1
|
Violo T, Lambert A, Pillot A, Fanuel M, Mac-Béar J, Broussard C, Grandjean C, Camberlein E. Site-Selective Unnatural Amino Acid Incorporation at Single or Multiple Positions to Control Sugar-Protein Connectivity in Glycoconjugate Vaccine Candidates. Chemistry 2023; 29:e202203497. [PMID: 36533568 DOI: 10.1002/chem.202203497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
In cellulo site-specific unnatural amino acid incorporation based on amber stop codon reassignment is a powerful tool to modify proteins at defined positions. This technique is herein applied to the selective functionalization of the Pneumococcal surface adhesin A protein at three distinct positions. Nϵ -propargyloxycarbonyl-l-lysine residues were incorporated and their alkyne groups reacted using click-chemistry with a synthetic azido-functionalized tetrasaccharide representative of one repeat unit of the Streptococcus pneumoniae serotype 14 capsular polysaccharide. Anti-PsaA antibody response induced in mice by the trivalent glycoconjugate was determined in comparison with corresponding monovalent and randomly functionalized conjugates. Our results suggest that controlled was superior to random conjugation for preserving antigenicity. In definitive, the reported strategy offers a unique opportunity to study the impact of carbohydrate antigen-carrier protein connectivity on immunogenicity.
Collapse
Affiliation(s)
- Typhaine Violo
- Nantes Université, CNRS Unité des Sciences Biologiques et des Biotechnologies (US2B), UMR 6286, 2 chemin de la Houssinière, BP92208, 44000, Nantes, France
| | - Annie Lambert
- Nantes Université, CNRS Unité des Sciences Biologiques et des Biotechnologies (US2B), UMR 6286, 2 chemin de la Houssinière, BP92208, 44000, Nantes, France
| | - Aline Pillot
- Nantes Université, CNRS Unité des Sciences Biologiques et des Biotechnologies (US2B), UMR 6286, 2 chemin de la Houssinière, BP92208, 44000, Nantes, France
| | - Mathieu Fanuel
- INRAE, UR1268 BIA, F-44300, Nantes, France.,INRAE, PROBE Research Infrastructure BIBS facility, F-44300, Nantes, France
| | - Jessica Mac-Béar
- INRAE, UR1268 BIA, F-44300, Nantes, France.,INRAE, PROBE Research Infrastructure BIBS facility, F-44300, Nantes, France
| | - Cédric Broussard
- Protéom'IC facility, Université Paris Cité, CNRS, INSERM, Institut Cochin, F-75014, Paris, France
| | - Cyrille Grandjean
- Nantes Université, CNRS Unité des Sciences Biologiques et des Biotechnologies (US2B), UMR 6286, 2 chemin de la Houssinière, BP92208, 44000, Nantes, France
| | - Emilie Camberlein
- Nantes Université, CNRS Unité des Sciences Biologiques et des Biotechnologies (US2B), UMR 6286, 2 chemin de la Houssinière, BP92208, 44000, Nantes, France
| |
Collapse
|
2
|
Karwal P, Vats ID, Sinha N, Singhal A, Sehgal T, Kumari P. Therapeutic Applications of Peptides against Zika Virus: A Review. Curr Med Chem 2020; 27:3906-3923. [DOI: 10.2174/0929867326666190111115132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/22/2018] [Accepted: 12/28/2018] [Indexed: 01/27/2023]
Abstract
Zika Virus (ZIKV) belongs to the class of flavivirus that can be transmitted by Aedes
mosquitoes. The number of Zika virus caused cases of acute infections, neurological disorders and
congenital microcephaly are rapidly growing and therefore, in 2016, the World Health Organization
declared a global “Public Health Emergency of International Concern”. Anti-ZIKV therapeutic and
vaccine development strategies are growing worldwide in recent years, however, no specific and safe
treatment is available till date to save the human life. Currently, development of peptide therapeutics
against ZIKV has attracted rising attention on account of their high safety concern and low development
cost, in comparison to small therapeutic molecules and antibody-based anti-viral drugs. In present
review, an overview of ZIKV inhibition by peptide-based inhibitors including E-protein derived
peptides, antimicrobial peptides, frog skin peptides and probiotic peptides has been discussed. Peptides
inhibitors have also been reported to act against NS5, NS2B-NS3 protease and proteasome in
order to inhibit ZIKV infection. Recent advances in peptide-based therapeutics and vaccine have
been reviewed and their future promise against ZIKV infections has been explored.
Collapse
Affiliation(s)
- Preeti Karwal
- Department of Biochemistry, Deshbandhu College, University of Delhi, Delhi-110019, India
| | - Ishwar Dutt Vats
- Department of Chemistry, Deshbandhu College, University of Delhi, Delhi-110019, India
| | - Niharika Sinha
- Drug Development Laboratory Group, Gautam Buddha University, Noida, India
| | - Anchal Singhal
- Department of Chemistry, St. Joseph's College, Bengaluru, Karnataka, India
| | - Teena Sehgal
- Department of Chemistry, HMRITM, GGSIP University, New Delhi, India
| | - Pratibha Kumari
- Department of Chemistry, Deshbandhu College, University of Delhi, Delhi-110019, India
| |
Collapse
|
3
|
Cohen A, Troib S, Dotan S, Najmuldeen H, Yesilkaya H, Kushnir T, Shagan M, Portnoi M, Nachmani H, Benisty R, Tal M, Ellis R, Chalifa-Caspi V, Dagan R, Nebenzahl YM. Streptococcus pneumoniae Cell Wall-Localized Trigger Factor Elicits a Protective Immune Response and Contributes to Bacterial Adhesion to the Host. Sci Rep 2019; 9:4295. [PMID: 30862841 PMCID: PMC6414539 DOI: 10.1038/s41598-019-40779-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/24/2018] [Indexed: 12/16/2022] Open
Abstract
Trigger factor (TF) has a known cytoplasmic function as a chaperone. In a previous study we showed that pneumococcal TF is also cell-wall localized and this finding combined with the immunogenic characteristic of TF, has led us to determine the vaccine potential of TF and decipher its involvement in pneumococcal pathogenesis. Bioinformatic analysis revealed that TF is conserved among pneumococci and has no human homologue. Immunization of mice with recombinant (r)TF elicited a protective immune response against a pneumococcal challenge, suggesting that TF contributes to pneumococcal pathogenesis. Indeed, rTF and an anti-rTF antiserum inhibited bacterial adhesion to human lung derived epithelial cells, indicating that TF contributes to the bacterial adhesion to the host. Moreover, bacteria lacking TF demonstrated reduced adhesion, in vitro, to lung-derived epithelial cells, neural cells and glial cells. The reduced adhesion could be restored by chromosomal complementation. Furthermore, bacteria lacking TF demonstrated significantly reduced virulence in a mouse model. Taken together, the ability of rTF to elicit a protective immune response, involvement of TF in bacterial adhesion, conservation of the protein among pneumococcal strains and the lack of human homologue, all suggest that rTF can be considered as a future candidate vaccine with a much broader coverage as compared to the currently available pneumococcal vaccines.
Collapse
Affiliation(s)
- Aviad Cohen
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Shani Troib
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | - Hastyar Najmuldeen
- Department of Infection, Immunity and Inflammation to Department of Respiratory Sciences, University of Leicester, Leicester, United Kingdom.,Department of Biology, College of Science, University of Sulaimani, Sulaimani, Iraq
| | - Hasan Yesilkaya
- Department of Infection, Immunity and Inflammation to Department of Respiratory Sciences, University of Leicester, Leicester, United Kingdom
| | - Tatyana Kushnir
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Marilou Shagan
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Maxim Portnoi
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Hannie Nachmani
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Rachel Benisty
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | | | | - Vered Chalifa-Caspi
- Bioinformatics Core Facility, National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ron Dagan
- The Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yaffa Mizrachi Nebenzahl
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
4
|
Protection elicited by nasal immunization with pneumococcal surface protein A (PspA) adjuvanted with bacterium-like particles against Streptococcus pneumoniae infection in mice. Microb Pathog 2018; 123:115-119. [DOI: 10.1016/j.micpath.2018.06.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/28/2018] [Accepted: 06/25/2018] [Indexed: 11/18/2022]
|
5
|
Streptococcus pneumoniae two-component regulatory systems: The interplay of the pneumococcus with its environment. Int J Med Microbiol 2018; 308:722-737. [DOI: 10.1016/j.ijmm.2017.11.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/21/2017] [Accepted: 11/24/2017] [Indexed: 02/06/2023] Open
|
6
|
Bragazzi NL, Gianfredi V, Villarini M, Rosselli R, Nasr A, Hussein A, Martini M, Behzadifar M. Vaccines Meet Big Data: State-of-the-Art and Future Prospects. From the Classical 3Is ("Isolate-Inactivate-Inject") Vaccinology 1.0 to Vaccinology 3.0, Vaccinomics, and Beyond: A Historical Overview. Front Public Health 2018; 6:62. [PMID: 29556492 PMCID: PMC5845111 DOI: 10.3389/fpubh.2018.00062] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 02/16/2018] [Indexed: 12/20/2022] Open
Abstract
Vaccines are public health interventions aimed at preventing infections-related mortality, morbidity, and disability. While vaccines have been successfully designed for those infectious diseases preventable by preexisting neutralizing specific antibodies, for other communicable diseases, additional immunological mechanisms should be elicited to achieve a full protection. “New vaccines” are particularly urgent in the nowadays society, in which economic growth, globalization, and immigration are leading to the emergence/reemergence of old and new infectious agents at the animal–human interface. Conventional vaccinology (the so-called “vaccinology 1.0”) was officially born in 1796 thanks to the contribution of Edward Jenner. Entering the twenty-first century, vaccinology has shifted from a classical discipline in which serendipity and the Pasteurian principle of the three Is (isolate, inactivate, and inject) played a major role to a science, characterized by a rational design and plan (“vaccinology 3.0”). This shift has been possible thanks to Big Data, characterized by different dimensions, such as high volume, velocity, and variety of data. Big Data sources include new cutting-edge, high-throughput technologies, electronic registries, social media, and social networks, among others. The current mini-review aims at exploring the potential roles as well as pitfalls and challenges of Big Data in shaping the future vaccinology, moving toward a tailored and personalized vaccine design and administration.
