (rAd-GnS0.7-pCAG and rAd-GnS0.7) and the HFRS vaccine control. Animal protection experiments showed that rAd-GnS0.7-pCAG-HSP70C was effective at protecting C57BL/6 mice from HTNV infection. The results of the immunological experiments showed that HSP70C lead to enhanced vaccine potency, and suggested significant potential in the development of genetically engineered vaccines against HTNV.
Collapse
|
8
|
Lagerqvist N, Moiane B, Bucht G, Fafetine J, Paweska JT, Lundkvist A, Falk KI. Stability of a formalin-inactivated Rift Valley fever vaccine: evaluation of a vaccination campaign for cattle in Mozambique. Vaccine 2012; 30:6534-40. [PMID: 22947138 DOI: 10.1016/j.vaccine.2012.08.052] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 07/18/2012] [Accepted: 08/21/2012] [Indexed: 11/16/2022]
Abstract
In Africa and the Arabian Peninsula, outbreaks of Rift Valley fever (RVF) are characterized by abortions in gestating animals and high mortality rates among domestic ruminants. An immunization program using a formalin-inactivated vaccine was initiated in Mozambique in 2002 to control RVF in cattle. In this intervention, the vaccine must be transported for more than a week within the country before it can be administered to the animals, and it is practically impossible to maintain low storage temperatures during that time. Here, we evaluated the influence of transportation conditions on the efficacy of the vaccine. Sixty-three previously unvaccinated and RVF virus seronegative cattle were divided into four groups, which were given vaccine that had been stored for 1 week at 4°C (n=9, group A), at 25°C (n=8, group B), or alternating between 4 and 25°C (n=8, group C), or under the temperature conditions ordinarily occurring during transportation within Mozambique (n=38, group D). The antibody responses induced were monitored for 6-9 months and in some animals up to 21 months. Two immunizations (3 weeks apart) with the formalin-inactivated vaccine induced a long-lasting neutralizing antibody response that was still detectable up to 21 months later. The antibody titers in the animals did not differ significantly between the temperature-assigned vaccine groups A, B, and C, whereas they were significantly higher in group D. These results show that the formalin-inactivated RVF virus vaccine is stable, and, importantly, it is not adversely affected by the variation in temperature that ordinarily occurs during transport within Mozambique.
Collapse
Affiliation(s)
- N Lagerqvist
- Swedish Institute for Communicable Disease Control, SE-171 82 Solna, Sweden.
| | | | | | | | | | | | | |
Collapse
|
9
|
Saasa N, Yoshida H, Shimizu K, Sánchez-Hernández C, Romero-Almaraz MDL, Koma T, Sanada T, Seto T, Yoshii K, Ramos C, Yoshimatsu K, Arikawa J, Takashima I, Kariwa H. The N-terminus of the Montano virus nucleocapsid protein possesses broadly cross-reactive conformation-dependent epitopes conserved in rodent-borne hantaviruses. Virology 2012; 428:48-57. [DOI: 10.1016/j.virol.2012.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 01/19/2012] [Accepted: 03/13/2012] [Indexed: 12/01/2022]
|
10
|
Abstract
Hantaviruses are enzootic viruses that maintain persistent infections in their rodent hosts without apparent disease symptoms. The spillover of these viruses to humans can lead to one of two serious illnesses, hantavirus pulmonary syndrome and hemorrhagic fever with renal syndrome. In recent years, there has been an improved understanding of the epidemiology, pathogenesis, and natural history of these viruses following an increase in the number of outbreaks in the Americas. In this review, current concepts regarding the ecology of and disease associated with these serious human pathogens are presented. Priorities for future research suggest an integration of the ecology and evolution of these and other host-virus ecosystems through modeling and hypothesis-driven research with the risk of emergence, host switching/spillover, and disease transmission to humans.