Collapse
Affiliation(s)
- Nicola Luigi Bragazzi
- Department of Health Sciences (DISSAL), School of Public Health, University of Genoa, Genoa, Italy
| | - Vincenza Gianfredi
- Department of Experimental Medicine, Unit of Public Health, School of Specialization in Hygiene and Preventive Medicine, University of Perugia, Perugia, Italy
| | - Milena Villarini
- Unit of Public Health, Department of Pharmaceutical Science, University of Perugia, Perugia, Italy
| | | | - Ahmed Nasr
- Department of Medicine and Surgery, Pathology University Milan Bicocca, San Gerardo Hospital, Monza, Italy
| | - Amr Hussein
- Medical Faculty, University of Parma, Parma, Italy
| | - Mariano Martini
- Section of History of Medicine and Ethics, Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Masoud Behzadifar
- Health Management and Economics Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Moens L, Hermand P, Wellens T, Wuyts G, Derua R, Waelkens E, Ysebaert C, Godfroid F, Bossuyt X. Identification of SP1683 as a pneumococcal protein that is protective against nasopharyngeal colonization. Hum Vaccin Immunother 2018; 14:1234-1242. [PMID: 29400602 DOI: 10.1080/21645515.2018.1430541] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Serotype-independent protein-based pneumococcal vaccines represent attractive alternatives to capsular polysaccharide-based vaccines. The aim of this study was to identify novel immunogenic proteins from Streptococcus pneumoniae that may be used in protein-based pneumococcal vaccine. An immunoproteomics approach and a humanized severe combined immunodeficient mouse model were used to identify S. pneumoniae proteins that are immunogenic for the human immune system. Among the several proteins identified, SP1683 was selected, recombinantly produced, and infection and colonization murine models were used to evaluate the capacity of SP1683 to elicit protective responses, in comparison to known pneumococcal immunogenic proteins (PhtD and detoxified pneumolysin, dPly). Immunisation with SP1683 elicited a weaker antibody response than immunisation with PhtD and did not provide protection in the model of invasive disease. However, similar to PhtD, it was able to significantly reduce colonization in the mouse model of nasopharyngeal carriage. Treatment with anti-IL17A and anti-IL17F antibodies abolished the protection against colonization elicited by SP1683 or PhtD + dPly, which indicated that the protection afforded in this model was Th17-dependent. In conclusion, intranasal immunization with the pneumococcal protein SP1683 conferred IL17-dependent protection against nasopharyngeal carriage in mice, but systemic immunization did not protect against invasive disease. These results do not support the use of SP1683 as an isolated pneumococcal vaccine antigen. Nevertheless, SP1683 could be used as a first line of defence in formulations combining several proteins.
Collapse
Affiliation(s)
- Leen Moens
- a Laboratory of Experimental Laboratory Immunology, Department of Microbiology and Immunology , KU Leuven , Leuven , Belgium
| | | | - Tine Wellens
- a Laboratory of Experimental Laboratory Immunology, Department of Microbiology and Immunology , KU Leuven , Leuven , Belgium
| | - Greet Wuyts
- a Laboratory of Experimental Laboratory Immunology, Department of Microbiology and Immunology , KU Leuven , Leuven , Belgium
| | - Rita Derua
- c Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine , KU Leuven , Leuven , Belgium
| | - Etienne Waelkens
- c Laboratory of Protein Phosphorylation and Proteomics, Department of Cellular and Molecular Medicine , KU Leuven , Leuven , Belgium
| | | | | | - Xavier Bossuyt
- a Laboratory of Experimental Laboratory Immunology, Department of Microbiology and Immunology , KU Leuven , Leuven , Belgium.,d Laboratory Medicine, University Hospitals Leuven , Leuven , Belgium
| |
Collapse
|
8
|
Yun KW, Choi EH, Lee HJ. Genetic diversity of pneumococcal surface protein A in invasive pneumococcal isolates from Korean children, 1991-2016. PLoS One 2017; 12:e0183968. [PMID: 29131872 PMCID: PMC5683564 DOI: 10.1371/journal.pone.0183968] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 08/15/2017] [Indexed: 12/02/2022] Open
Abstract
Pneumococcal surface protein A (PspA) is an important virulence factor of pneumococci and has been investigated as a primary component of a capsular serotype-independent pneumococcal vaccine. Thus, we sought to determine the genetic diversity of PspA to explore its potential as a vaccine candidate. Among the 190 invasive pneumococcal isolates collected from Korean children between 1991 and 2016, two (1.1%) isolates were found to have no pspA by multiple polymerase chain reactions. The full length pspA genes from 185 pneumococcal isolates were sequenced. The length of pspA varied, ranging from 1,719 to 2,301 base pairs with 55.7–100% nucleotide identity. Based on the sequences of the clade-defining regions, 68.7% and 49.7% were in PspA family 2 and clade 3/family 2, respectively. PspA clade types were correlated with genotypes using multilocus sequence typing and divided into several subclades based on diversity analysis of the N-terminal α-helical regions, which showed nucleotide sequence identities of 45.7–100% and amino acid sequence identities of 23.1–100%. Putative antigenicity plots were also diverse among individual clades and subclades. The differences in antigenicity patterns were concentrated within the N-terminal 120 amino acids. In conclusion, the N-terminal α-helical domain, which is known to be the major immunogenic portion of PspA, is genetically variable and should be further evaluated for antigenic differences and cross-reactivity between various PspA types from pneumococcal isolates.
Collapse
Affiliation(s)
- Ki Wook Yun
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea.,Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Korea
| | - Eun Hwa Choi
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea.,Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Korea
| | - Hoan Jong Lee
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea.,Department of Pediatrics, Seoul National University Children's Hospital, Seoul, Korea
| |
Collapse
|
9
|
Khan N, Jan AT. Towards Identifying Protective B-Cell Epitopes: The PspA Story. Front Microbiol 2017; 8:742. [PMID: 28512452 PMCID: PMC5411445 DOI: 10.3389/fmicb.2017.00742] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 04/10/2017] [Indexed: 01/15/2023] Open
Abstract
Pneumococcal surface protein A (PspA) is one of the most abundant cell surface protein of Streptococcus pneumoniae (S. pneumoniae). PspA variants are structurally and serologically diverse and help evade complement-mediated phagocytosis of S. pneumoniae, which is essential for its survival in the host. PspA is currently been screened for employment in the generation of more effective (serotype independent) vaccine to overcome the limitations of polysaccharide based vaccines, providing serotype specific immune responses. The cross-protection eliciting regions of PspA localize to the α-helical and proline rich regions. Recent data indicate significant variation in the ability of antibodies induced against the recombinant PspA variants to recognize distinct S. pneumoniae strains. Hence, screening for the identification of the topographical repertoire of B-cell epitopes that elicit cross-protective immune response seems essential in the engineering of a superior PspA-based vaccine. Herein, we revisit epitope identification in PspA and the utility of hybridoma technology in directing the identification of protective epitope regions of PspA that can be used in vaccine research.
Collapse
Affiliation(s)
- Naeem Khan
- Glycobiology Group, Max Planck Institute of Colloids and Interfaces (MPG)Potsdam, Germany
| | - Arif T Jan
- Department of Medical Biotechnology, Yeungnam UniversityGyeongsan, South Korea
| |
Collapse
|
10
|
Rai AN, Thornton JA, Stokes J, Sunesara I, Swiatlo E, Nanduri B. Polyamine transporter in Streptococcus pneumoniae is essential for evading early innate immune responses in pneumococcal pneumonia. Sci Rep 2016; 6:26964. [PMID: 27247105 PMCID: PMC4887915 DOI: 10.1038/srep26964] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 05/06/2016] [Indexed: 01/21/2023] Open
Abstract
Streptococcus pneumoniae is the most common bacterial etiology of pneumococcal pneumonia in adults worldwide. Genomic plasticity, antibiotic resistance and extreme capsular antigenic variation complicates the design of effective therapeutic strategies. Polyamines are ubiquitous small cationic molecules necessary for full expression of pneumococcal virulence. Polyamine transport system is an attractive therapeutic target as it is highly conserved across pneumococcal serotypes. In this study, we compared an isogenic deletion strain of S. pneumoniae TIGR4 in polyamine transport operon (ΔpotABCD) with the wild type in a mouse model of pneumococcal pneumonia. Our results show that the wild type persists in mouse lung 24 h post infection while the mutant strain is cleared by host defense mechanisms. We show that intact potABCD is required for survival in the host by providing resistance to neutrophil killing. Comparative proteomics analysis of murine lungs infected with wild type and ΔpotABCD pneumococci identified expression of proteins that could confer protection to wild type strain and help establish infection. We identified ERM complex, PGLYRP1, PTPRC/CD45 and POSTN as new players in the pathogenesis of pneumococcal pneumonia. Additionally, we found that deficiency of polyamine transport leads to up regulation of the polyamine synthesis genes speE and cad in vitro.
Collapse
Affiliation(s)
- Aswathy N Rai
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| | - Justin A Thornton
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - John Stokes
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| | - Imran Sunesara
- Center of Biostatistics and Bioinformatics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Edwin Swiatlo
- Division of Infectious Diseases, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Bindu Nanduri
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| |
Collapse
|
11
|
Novel Strategy To Protect against Influenza Virus-Induced Pneumococcal Disease without Interfering with Commensal Colonization. Infect Immun 2016; 84:1693-1703. [PMID: 27001538 DOI: 10.1128/iai.01478-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/13/2016] [Indexed: 12/16/2022] Open
Abstract
Streptococcus pneumoniae commonly inhabits the nasopharynx as a member of the commensal biofilm. Infection with respiratory viruses, such as influenza A virus, induces commensal S. pneumoniae to disseminate beyond the nasopharynx and to elicit severe infections of the middle ears, lungs, and blood that are associated with high rates of morbidity and mortality. Current preventive strategies, including the polysaccharide conjugate vaccines, aim to eliminate asymptomatic carriage with vaccine-type pneumococci. However, this has resulted in serotype replacement with, so far, less fit pneumococcal strains, which has changed the nasopharyngeal flora, opening the niche for entry of other virulent pathogens (e.g., Streptococcus pyogenes, Staphylococcus aureus, and potentially Haemophilus influenzae). The long-term effects of these changes are unknown. Here, we present an attractive, alternative preventive approach where we subvert virus-induced pneumococcal disease without interfering with commensal colonization, thus specifically targeting disease-causing organisms. In that regard, pneumococcal surface protein A (PspA), a major surface protein of pneumococci, is a promising vaccine target. Intradermal (i.d.) immunization of mice with recombinant PspA in combination with LT-IIb(T13I), a novel i.d. adjuvant of the type II heat-labile enterotoxin family, elicited strong systemic PspA-specific IgG responses without inducing mucosal anti-PspA IgA responses. This response protected mice from otitis media, pneumonia, and septicemia and averted the cytokine storm associated with septic infection but had no effect on asymptomatic colonization. Our results firmly demonstrated that this immunization strategy against virally induced pneumococcal disease can be conferred without disturbing the desirable preexisting commensal colonization of the nasopharynx.
Collapse
|
12
|
Nandy A, Basak SC. A Brief Review of Computer-Assisted Approaches to Rational Design of Peptide Vaccines. Int J Mol Sci 2016; 17:E666. [PMID: 27153063 PMCID: PMC4881492 DOI: 10.3390/ijms17050666] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 04/25/2016] [Accepted: 04/27/2016] [Indexed: 11/18/2022] Open
Abstract
The growing incidences of new viral diseases and increasingly frequent viral epidemics have strained therapeutic and preventive measures; the high mutability of viral genes puts additional strains on developmental efforts. Given the high cost and time requirements for new drugs development, vaccines remain as a viable alternative, but there too traditional techniques of live-attenuated or inactivated vaccines have the danger of allergenic reactions and others. Peptide vaccines have, over the last several years, begun to be looked on as more appropriate alternatives, which are economically affordable, require less time for development and hold the promise of multi-valent dosages. The developments in bioinformatics, proteomics, immunogenomics, structural biology and other sciences have spurred the growth of vaccinomics where computer assisted approaches serve to identify suitable peptide targets for eventual development of vaccines. In this mini-review we give a brief overview of some of the recent trends in computer assisted vaccine development with emphasis on the primary selection procedures of probable peptide candidates for vaccine development.
Collapse
Affiliation(s)
- Ashesh Nandy
- Centre for Interdisciplinary Research and Education, Jodhpur Park, Kolkata 700068, India.
| | - Subhash C Basak
- Natural Resources Research Institute and Department of Chemistry & Biochemistry, University of Minnesota Duluth, Duluth, MN 55811, USA.
| |
Collapse
|
13
|
Xu Q, Casey JR, Pichichero ME. Higher levels of mucosal antibody to pneumococcal vaccine candidate proteins are associated with reduced acute otitis media caused by Streptococcus pneumoniae in young children. Mucosal Immunol 2015; 8:1110-7. [PMID: 25648056 PMCID: PMC4524797 DOI: 10.1038/mi.2015.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 12/24/2014] [Indexed: 02/04/2023]
Abstract
Mucosal immunity has a crucial role in controlling human respiratory tract infections. This study characterizes the naturally acquired mucosal antibody levels to three Streptococcus pneumoniae (Spn) protein antigens, pneumococcal histidine triad protein D (PhtD), pneumococcal choline binding protein A (PcpA), and pneumolysin (Ply), and assesses the association of the mucosal antibody levels with occurrence of acute otitis media (AOM) caused by Spn. Both nasopharyngeal (NP) immunoglobulin G (IgG) and IgA levels to all three proteins slightly decreased in children from 6 to 9 months of age and then gradually increased through 24 months of age. Spn NP colonization was associated with higher mucosal antibody levels to all three proteins. However, children with Spn AOM had 5-8-fold lower IgG and 3-6-fold lower IgA levels to the three proteins than children without AOM but asymptomatically colonized with Spn. Antigen-specific antibody levels in the middle ear fluid (MEF) were correlated with antibody levels in the NP. Children with AOM caused by Spn had lower antibody levels in both the MEF and NP than children with AOM caused by other pathogens. These results indicate that higher naturally acquired mucosal antibody levels to PhtD, PcpA and Ply are associated with reduced AOM caused by Spn.
Collapse
Affiliation(s)
- Qingfu Xu
- Rochester General Hospital Research Institue, 1425 Portland Avenue, Rochester, NY 14621
| | - Janet R. Casey
- Legacy Pediatrics, 1815 S. Clinton Avenue Suite 360, Rochester, New York 14618
| | - Michael E. Pichichero
- Rochester General Hospital Research Institue, 1425 Portland Avenue, Rochester, NY 14621
| |
Collapse
|
14
|
Diversity of Pneumolysin and Pneumococcal Histidine Triad Protein D of Streptococcus pneumoniae Isolated from Invasive Diseases in Korean Children. PLoS One 2015; 10:e0134055. [PMID: 26252211 PMCID: PMC4529296 DOI: 10.1371/journal.pone.0134055] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 07/04/2015] [Indexed: 01/07/2023] Open
Abstract
Pneumolysin (Ply) and pneumococcal histidine triad protein D (PhtD) are candidate proteins for a next-generation pneumococcal vaccine. We aimed to analyze the genetic diversity and antigenic heterogeneity of Ply and PhtD for 173 pneumococci isolated from invasive diseases in Korean children. Allele was designated based on the variation of amino acid sequence. Antigenicity was predicted by the amino acid hydrophobicity of the region. There were seven and 39 allele types for the ply and phtD genes, respectively. The nucleotide sequence identity was 97.2%-99.9% for ply and 91.4%-98.0% for phtD gene. Only minor variations in hydrophobicity were noted among the antigenicity plots of Ply and PhtD. Overall, the allele types of the ply and phtD genes were remarkably homogeneous, and the antigenic diversity of the corresponding proteins was very limited. The Ply and PhtD could be useful antigens for universal pneumococcal vaccines.
Collapse
|
15
|
Dayie NTKD, Arhin RE, Newman MJ, Dalsgaard A, Bisgaard M, Frimodt-Møller N, Slotved HC. Multidrug-Resistant Streptococcus pneumoniae Isolates from Healthy Ghanaian Preschool Children. Microb Drug Resist 2015; 21:636-42. [PMID: 26172078 DOI: 10.1089/mdr.2014.0314] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Streptococcus pneumoniae is the cause of high mortality among children worldwide. Antimicrobial treatment and vaccination are used to control pneumococcal infections. In Ghana, data on antimicrobial resistance and the prevalence of multidrug-resistant pneumococcal clones are scarce; hence, the aim of this study was to determine the antibiogram of S. pneumoniae recovered from Ghanaian children younger than six years of age and to what extent resistances were due to the spread of certain sero- and multilocus sequence typing (MLST) types. The susceptibility of 115 pneumococcal isolates, recovered in a previous study, to six antimicrobials was determined by disk diffusion test. Overall, 90.4% of isolates were intermediate penicillin resistant, 99.1% were trimethoprim resistant, 73.0% were tetracycline resistant, and 33.9% were sulfamethoxazole resistant. Low resistance was recorded for erythromycin (2.6%) and cefotaxime (5.2%). Overall, 72.2% of isolates were resistant to penicillin (I or R) and at least two other antimicrobials. MLST of 20 isolates showing resistance to at least four antimicrobials revealed a high diversity documented by 16 different clones, none of which had previously been associated with multidrug resistance. The resistances found may have emerged due to nonprudent antimicrobial use practices and there is a need to monitor and promote prudent antimicrobial usage in Ghana.