Collapse
|
11
|
Johansson P, Yap G, Low HT, Siew CC, Kek R, Ng LC, Bucht G. Molecular characterization of two hantavirus strains from different rattus species in Singapore. Virol J 2010; 7:15. [PMID: 20096099 PMCID: PMC2823670 DOI: 10.1186/1743-422x-7-15] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 01/22/2010] [Indexed: 11/15/2022] Open
Abstract
Background Hantaviruses cause human disease in endemic regions around the world. Outbreaks of hantaviral diseases have been associated with changes in rodent population density and adaptation to human settlements leading to their proliferation in close proximity to human dwellings. In a parallel study initiated to determine the prevalence of pathogens in Singapore's wild rodent population, 1206 rodents were trapped and screened. The findings established a hantavirus seroprevalence of 34%. This paper describes the molecular characterization of hantaviruses from Rattus norvegicus and Rattus tanezumi, the predominant rodents caught in urban Singapore. Methodology Pan-hanta RT-PCR performed on samples of Rattus norvegicus and Rattus tanezumi indicated that 27 (2.24%) of the animals were positive. sequence analysis of the S and M segments established that two different hantavirus strains circulate in the rodent population of Singapore. Notably, the hantavirus strains found in Rattus norvegicus clusters with other Asian Seoul virus sequences, while the virus strains found in Rattus tanezumi had the highest sequence similarity to the Serang virus from Rattus tanezumi in Indonesia, followed by Cambodian hantavirus isolates and the Thailand virus isolated from Bandicota indica. Conclusions Sequence analysis of the S and M segments of hantavirus strains found in Rattus norvegicus (Seoul virus strain Singapore) and Rattus tanezumi (Serang virus strain Jurong TJK/06) revealed that two genetically different hantavirus strains were found in rodents of Singapore. Evidently, together with Serang, Cambodian and Thailand virus the Jurong virus forms a distinct phylogroup. Interestingly, these highly similar virus strains have been identified in different rodent hosts. Further studies are underway to analyze the public health significance of finding hantavirus strains in Singapore rodents.
Collapse
Affiliation(s)
- Patrik Johansson
- DSO National Laboratories, 20 Science Park Drive, 118230, Singapore
| | | | | | | | | | | | | |
Collapse
|
12
|
Näslund J, Lagerqvist N, Habjan M, Lundkvist Å, Evander M, Ahlm C, Weber F, Bucht G. Vaccination with virus-like particles protects mice from lethal infection of Rift Valley Fever Virus. Virology 2009; 385:409-15. [DOI: 10.1016/j.virol.2008.12.012] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 10/30/2008] [Accepted: 12/08/2008] [Indexed: 01/17/2023]
|
13
|
Maes P, Clement J, Van Ranst M. Recent approaches in hantavirus vaccine development. Expert Rev Vaccines 2009; 8:67-76. [PMID: 19093774 DOI: 10.1586/14760584.8.1.67] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Rodent-borne hantaviruses are associated with two main clinical disorders in humans: hemorrhagic fever with renal syndrome and hantavirus cardiopulmonary syndrome. Although hantavirus diseases can be life threatening and numerous research efforts are focused on the development of hantavirus prevention, no specific antiviral therapy is yet available and, at this time, no WHO-approved vaccine has gained widespread acceptance. This review will summarize the current knowledge and recent progress as well as new speculative approaches in the development of hantavirus vaccines.
Collapse
Affiliation(s)
- Piet Maes
- Clinical Virology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Minderbroedersstraat 10, B3000 Leuven, Belgium.
| | | | | |
Collapse
|
14
|
Lagerqvist N, Näslund J, Lundkvist A, Bouloy M, Ahlm C, Bucht G. Characterisation of immune responses and protective efficacy in mice after immunisation with Rift Valley Fever virus cDNA constructs. Virol J 2009; 6:6. [PMID: 19149901 PMCID: PMC2637244 DOI: 10.1186/1743-422x-6-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Accepted: 01/17/2009] [Indexed: 12/14/2022] Open
Abstract
Background Affecting both livestock and humans, Rift Valley Fever is considered as one of the most important viral zoonoses in Africa. However, no licensed vaccines or effective treatments are yet available for human use. Naked DNA vaccines are an interesting approach since the virus is highly infectious and existing attenuated Rift Valley Fever virus vaccine strains display adverse effects in animal trials. In this study, gene-gun immunisations with cDNA encoding structural proteins of the Rift Valley Fever virus were evaluated in mice. The induced immune responses were analysed for the ability to protect mice against virus challenge. Results Immunisation with cDNA encoding the nucleocapsid protein induced strong humoral and lymphocyte proliferative immune responses, and virus neutralising antibodies were acquired after vaccination with cDNA encoding the glycoproteins. Even though complete protection was not achieved by genetic immunisation, four out of eight, and five out of eight mice vaccinated with cDNA encoding the nucleocapsid protein or the glycoproteins, respectively, displayed no clinical signs of infection after challenge. In contrast, all fourteen control animals displayed clinical manifestations of Rift Valley Fever after challenge. Conclusion The appearance of Rift Valley Fever associated clinical signs were significantly decreased among the DNA vaccinated mice and further adjustment of this strategy may result in full protection against Rift Valley Fever.