Collapse
Affiliation(s)
- Nicholas T K D Dayie
- 1 Department of Medical Microbiology, University of Ghana Medical School , Accra, Ghana .,2 Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen, Denmark
| | - Reuben E Arhin
- 1 Department of Medical Microbiology, University of Ghana Medical School , Accra, Ghana
| | - Mercy J Newman
- 1 Department of Medical Microbiology, University of Ghana Medical School , Accra, Ghana
| | - Anders Dalsgaard
- 2 Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen, Denmark
| | - Magne Bisgaard
- 2 Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen, Denmark
| | - Niels Frimodt-Møller
- 3 Department of Clinical Microbiology, University Hospital , Rigshospitalet, Copenhagen, Denmark
| | - Hans-Christian Slotved
- 4 Department of Microbiology and Infection Control, Statens Serum Institut , Copenhagen, Denmark
| |
Collapse
|
16
|
Lin H, Peng Y, Lin Z, Zhang S, Guo Y. Development of a conjugate vaccine against invasive pneumococcal disease based on capsular polysaccharides coupled with PspA/family 1 protein of Streptococcus pneumoniae. Microb Pathog 2015; 83-84:35-40. [DOI: 10.1016/j.micpath.2015.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 04/28/2015] [Accepted: 04/28/2015] [Indexed: 11/30/2022]
|
17
|
Hjálmarsdóttir MÁ, Pétursdóttir B, Erlendsdóttir H, Haraldsson G, Kristinsson KG. Prevalence of pilus genes in pneumococci isolated from healthy preschool children in Iceland: association with vaccine serotypes and antibiotic resistance. J Antimicrob Chemother 2015; 70:2203-8. [PMID: 25888572 DOI: 10.1093/jac/dkv096] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 03/20/2015] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES The objective of this study was to investigate the prevalence of pilus islets [pilus islet 1 (PI-1) and pilus islet 2 (PI-2)] in pneumococcal isolates from healthy Icelandic preschool children attending day care centres, prior to the introduction of conjugated pneumococcal vaccine, and the association of the pilus islets with vaccine serotypes and antibiotic resistance. METHODS Nasopharyngeal swabs were collected from 516 healthy children attending day care centres in Reykjavik in March and April 2009. Infant vaccination was started in 2011, thus the great majority of the children were unvaccinated. Pneumococci were cultured selectively, tested for antimicrobial susceptibility and serotyped. The presence of PI-1 and PI-2 was detected using PCR. RESULTS A total of 398 viable isolates were obtained of which 134 (33.7%) showed the presence of PI-1. PI-1-positive isolates were most often seen in serotype 19F [30/31 (96.8%)] and were of clade I, and in 6B [48/58 (82.8%)] of clade II. PI-2-positive isolates were most common in serotype 19F [27/31 (87.1%)]; all of them were also PI-1 positive. Of the PI-1-positive and PI-2-positive isolates, 118 (88.1%) and 31 (81.6%), respectively, were of vaccine serotypes. Both PI-1 and PI-2 were more often present in penicillin-non-susceptible pneumococci (PNSP) than in penicillin-susceptible pneumococci [PI-1 in 41/58 (70.7%) and 93/340 (27.4%), respectively, and PI-2 in 28/58 (48.3%) and 10/340 (2.9%), respectively]. CONCLUSIONS Genes for PI-1 and/or PI-2 in pneumococci isolated from healthy Icelandic children are mainly found in isolates of vaccine serotypes and in PNSP isolates belonging to multiresistant international clones that have been endemic in the country.
Collapse
Affiliation(s)
- Martha Á Hjálmarsdóttir
- Department of Clinical Microbiology, Landspitali University Hospital, Reykjavik, Iceland Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Brynhildur Pétursdóttir
- Department of Clinical Microbiology, Landspitali University Hospital, Reykjavik, Iceland Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Helga Erlendsdóttir
- Department of Clinical Microbiology, Landspitali University Hospital, Reykjavik, Iceland Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Gunnsteinn Haraldsson
- Department of Clinical Microbiology, Landspitali University Hospital, Reykjavik, Iceland Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Karl G Kristinsson
- Department of Clinical Microbiology, Landspitali University Hospital, Reykjavik, Iceland Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
18
|
BMX: a tool for computing bacterial phyletic composition from orthologous maps. BMC Res Notes 2015; 8:51. [PMID: 25756192 PMCID: PMC4342873 DOI: 10.1186/s13104-015-1017-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 02/13/2015] [Indexed: 11/10/2022] Open
Abstract
Background New sequencing technologies have made it possible to explore genetic diversity at higher resolution in microbial populations. However, our understanding evolutionary relationships, and comparison of closely and distantly related bacterial genomes from these massive datasets remains a formidable challenge. Numerous clustering algorithms that group genomic data based on homology have been developed, but new tools are still required to analyse the resultant orthologous maps to understand functional genetic similarities and their phyletic patterns (patterns of presence of absence of genes). Findings Bacterial Makeup eXplorer (BMX) implements an algorithm that swiftly and efficiently facilitates the determination of the number of orthologs in prokaryotic genomes employing a reference free approach, which may be further exploited to transfer of gene annotations. BMX is able to integrate orthologous maps of highly diverse prokaryotic genomes therefore making it possible to perform robust and scalable, multi-platform, high quality annotation transfer and gene-by-gene composition assessment method. In addition results are presented in the form of publication quality figures. Conclusions BMX allows extensive data analysis of orthologous map databases to understand underlying biological relationships. Furthermore, BMX is portable across different platforms and can be installed easily. In summary, BMX allows higher resolution analysis of genomes from diverse bacterial populations Electronic supplementary material The online version of this article (doi:10.1186/s13104-015-1017-z) contains supplementary material, which is available to authorized users.
Collapse
|
19
|
Saxena S, Khan N, Dehinwal R, Kumar A, Sehgal D. Conserved surface accessible nucleoside ABC transporter component SP0845 is essential for pneumococcal virulence and confers protection in vivo. PLoS One 2015; 10:e0118154. [PMID: 25689507 PMCID: PMC4331430 DOI: 10.1371/journal.pone.0118154] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 01/05/2015] [Indexed: 11/30/2022] Open
Abstract
Streptococcus pneumoniae is a leading cause of bacterial pneumonia, sepsis and meningitis. Surface accessible proteins of S. pneumoniae are being explored for the development of a protein-based vaccine in order to overcome the limitations of existing polysaccharide-based pneumococcal vaccines. To identify a potential vaccine candidate, we resolved surface-associated proteins of S. pneumoniae TIGR4 strain using two-dimensional gel electrophoresis followed by immunoblotting with antisera generated against whole heat-killed TIGR4. Ten immunoreactive spots were identified by mass spectrometric analysis that included a putative lipoprotein SP0845. Analysis of the inferred amino acid sequence of sp0845 homologues from 36 pneumococcal strains indicated that SP0845 was highly conserved (>98% identity) and showed less than 11% identity with any human protein. Our bioinformatic and functional analyses demonstrated that SP0845 is the substrate-binding protein of an ATP-binding cassette (ABC) transporter that is involved in nucleoside uptake with cytidine, uridine, guanosine and inosine as the preferred substrates. Deletion of the gene encoding SP0845 renders pneumococci avirulent suggesting that it is essential for virulence. Immunoblot analysis suggested that SP0845 is expressed in in vitro grown pneumococci and during mice infection. Immunofluorescence microscopy and flow cytometry data indicated that SP0845 is surface exposed in encapsulated strains and accessible to antibodies. Subcutaneous immunization with recombinant SP0845 induced high titer antibodies in mice. Hyperimmune sera raised against SP0845 promoted killing of encapsulated pneumococcal strains in a blood bactericidal assay. Immunization with SP0845 protected mice from intraperitoneal challenge with heterologous pneumococcal serotypes. Based on its surface accessibility, role in virulence and ability to elicit protective immunity, we propose that SP0845 may be a potential candidate for a protein-based pneumococcal vaccine.
Collapse
Affiliation(s)
- Sneha Saxena
- Molecular Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Naeem Khan
- Molecular Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Ruchika Dehinwal
- Molecular Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Ajay Kumar
- Molecular Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Devinder Sehgal
- Molecular Immunology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
- * E-mail:
| |
Collapse
|
20
|
Abstract
Pili of Gram-positive bacteria are unique structures on the bacterial surface, assembled from covalently linked polypeptide subunits. Pilus assembly proceeds by transpeptidation reactions catalyzed by sortases, followed by covalent anchoring of the filament in the peptidoglycan layer. Another distinctive property is the presence of intramolecular isopeptide bonds, conferring extraordinary chemical and mechanical stability to these elongated structures. Besides their function in cell adhesion and biofilm formation, this section discusses possible application of pilus constituents as vaccine components against Gram-positive pathogens.
Collapse
|
21
|
Identification of proteins in Streptococcus pneumoniae by reverse vaccinology and genetic diversity of these proteins in clinical isolates. Appl Biochem Biotechnol 2014; 175:2124-65. [PMID: 25448632 DOI: 10.1007/s12010-014-1375-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 11/10/2014] [Indexed: 10/24/2022]
Abstract
Streptococcus pneumoniae is a major cause of morbidity and mortality worldwide. Virulence-associated proteins common and conserved among all capsular types now represent the best strategy to combat pneumococcal infections. Our aim was to identify conserved targets in pneumococci that showed positive prediction for lipoprotein and extracellular subcellular location using bioinformatics programs and verify the distribution and the degree of conservation of these targets in pneumococci. These targets can be considered potential vaccine candidate to be evaluated in the future. A set of 13 targets were analyzed and confirmed the presence in all pneumococci tested. These 13 genes were highly conserved showing around >96 % of amino acid and nucleotide identity, but they were also present and show high identity in the closely related species Streptococcus mitis, Streptococcus oralis, and Streptococcus pseudopneumoniae. S. oralis clusters away from S. pneumoniae, while S. pseudopneumoniae and S. mitis cluster closer. The divergence between the selected targets was too small to be observed consistently in phylogenetic groups between the analyzed genomes of S. pneumoniae. The proteins analyzed fulfill two of the initial criteria of a vaccine candidate: targets are present in a variety of different pneumococci strains including different serotypes and are conserved among the samples evaluated.
Collapse
|
22
|
Gao XY, Zhi XY, Li HW, Klenk HP, Li WJ. Comparative genomics of the bacterial genus Streptococcus illuminates evolutionary implications of species groups. PLoS One 2014; 9:e101229. [PMID: 24977706 PMCID: PMC4076318 DOI: 10.1371/journal.pone.0101229] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 06/04/2014] [Indexed: 11/18/2022] Open
Abstract
Members of the genus Streptococcus within the phylum Firmicutes are among the most diverse and significant zoonotic pathogens. This genus has gone through considerable taxonomic revision due to increasing improvements of chemotaxonomic approaches, DNA hybridization and 16S rRNA gene sequencing. It is proposed to place the majority of streptococci into “species groups”. However, the evolutionary implications of species groups are not clear presently. We use comparative genomic approaches to yield a better understanding of the evolution of Streptococcus through genome dynamics, population structure, phylogenies and virulence factor distribution of species groups. Genome dynamics analyses indicate that the pan-genome size increases with the addition of newly sequenced strains, while the core genome size decreases with sequential addition at the genus level and species group level. Population structure analysis reveals two distinct lineages, one including Pyogenic, Bovis, Mutans and Salivarius groups, and the other including Mitis, Anginosus and Unknown groups. Phylogenetic dendrograms show that species within the same species group cluster together, and infer two main clades in accordance with population structure analysis. Distribution of streptococcal virulence factors has no obvious patterns among the species groups; however, the evolution of some common virulence factors is congruous with the evolution of species groups, according to phylogenetic inference. We suggest that the proposed streptococcal species groups are reasonable from the viewpoints of comparative genomics; evolution of the genus is congruent with the individual evolutionary trajectories of different species groups.
Collapse
Affiliation(s)
- Xiao-Yang Gao
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- University of Chinese Academy of Sciences, Beijing, China
- * E-mail: (X-YG); (W-JL)
| | - Xiao-Yang Zhi
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education and the Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Institute of Microbiology, Yunnan University, Kunming, China
| | - Hong-Wei Li
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education and the Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Institute of Microbiology, Yunnan University, Kunming, China
- The First Hospital of Qujing City, Qujing Affiliated Hospital of Kunming Medical University, Qujing, China
| | - Hans-Peter Klenk
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Wen-Jun Li
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education and the Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Institute of Microbiology, Yunnan University, Kunming, China
- * E-mail: (X-YG); (W-JL)
| |
Collapse
|
23
|
Schulz C, Hammerschmidt S. Exploitation of physiology and metabolomics to identify pneumococcal vaccine candidates. Expert Rev Vaccines 2014; 12:1061-75. [PMID: 24053399 DOI: 10.1586/14760584.2013.824708] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Streptococcus pneumoniae (the pneumococcus) is the etiologic agent of community-acquired pneumonia and invasive pneumococcal diseases such as septicemia and bacterial meningitis. The increasing antibiotic resistance and the suboptimal efficacy or limited serotype coverage of currently available vaccines urgently requires novel approaches in exploring new antimicrobials, therapeutic intervention strategies and vaccines. The current vaccine development strategies rely on the hypothesis that surface-exposed proteins, which are essential for pneumococcal virulence, are the most suitable candidates for future protein-based vaccines. Since virulence is closely linked with bacterial fitness, the potential of a pathogen to colonize and infect the host depends further on its physiology. This review summarizes the application of genome-wide techniques and their exploitation to decipher fundamental insights into bacterial factors associated with fitness, metabolism and virulence, leading to the discovery of vaccine candidates or antimicrobials.
Collapse
Affiliation(s)
- Christian Schulz
- Department Genetics of Microorganisms, Interfaculty Institute for Genetics and Functional Genomics, Ernst Moritz Arndt Universität Greifswald, Friedrich-Ludwig-Jahn-Strasse 15a, D 17487 Greifswald, Germany
| | | |
Collapse
|
24
|
Hudak JE, Bertozzi CR. Glycotherapy: new advances inspire a reemergence of glycans in medicine. CHEMISTRY & BIOLOGY 2014; 21:16-37. [PMID: 24269151 PMCID: PMC4111574 DOI: 10.1016/j.chembiol.2013.09.010] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2013] [Revised: 09/16/2013] [Accepted: 09/30/2013] [Indexed: 12/21/2022]
Abstract
The beginning of the 20(th) century marked the dawn of modern medicine with glycan-based therapies at the forefront. However, glycans quickly became overshadowed as DNA- and protein-focused treatments became readily accessible. The recent development of new tools and techniques to study and produce structurally defined carbohydrates has spurred renewed interest in the therapeutic applications of glycans. This review focuses on advances within the past decade that are bringing glycan-based treatments back to the forefront of medicine and the technologies that are driving these efforts. These include the use of glycans themselves as therapeutic molecules as well as engineering protein and cell surface glycans to suit clinical applications. Glycan therapeutics offer a rich and promising frontier for developments in the academic, biopharmaceutical, and medical fields.
Collapse
Affiliation(s)
- Jason E Hudak
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Carolyn R Bertozzi
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
25
|
Bansal AK. Role of bioinformatics in the development of new antibacterial therapy. Expert Rev Anti Infect Ther 2014; 6:51-65. [DOI: 10.1586/14787210.6.1.51] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Clarke ET, Williams NA, Findlow J, Borrow R, Heyderman RS, Finn A. Polysaccharide-specific memory B cells generated by conjugate vaccines in humans conform to the CD27+IgG+ isotype-switched memory B Cell phenotype and require contact-dependent signals from bystander T cells activated by bacterial proteins to differentiate into plasma cells. THE JOURNAL OF IMMUNOLOGY 2013; 191:6071-83. [PMID: 24227777 DOI: 10.4049/jimmunol.1203254] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The polysaccharides (PS) surrounding encapsulated bacteria are generally unable to activate T cells and hence do not induce B cell memory (BMEM). PS conjugate vaccines recruit CD4(+) T cells via a carrier protein, such as tetanus toxoid (TT), resulting in the induction of PS-specific BMEM. However, the requirement for T cells in the subsequent activation of the BMEM at the time of bacterial encounter is poorly understood, despite having critical implications for protection. We demonstrate that the PS-specific BMEM induced in humans by a meningococcal serogroup C PS (Men C)-TT conjugate vaccine conform to the isotype-switched (IgG(+)CD27(+)) rather than the IgM memory (IgM(+)CD27(+)) phenotype. Both Men C and TT-specific BMEM require CD4(+) T cells to differentiate into plasma cells. However, noncognate bystander T cells provide such signals to PS-specific BMEM with comparable effect to the cognate T cells available to TT-specific BMEM. The interaction between the two populations is contact-dependent and is mediated in part through CD40. Meningococci drive the differentiation of the Men C-specific BMEM through the activation of bystander T cells by bacterial proteins, although these signals are enhanced by T cell-independent innate signals. An effect of the TT-specific T cells activated by the vaccine on unrelated BMEM in vivo is also demonstrated. These data highlight that any protection conferred by PS-specific BMEM at the time of bacterial encounter will depend on the effectiveness with which bacterial proteins are able to activate bystander T cells. Priming for T cell memory against bacterial proteins through their inclusion in vaccine preparations must continue to be pursued.
Collapse
Affiliation(s)
- Edward T Clarke
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, United Kingdom
| | | | | | | | | | | |
Collapse
|
27
|
A modified surface killing assay (MSKA) as a functional in vitro assay for identifying protective antibodies against pneumococcal surface protein A (PspA). Vaccine 2013; 32:39-47. [PMID: 24211169 DOI: 10.1016/j.vaccine.2013.10.080] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 10/08/2013] [Accepted: 10/24/2013] [Indexed: 11/20/2022]
Abstract
Streptococcus pneumoniae causes otitis media, meningitis and pneumonia in patients worldwide; predominantly affecting young children, the elderly, and the immune compromised. Current vaccines against invasive pneumococcal disease are based on the polysaccharide capsules of the most clinically relevant serotypes. Due to serotype replacement, non-vaccine serotypes of S. pneumoniae have become more clinically relevant and as a result pneumococcal vaccines are becoming increasingly complex. These events emphasize the need to evaluate the potential for pneumococcal cross-reactive proteins to contribute to future vaccines. Antibody elicited by the immunization of humans with pneumococcal surface protein A (PspA) can passively protect mice from infection. However, robust in vitro functional assays for antibody to PspA are not available to predict the protective capacity of immune serum. For polysaccharide based vaccines, a standardized opsonophagocytosis killing assay (OPKA) is used. Antibody to PspA, however, does not work well in the standard OPKA. The present studies take advantage of past observations that phagocytosis is more efficient on tissue surfaces than in solution. In a modified surface killing assay (MSKA), monoclonal antibody to PspA, in the presence of complement, opsonized pneumococci for killing by phagocytes on an agar surface. Five monoclonal antibodies to PspA were tested; three demonstrated increased amounts of killing compared to the diluent control and protected mice by passive protection against type 3 pneumococci. The two antibodies that were not functional in the MSKA also failed to protect mice. Thus, an MSKA might be useful as a functional assay for immunity to PspA.