Collapse
Affiliation(s)
- Nina Lagerqvist
- Swedish Defence Research Agency, Department of CBRN Defence and Security, Umeå, Sweden.
| | | | | | | | | | | |
Collapse
|
15
|
Cross-reactive and serospecific epitopes of nucleocapsid proteins of three hantaviruses: prospects for new diagnostic tools. Virus Res 2008; 137:97-105. [PMID: 18620010 DOI: 10.1016/j.virusres.2008.06.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2008] [Revised: 06/13/2008] [Accepted: 06/14/2008] [Indexed: 01/08/2023]
Abstract
The diagnosis of infectious diseases is sometimes difficult because of extensive immunological cross-reactivity between related viral antigens. On the path of constructing sero-specific antigens, we have identified residues involved in sero-specific and cross-reactive recognition of the nucleocapsid proteins (NPs) of Puumala virus (PUUV), Seoul virus (SEOV), and Sin Nombre virus (SNV) using serum samples from 17 Nephropathia epidemica patients. The mapping was performed by enzyme-linked immunosorbent assay (ELISA) and Western blot analysis on a panel of N protein derivatives and alanine-substitution mutants in the three different hantavirus backgrounds. Four regions with different serological profiles were identified encompassing the amino acids (aa) 14-17, 22-24, 26, and 35-38. One of the regions showed strong cross-reactivity and was important for the recognition of SEOV and SNV antigens, but not the PUUV antigen (aa 35-38). Two regions displayed perceivable SEOV characteristics (aa 14-17 and aa 22-24 and 26) and the combined result of the alanine replacements resulted in a synergetic effect against the PUUV antigen (aa 14-17, 22-24, 26).
Collapse
|
16
|
Näslund J, Lagerqvist N, Lundkvist A, Evander M, Ahlm C, Bucht G. Kinetics of Rift Valley Fever Virus in experimentally infected mice using quantitative real-time RT-PCR. J Virol Methods 2008; 151:277-282. [PMID: 18514921 DOI: 10.1016/j.jviromet.2008.04.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 03/31/2008] [Accepted: 04/03/2008] [Indexed: 11/29/2022]
Abstract
Rift Valley Fever (RVF) is an important viral zoonosis in Africa affecting animals and humans. Since no protective vaccines or effective treatments are available for human use, accurate and reliable diagnostic methods are essential for surveillance of the disease in order to implement adequate public health actions. To study the kinetics of the RVF Virus (RVFV) infection, a SYBR Green-based quantitative real-time RT-PCR assay was developed. By using primers targeting the S-segment of RVFV, the detection limit of this assay was estimated to 30 RNA templates. Blood and organs of experimentally infected mice were sampled at different time points and RVFV RNA was quantified. High amounts of RVFV RNA were found in blood, brain, and liver samples shortly after infection with a 1-4 days post infection window for viral RNA detection. Mice developed symptoms after the appearance of serum antibodies, indicating that the host response plays an important role in the outcome of the disease. The RVFV quantitative RT-PCR proved to be a valuable diagnostic tool during the first days of infection, before detectable antibody levels and visual symptoms of RVF were observed.