Collapse
|
28
|
Dayie NTKD, Arhin RE, Newman MJ, Dalsgaard A, Bisgaard M, Frimodt-Møller N, Slotved HC. Penicillin resistance and serotype distribution of Streptococcus pneumoniae in Ghanaian children less than six years of age. BMC Infect Dis 2013; 13:490. [PMID: 24148091 PMCID: PMC4015758 DOI: 10.1186/1471-2334-13-490] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 10/15/2013] [Indexed: 11/29/2022] Open
Abstract
Background The objective of this study was to determine the prevalence of nasopharyngeal carriage, serotype distribution, and penicillin resistance of Streptococcus pneumoniae in children ≤6 years of age in Ghana. Methods A cross-sectional study was carried out on a cluster-randomized sample of children ≤6 years of age attending nurseries and kindergartens in Accra and Tamale, Ghana. Basic data on age, sex and exposure to antimicrobials in the previous month were collected on all study subjects. Nasopharyngeal swabs were obtained from participants and all pneumococcal isolates were characterized by serotyping and their penicillin resistance determined. Results The overall prevalence of pneumococcal carriage among the children was 34% in Accra and 31% in Tamale. The predominant serotypes were 19F, 6B, 23F, and 6A with 23% of the isolates being non-typable in Accra and 12% in Tamale. Only two isolates (serotypes 19F and 6B) from Tamale had a MIC >2 μg/ml and were classified as fully penicillin resistant with 45% of the isolates having intermediate resistance. Conclusions These findings indicate that the 13-valent pneumococcal conjugate vaccine (PCV-13) recently introduced in Ghana will cover 48% and 51% of the serotypes identified in Accra and Tamale, respectively. The 23-valent pneumococcal polysaccharide vaccine (PPV-23) will cover 54% of all serotypes detected. The two penicillin resistant isolates (MIC 32 μg/ml) were serotypes included in both PCV-13 and PPV-23. A nationwide monitoring system of penicillin susceptibility patterns and pneumococcal serotypes is recommended.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hans-Christian Slotved
- Department of Microbiological Surveillance and Research, Statens Serum Institut, Copenhagen, Denmark.
| |
Collapse
|
29
|
Heterologous expression and purification of biologically active domains 3 and 4 of human polymeric immunoglobulin receptor and its interaction with choline binding protein A of Streptococcus pneumoniae. Protein Expr Purif 2013; 91:207-14. [DOI: 10.1016/j.pep.2013.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 08/06/2013] [Accepted: 08/09/2013] [Indexed: 12/18/2022]
|
30
|
Modified opsonization, phagocytosis, and killing assays to measure potentially protective antibodies against pneumococcal surface protein A. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:1549-58. [PMID: 23925886 DOI: 10.1128/cvi.00371-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The standard opsonophagocytosis killing assay (OPKA) for antibodies to pneumococcal capsular polysaccharide was modified to permit an evaluation of the protection-mediating antibodies to pneumococcal surface protein A (PspA). We found that by increasing the incubation time with the complement and phagocytes from 45 min to 75 min, the protective activity was readily detected. In another modification, we used a capsule type 2 target strain that expressed PspA but not pneumococcal surface protein C (PspC). With these modifications separately or in combination, rabbit antisera to the recombinant α-helical or proline-rich domains of PspA mediated >50% killing of the target strain. The ability of normal human sera to mediate the killing of pneumococci in this modified OPKA correlated with their levels of antibodies to PspA and their ability to protect mice against fatal infection with a type 3 strain. Passive protection of mice against pneumococci and killing in the modified OPKA were lost when normal human sera were adsorbed with recombinant PspA (rPspA) on Sepharose, thus supporting the potential utility of the modified OPKA to detect protective antibodies to PspA. In the standard OPKA, monoclonal antibodies to PspA were strongly protective in the presence of subprotective amounts of anti-capsule. Thus, the currently established high-throughput OPKA for antibodies to capsule could be modified in one of two ways to permit an evaluation of the opsonic efficacy of antibodies to PspA.
Collapse
|
31
|
Nicoletti MC, Bertini JR, Tanizaki MM, Zangirolami TC, Gonçalves VM, Horta ACL, Giordano RC. On-line prediction of the feeding phase in high-cell density cultivation of rE. coli using constructive neural networks. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2013; 111:228-248. [PMID: 23566708 DOI: 10.1016/j.cmpb.2013.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Revised: 12/18/2012] [Accepted: 03/11/2013] [Indexed: 06/02/2023]
Abstract
Streptococcus pneumoniae (pneumococcus) is a bacterium responsible for a wide spectrum of illnesses. The surface of the bacterium consists of three distinctive membranes: plasmatic, cellular and the polysaccharide (PS) capsule. PS capsules may mediate several biological processes, particularly invasive infections of human beings. Prevention against pneumococcal related illnesses can be provided by vaccines. There is a sound investment worldwide in the investigation of a proteic antigen as a possible alternative to pneumococcal vaccines based exclusively on PS. A few proteins which are part of the membrane of the pneumococcus seem to have antigen potential to be part of a vaccine, particularly the PspA. A vital aspect in the production of the intended conjugate pneumococcal vaccine is the efficient production (in industrial scale) of both, the chosen PS serotypes as well as the PspA protein. Growing recombinant Escherichia coli (rE. coli) in high-cell density cultures (HCDC) under a fed-batch regime requires a refined continuous control over various process variables where the on-line prediction of the feeding phase is of particular relevance and one of the focuses of this paper. The viability of an on-line monitoring software system, based on constructive neural networks (CoNN), for automatically detecting the time to start the fed-phase of a HCDC of rE. coli that contains a plasmid used for PspA expression is investigated. The paper describes the data and methodology used for training five different types of CoNNs, four of them suitable for classification tasks and one suitable for regression tasks, aiming at comparatively investigate both approaches. Results of software simulations implementing five CoNN algorithms as well as conventional neural networks (FFNN), decision trees (DT) and support vector machines (SVM) are also presented and discussed. A modified CasCor algorithm, implementing a data softening process, has shown to be an efficient candidate to be part of an on-line HCDC monitoring system for detecting the feeding phase of the HCDC process.
Collapse
Affiliation(s)
- M C Nicoletti
- Depto. de Computação, UFSCar, S. Carlos, SP, Brazil.
| | | | | | | | | | | | | |
Collapse
|
32
|
Poland GA, Kennedy RB, McKinney BA, Ovsyannikova IG, Lambert ND, Jacobson RM, Oberg AL. Vaccinomics, adversomics, and the immune response network theory: individualized vaccinology in the 21st century. Semin Immunol 2013; 25:89-103. [PMID: 23755893 DOI: 10.1016/j.smim.2013.04.007] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 03/23/2013] [Accepted: 04/18/2013] [Indexed: 02/08/2023]
Abstract
Vaccines, like drugs and medical procedures, are increasingly amenable to individualization or personalization, often based on novel data resulting from high throughput "omics" technologies. As a result of these technologies, 21st century vaccinology will increasingly see the abandonment of a "one size fits all" approach to vaccine dosing and delivery, as well as the abandonment of the empiric "isolate-inactivate-inject" paradigm for vaccine development. In this review, we discuss the immune response network theory and its application to the new field of vaccinomics and adversomics, and illustrate how vaccinomics can lead to new vaccine candidates, new understandings of how vaccines stimulate immune responses, new biomarkers for vaccine response, and facilitate the understanding of what genetic and other factors might be responsible for rare side effects due to vaccines. Perhaps most exciting will be the ability, at a systems biology level, to integrate increasingly complex high throughput data into descriptive and predictive equations for immune responses to vaccines. Herein, we discuss the above with a view toward the future of vaccinology.
Collapse
|
33
|
|
34
|
Identification of genes that contribute to the pathogenesis of invasive pneumococcal disease by in vivo transcriptomic analysis. Infect Immun 2012; 80:3268-78. [PMID: 22778095 DOI: 10.1128/iai.00295-12] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pneumoniae (the pneumococcus) continues to be responsible for a high level of global morbidity and mortality resulting from pneumonia, bacteremia, meningitis, and otitis media. Here we have used a novel technique involving niche-specific, genome-wide in vivo transcriptomic analyses to identify genes upregulated in distinct niches during pathogenesis after intranasal infection of mice with serotype 4 or 6A pneumococci. The analyses yielded 28 common, significantly upregulated genes in the lungs relative to those in the nasopharynx and 25 significantly upregulated genes in the blood relative to those in the lungs in both strains, some of which were previously unrecognized. The role of five upregulated genes from either the lungs or the blood in pneumococcal pathogenesis and virulence was then evaluated by targeted mutagenesis. One of the mutants (ΔmalX) was significantly attenuated for virulence in the lungs, two (ΔaliA and ΔilvH) were significantly attenuated for virulence in the blood relative to the wild type, and two others (ΔcbiO and ΔpiuA) were completely avirulent in a mouse intranasal challenge model. We also show that the products of aliA, malX, and piuA are promising candidates for incorporation into multicomponent protein-based pneumococcal vaccines currently under development. Importantly, we suggest that this new approach is a viable complement to existing strategies for the discovery of genes critical to the distinct stages of invasive pneumococcal disease and potentially has broad application for novel protein antigen discovery in other pathogens such as S. pyogenes, Haemophilus influenzae type b, and Neisseria meningitidis.
Collapse
|
35
|
Oberli MA, Hecht ML, Bindschädler P, Adibekian A, Adam T, Seeberger PH. A possible oligosaccharide-conjugate vaccine candidate for Clostridium difficile is antigenic and immunogenic. ACTA ACUST UNITED AC 2011; 18:580-8. [PMID: 21609839 DOI: 10.1016/j.chembiol.2011.03.009] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 02/23/2011] [Accepted: 03/07/2011] [Indexed: 11/30/2022]
Abstract
Nosocomial infections with the Gram-positive pathogen Clostridium difficile pose a major risk for hospitalized patients and result in significant costs to health care systems. Here, we present the chemical synthesis of a PS-II hapten of a cell wall polysaccharide of hypervirulent ribotype 027 of C. difficile. Mice were immunized with a conjugate consisting of the synthetic hexasaccharide and the diphtheria toxoid variant CRM(197). The immunogenicity of the glycan repeating unit was demonstrated by the presence of specific IgG antibodies in the serum of immunized mice. Murine monoclonal antibodies interact with the synthetic hexasaccharide, as determined by microarray analysis. Finally, we found that specific IgA antibodies in the stool of hospital patients infected with C. difficile recognize the synthetic PS-II hexasaccharide hapten.
Collapse
Affiliation(s)
- Matthias A Oberli
- Department of Biomolecular Systems, Max-Planck Institute for Colloids and Interfaces, Potsdam, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Ricci S, Janulczyk R, Gerlini A, Braione V, Colomba L, Iannelli F, Chiavolini D, Oggioni MR, Björck L, Pozzi G. The factor H-binding fragment of PspC as a vaccine antigen for the induction of protective humoral immunity against experimental pneumococcal sepsis. Vaccine 2011; 29:8241-9. [PMID: 21911026 DOI: 10.1016/j.vaccine.2011.08.119] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 08/13/2011] [Accepted: 08/30/2011] [Indexed: 01/12/2023]
Abstract
Pneumococcal surface protein C (PspC) is a major virulence factor of Streptococcus pneumoniae and interferes with complement activity by binding complement factor H (fH). In this study, protection against experimental sepsis caused by pneumococci carrying different PspC variants was evaluated by immunisation with the fH-binding fragment of PspC. The mechanisms of protection mediated by antibodies to PspC were also studied. Mice were immunised with a PspC fragment (PspC(39-261)) from the type 3 strain HB565 and infected intravenously with either strain HB565 (homologous challenge), or strains D39 and TIGR4 (heterologous challenge). Immunisation with PspC(39-261) elicited high titers (>300,000) of PspC-specific serum IgG and conferred protection from challenge with HB565. In contrast, cross-protection was either limited or absent in vaccinated animals infected with D39 and TIGR4, respectively. To correlate protection with reactivity and function of PspC antibodies, pooled sera from vaccinated mice were tested in IgG binding and complement deposition experiments. IgG antibodies efficiently bound to HB565, while binding was lower with D39 and absent with TIGR4. In the presence of mouse post-immune sera, C3 deposition was increased onto HB565, while no effect was observed with D39 and TIGR4. Antibody cross-reactivity and complement deposition progressively declined with reduced amino acid identity between PspC variants. Antibodies to PspC were also found to interfere with fH binding to HB565. Finally, in vitro and ex vivo phagocytosis assays demonstrated that PspC-specific antibodies promoted opsonophagocytic killing of bacteria.
Collapse
Affiliation(s)
- Susanna Ricci
- Department of Biotechnology, University of Siena, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Bowman BN, McAdam PR, Vivona S, Zhang JX, Luong T, Belew RK, Sahota H, Guiney D, Valafar F, Fierer J, Woelk CH. Improving reverse vaccinology with a machine learning approach. Vaccine 2011; 29:8156-64. [PMID: 21864619 DOI: 10.1016/j.vaccine.2011.07.142] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2011] [Revised: 07/19/2011] [Accepted: 07/28/2011] [Indexed: 11/27/2022]
Abstract
Reverse vaccinology aims to accelerate subunit vaccine design by rapidly predicting which proteins in a pathogenic bacterial proteome are putative protective antigens. Support vector machine classification is a machine learning approach that has been applied to solve numerous classification problems in biological sciences but has not previously been incorporated into a reverse vaccinology approach. A training data set of 136 bacterial protective antigens paired with 136 non-antigens was constructed and bioinformatic tools were used to annotate this data for predicted protein features, many of which are associated with antigenicity (i.e. extracellular localization, signal peptides and B-cell epitopes). Annotation was used to train support vector machine classifiers that exhibited a maximum accuracy of 92% for discriminating protective antigens from non-antigens as assessed by a leave-tenth-out cross-validation approach. These accuracies were superior to those achieved when annotating training data with auto and cross covariance transformations of z-descriptors for hydrophobicity, molecular size and polarity, or when classification was performed using regression methods. To further validate support vector machine classifiers, they were used to rank all the proteins in six bacterial proteomes for their antigenicity. Protective antigens from the training data were significantly recalled (enriched) in the top 75 ranked proteins for all six proteomes as assessed by a Fisher's exact test (p<0.05). This paper describes a superior workflow for performing reverse vaccinology studies and provides a benchmark training data set that can be used to evaluate future methodological improvements.
Collapse
Affiliation(s)
- Brett N Bowman
- Bioinformatics and Medical Informatics, San Diego State University, San Diego, CA 92182, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Safari D, Dekker HAT, de Jong B, Rijkers GT, Kamerling JP, Snippe H. Antibody- and cell-mediated immune responses to a synthetic oligosaccharide conjugate vaccine after booster immunization. Vaccine 2011; 29:6498-504. [PMID: 21767596 DOI: 10.1016/j.vaccine.2011.07.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 07/04/2011] [Accepted: 07/05/2011] [Indexed: 10/18/2022]
Abstract
Memory formation to CRM-neoglycoconjugate, a synthetic branched tetrasaccharide of Streptococcus pneumoniae type 14 polysaccharide (Pn14PS) that is conjugated to a CRM197 protein, was investigated using mice models. Mice were first immunized with the CRM-neoglycoconjugate and then boosted with either the same neoglycoconjugate or a native Pn14PS in order to investigate the effect of booster immunization. Boosting with the CRM-neoglycoconjugate resulted in increased levels of interleukin 5 (IL-5) in the serum on Day 1, followed by the appearance of high levels of specific anti-Pn14PS IgG antibodies on Day 7. Boosting with native Pn14PS resulted in neither IL-5 induction nor the generation of anti-Pn14PS IgG antibodies. In vitro (re)stimulation of spleen cells after booster injection with the neoglycoconjugate revealed the presence of IL-4 and IL-5. This was not seen in spleen cells obtained from mice boosted with the polysaccharide. When stimulated with heat-inactivated bacteria, however, the polysaccharide-boosted mice did have higher levels of IFN-γ and lower levels of IL-17 than both the CRM-neoglycoconjugate-boosted mice and the mock-immunized mice. In conclusion, neoglycoconjugate boosting is responsible for the activation of memory cells and the establishment of sustained immunity. Not only is a booster with native polysaccharide ineffective in inducing opsonic antibodies, but it also interferes with several immunoregulatory mechanisms.
Collapse
Affiliation(s)
- Dodi Safari
- Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
39
|
Einsfeldt K, Severo Júnior JB, Corrêa Argondizzo AP, Medeiros MA, Alves TLM, Almeida RV, Larentis AL. Cloning and expression of protease ClpP from Streptococcus pneumoniae in Escherichia coli: study of the influence of kanamycin and IPTG concentration on cell growth, recombinant protein production and plasmid stability. Vaccine 2011; 29:7136-43. [PMID: 21651937 DOI: 10.1016/j.vaccine.2011.05.073] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Infections caused by Streptococcus pneumoniae are one of the main causes of death around the world. In order to address this problem, investigations are being made into the development of a protein-based vaccine. The aims of this study were to clone and express ClpP, a protein from S. pneumoniae serotype 14 in Escherichia coli, to optimize protein expression by using experimental design and to study plasmid segregation in the system. ClpP was cloned into the pET28b vector and expressed in E. coli BL21 Star (DE3). Protein expression was optimized by using central composite design, varying the inducer (IPTG) and kanamycin concentration, with a subsequent analysis being made of the concentration of heterologous protein, cell growth and the fraction of plasmid-bearing cells. In all the experiments, approximately the same concentration of ClpP was expressed in its soluble form, with a mean of 240.4mg/L at the center point. Neither the IPTG concentration nor the kanamycin concentration was found to have any statistically significant influence on protein expression. Also, higher IPTG concentrations were found to have a negative effect on cell growth and plasmid stability. Plasmid segregation was identified in the system under all the concentrations studied. Using statistical analysis, it was possible to ascertain that the procedures for determining plasmid stability (serial dilution and colony counting) were reproducible. It was concluded that the inducer concentration could be reduced tenfold and the antibiotic eliminated from the system without significantly affecting expression levels and with the positive effect of reducing costs.
Collapse
Affiliation(s)
- Karen Einsfeldt
- Programa de Engenharia Química - COPPE - Universidade Federal do Rio de Janeiro (UFRJ) - Av. Horácio Macedo 2030, Bloco G, Sala 115 - Centro de Tecnologia (CT) - Cidade Universitária, Ilha do Fundão, Caixa Postal 68502 - 21941-972, Rio de Janeiro, RJ, Brazil.
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
This review considers the stages of the development of synthetic peptide vaccines against infectious agents, novel approaches and technologies employed in this process, including bioinformatics, genomics, proteomics, large-scale peptide synthesis, high-throughput screening methods, the use of transgenic animals for modelling human infections. An important role for the development and selection of efficient adjuvants for peptide immunogens is noted. Examples of synthetic peptide vaccine developments against three infectious diseases (malaria, hepatitis C, and foot-and-mouth disease) are given.