Collapse
Affiliation(s)
- Jonas Näslund
- Swedish Defence Research Agency, Department of CBRN Defence and Security, SE-901 82 Umeå, Sweden
| | | | | | | | | | | |
Collapse
|
17
|
Li J, Li KN, Gao J, Cui JH, Liu YF, Yang SJ. Heat shock protein 70 fused to or complexed with hantavirus nucleocapsid protein significantly enhances specific humoral and cellular immune responses in C57BL/6 mice. Vaccine 2008; 26:3175-87. [PMID: 18479786 DOI: 10.1016/j.vaccine.2008.02.066] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 02/08/2008] [Accepted: 02/21/2008] [Indexed: 10/22/2022]
Abstract
Heat shock proteins (HSPs) are known to act as an effective molecular adjuvant to enhance the induction of antigen peptide-specific cellular immunity, when coupled with the antigen or peptide. Hantaan virus (HTNV) nucleocapsid protein (NP) is relatively conserved among hantaviruses and highly immunogenic in both animals and humans. To analyze the influence of HSP70 on NP vaccine potency, and evaluate the possibility of developing a novel effective vaccine against hantaviruses, we constructed prokaryotic expression plasmids, and expressed three recombinant proteins, namely, HTNV NP, HSP70 and HSP70-NP fusion protein. As an alternative to fusion protein, we also generated HSP70 and HTNV NP complexes (HSP70+NP) in vitro. C57BL/6 mice were immunized with those recombinant proteins, the humoral and cellular responses elicited against NP were measured by ELISA, fluorescence flow cytometry, cytotoxicity assays, and IFN-gamma ELISPOT assay. We found that immunization of mice with HSP70-NP fusion protein, or HSP70+NP complexes elicited significantly higher NP-specific antibody titers, frequencies of IFN-gamma-producing cells and cytotoxic T lymphocyte (CTL) activities in vivo than conventional HTNV NP vaccination. Antibody isotype analysis showed that the antibody response was characterized by a higher HTNV NP-specific titer of IgG2a than IgG1 antibodies, resulting in a significant higher IgG2a/IgG1 ratio. By comparison, HSP70-NP fusion protein is significantly superior to HSP70+NP complexes in enhancement of NP antigenicity. These results indicated that HSP70, when fused to or complexed with HTNV NP, greatly enhance NP vaccine potency by preferential induction of a predominant Th1 immune response in a NP-specific, HSP70-dependent manner.
Collapse
Affiliation(s)
- Jing Li
- Department of Pathology, Xijing Hospital, 4th Military Medical University, No. 17 Changle Xi Road, Xi'an, Shaanxi 710032, China
| | | | | | | | | | | |
Collapse
|
18
|
Krautkrämer E, Zeier M. [Emerging zoonoses: Hantavirus infections]. DER NEPHROLOGE 2007; 3:8-13. [PMID: 32288846 PMCID: PMC7104139 DOI: 10.1007/s11560-007-0125-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Among the emerging viruses, hantaviruses are being focused on more and more due to their increasing number and worldwide distribution. Transmission occurs via inhalation of aerosolized infected rodent excreta. The symptoms and course of disease vary with the infecting hantavirus species. The distribution of the different hantavirus species correlates with the geographical distribution of the virus-type-specific rodent host. Hantaviruses in Europe and Asia cause hemorrhagic fever with renal syndrome (HFRS). Infection with Puumala, the prevalent virus type in Germany, results in a more moderate form of HFRS, nephropathia epidemica. Infections with virus species on the American continents lead to a clinical picture with predominantly pulmonary pathology (hantaviral pulmonary syndrome). No specific antiviral therapy or approved vaccines are available for any hantavirus species. Controlling the rodent populations and avoiding contact with rodent excrement are the only measures that can be undertaken to contain and prevent infection.
Collapse
Affiliation(s)
- E. Krautkrämer
- Nephrologie, Universitätsklinik Heidelberg, Im Neuenheimer Feld 162, 69120 Heidelberg, Deutschland
| | - M. Zeier
- Nephrologie, Universitätsklinik Heidelberg, Im Neuenheimer Feld 162, 69120 Heidelberg, Deutschland
| |
Collapse
|
19
|
Jonsson CB, Hooper J, Mertz G. Treatment of hantavirus pulmonary syndrome. Antiviral Res 2007; 78:162-9. [PMID: 18093668 DOI: 10.1016/j.antiviral.2007.10.012] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Revised: 10/10/2007] [Accepted: 10/14/2007] [Indexed: 12/22/2022]
Abstract
Viruses in the genus Hantavirus can cause one of two serious illnesses when transmitted from rodents to humans: hemorrhagic fever with renal syndrome (HFRS) or hantavirus pulmonary syndrome (HPS). Of the two diseases, HPS is more severe with an approximate 40% mortality across the Americas. The high rate of mortality could be reduced if effective therapeutics could be discovered for treatment of this illness. Herein we review approaches being explored for the discovery of therapeutics for HPS and how they could be employed in treatment and prevention of disease.
Collapse
Affiliation(s)
- Colleen B Jonsson
- Department of Biochemistry and Molecular Biology, 2000 9th Avenue South, Southern Research Institute, Birmingham, AL 35205, United States.
| | | | | |
Collapse
|