Collapse
|
41
|
Webster J, Theodoratou E, Nair H, Seong AC, Zgaga L, Huda T, Johnson HL, Madhi S, Rubens C, Zhang JSF, El Arifeen S, Krause R, Jacobs TA, Brooks AW, Campbell H, Rudan I. An evaluation of emerging vaccines for childhood pneumococcal pneumonia. BMC Public Health 2011; 11 Suppl 3:S26. [PMID: 21501444 PMCID: PMC3231900 DOI: 10.1186/1471-2458-11-s3-s26] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pneumonia is the leading cause of child mortality worldwide. Streptococcus pneumoniae (SP) or pneumococcus is estimated to cause 821,000 child deaths each year. It has over 90 serotypes, of which 7 to 13 serotypes are included in current formulations of pneumococcal conjugate vaccines that are efficacious in young children. To further reduce the burden from SP pneumonia, a vaccine is required that could protect children from a greater diversity of serotypes. Two different types of vaccines against pneumococcal pneumonia are currently at varying stages of development: a multivalent pneumococcal conjugate vaccine covering additional SP serotypes; and a conserved common pneumococcal protein antigen (PPA) vaccine offering protection for all serotypes. METHODS We used a modified CHNRI methodology for setting priorities in health research investments. This was done in two stages. In Stage I, we systematically reviewed the literature related to emerging SP vaccines relevant to several criteria of interest: answerability; efficacy and effectiveness; cost of development, production and implementation; deliverability, affordability and sustainability; maximum potential for disease burden reduction; acceptability to the end users and health workers; and effect on equity. In Stage II, we conducted an expert opinion exercise by inviting 20 experts (leading basic scientists, international public health researchers, international policy makers and representatives of pharmaceutical companies). The policy makers and industry representatives accepted our invitation on the condition of anonymity, due to sensitive nature of their involvement in such exercises. They answered questions from CHNRI framework and their "collective optimism" towards each criterion was documented on a scale from 0 to 100%. RESULTS The experts expressed very high level of optimism (over 80%) that low-cost polysaccharide conjugate SP vaccines would satisfy each of the 9 relevant CHNRI criteria. The median potential effectiveness of conjugate SP vaccines in reduction of overall childhood pneumonia mortality was predicted to be about 25% (interquartile range 20-38%, min. 15%, max 45%). For low cost, cross-protective common protein vaccines for SP the experts expressed concerns over answerability (72%) and the level of development costs (50%), while the scores for all other criteria were over 80%. The median potential effectiveness of common protein vaccines in reduction of overall childhood pneumonia mortality was predicted to be about 30% (interquartile range 26-40%, min. 20%, max 45%). CONCLUSIONS Improved SP vaccines are a very promising investment that could substantially contribute to reduction of child mortality world-wide.
Collapse
Affiliation(s)
- Julia Webster
- Centre for Population Health Sciences, Global Health Academy, The University of Edinburgh, UK
| | - Evropi Theodoratou
- Centre for Population Health Sciences, Global Health Academy, The University of Edinburgh, UK
| | - Harish Nair
- Centre for Population Health Sciences, Global Health Academy, The University of Edinburgh, UK
- Public Health Foundation of India, New Delhi, India
| | - Ang Choon Seong
- Centre for Population Health Sciences, Global Health Academy, The University of Edinburgh, UK
| | - Lina Zgaga
- Centre for Population Health Sciences, Global Health Academy, The University of Edinburgh, UK
| | - Tanvir Huda
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Hope L Johnson
- Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Shabir Madhi
- Department of Science and Technology/National Research Foundation: Vaccine Preventable Diseases & Medical Research Council Respiratory and Meningeal Pathogens Research Unit, University of the Witwatersrand, South Africa
| | - Craig Rubens
- Center for Childhood Infections and Prematurity Research, Seattle Children's Met Park West, Seattle, USA
| | - Jian Shayne F Zhang
- Centre for Population Health Sciences, Global Health Academy, The University of Edinburgh, UK
| | - Shams El Arifeen
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Ryoko Krause
- International Federation of Pharmaceutical Manufacturers & Associations, Geneva, Switzerland
| | | | - Abdullah W Brooks
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
- Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Harry Campbell
- Centre for Population Health Sciences, Global Health Academy, The University of Edinburgh, UK
| | - Igor Rudan
- Centre for Population Health Sciences, Global Health Academy, The University of Edinburgh, UK
- Croatian Centre for Global Health, University of Split Medical School, Croatia
| |
Collapse
|
42
|
Th17/Th1 biased immunity to the pneumococcal proteins PcsB, StkP and PsaA in adults of different age. Vaccine 2011; 29:3982-9. [PMID: 21481328 DOI: 10.1016/j.vaccine.2011.03.081] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 03/17/2011] [Accepted: 03/22/2011] [Indexed: 12/19/2022]
Abstract
Streptococcus pneumoniae is a major human pathogen, causing high morbidity and mortality in children, and also in the elderly, who are particularly susceptible to S. pneumoniae infections due to the dysregulated function of the aged immune system. As the current generation of polysaccharide vaccines do not provide sufficient protection for elderly, new vaccination strategies are urgently needed. To learn whether pneumococcal proteins are able to induce adaptive immune responses in adults in different age groups, we determined serum IgG antibody titers and T cell immunity (IFN-γ, IL-17A and IL-5 production) to three pneumococcal antigens, PcsB, StkP and PsaA, that are components of an investigational protein-based pneumococcal vaccine, IC47. Therefore, sera and PBMCs of 108 healthy adults in three different age groups (young, middle-aged and elderly) were analyzed by ELISA and ELISpot, respectively. We found naturally acquired antibodies to all three proteins in all age groups against all three antigens. However, elderly individuals had significantly lower IgG levels to PcsB and PsaA compared to those of younger donors. There was no significant age-related difference in the overall rate of T cell immunity for the three pneumococcal proteins. We found that the Th17 response was dominant in all age groups and was frequently combined with a Th1 or Th2 response in young and middle-aged subjects. However, in elderly persons there was a lower percentage of PBMC samples producing more than one cytokine upon antigenic stimulation. The narrow cytokine secretion pattern was the most striking difference between elderly and younger adult age groups. Our results demonstrate that in the majority of adults there is a naturally acquired humoral and cellular immune response to the three pneumococcal proteins tested. The dominance of the Th17 response is especially interesting in the light of new insights regarding the role of Th17 cells in mucosal protection against this pathogen.
Collapse
|
43
|
Larentis AL, Argondizzo APC, Esteves GDS, Jessouron E, Galler R, Medeiros MA. Cloning and optimization of induction conditions for mature PsaA (pneumococcal surface adhesin A) expression in Escherichia coli and recombinant protein stability during long-term storage. Protein Expr Purif 2011; 78:38-47. [PMID: 21362478 DOI: 10.1016/j.pep.2011.02.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 02/22/2011] [Accepted: 02/22/2011] [Indexed: 11/27/2022]
Abstract
The gene corresponding to mature PsaA from Streptococcus pneumoniae serotype 14 was cloned into a plasmid with kanamycin resistance and without a purification tag in Escherichia coli to express high levels of the recombinant protein for large-scale production as a potential vaccine candidate or as a carrier for polysaccharide conjugation at Bio-Manguinhos/Fiocruz. The evaluation of induction conditions (IPTG concentration, temperature and time) in E. coli was accomplished by experimental design techniques to enhance the expression level of mature recombinant PsaA (rPsaA). The optimization of induction process conditions led us to perform the recombinant protein induction at 25°C for 16 h, with 0.1mM IPTG in Terrific Broth medium. At these conditions, the level of mature rPsaA expression obtained in E. coli BL21 (DE3) Star by pET28a induction with IPTG was in the range of 0.8 g/L of culture medium, with a 10-fold lower concentration of inducer than usually employed, which contributes to a less expensive process. Mature rPsaA expressed in E. coli BL21 (DE3) Star accounted for approximately 30-35% of the total protein. rPsaA purification by ion exchange allowed the production of high-purity recombinant protein without fusion tags. The results presented in this work confirm that the purified recombinant protein maintains its stability and integrity for long periods of time in various storage conditions (temperatures of 4 or -70°C using different cryoprotectors) and for at least 3 years at 4 or -70°C in PBS. The conformation of the stored protein was confirmed using circular dichroism. Mature rPsaA antigenicity was proven by anti-rPsaA mouse serum recognition through western blot analysis, and no protein degradation was detected after long periods of storage.
Collapse
Affiliation(s)
- Ariane Leites Larentis
- Fundação Oswaldo Cruz (Fiocruz), Bio-Manguinhos/VDTEC (Vice-Diretoria de Desenvolvimento Tecnológico), Laboratório de Tecnologia Recombinante (LATER), Av. Brasil 4365, 21.040-360, Rio de Janeiro - RJ, Brazil.
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
This review considers the stages of the development of synthetic peptide vaccines against infectious agents, novel approaches and technologies employed in this process, including bioinformatics, genomics, proteomics, large-scale peptide synthesis, high-throughput screening methods, the use of transgenic animals for modelling human infections. An important role for the development and selection of efficient adjuvants for peptide immunogens is noted. Examples of synthetic peptide vaccine developments against three infectious diseases (malaria, hepatitis C, and foot-and-mouth disease) are given.
Collapse
Affiliation(s)
- A.A. Moysa
- Institute of Biomedical Chemistry, Russian Academy of Medical sciences
| | - E.F. Kolesanova
- Institute of Biomedical Chemistry, Russian Academy of Medical sciences
| |
Collapse
|
45
|
Moisa AA, Kolesanova EF. Synthetic peptide vaccines. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2010. [DOI: 10.1134/s1990750810040025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Flower DR, Phadwal K, Macdonald IK, Coveney PV, Davies MN, Wan S. T-cell epitope prediction and immune complex simulation using molecular dynamics: state of the art and persisting challenges. Immunome Res 2010; 6 Suppl 2:S4. [PMID: 21067546 PMCID: PMC2981876 DOI: 10.1186/1745-7580-6-s2-s4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Atomistic Molecular Dynamics provides powerful and flexible tools for the prediction and analysis of molecular and macromolecular systems. Specifically, it provides a means by which we can measure theoretically that which cannot be measured experimentally: the dynamic time-evolution of complex systems comprising atoms and molecules. It is particularly suitable for the simulation and analysis of the otherwise inaccessible details of MHC-peptide interaction and, on a larger scale, the simulation of the immune synapse. Progress has been relatively tentative yet the emergence of truly high-performance computing and the development of coarse-grained simulation now offers us the hope of accurately predicting thermodynamic parameters and of simulating not merely a handful of proteins but larger, longer simulations comprising thousands of protein molecules and the cellular scale structures they form. We exemplify this within the context of immunoinformatics.
Collapse
Affiliation(s)
- Darren R Flower
- Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Kanchan Phadwal
- Oxford Biomedical Research Centre, The John Radcliffe Hospital, Room 4503, Corridor 4b, Level 4, Oxford, OX 3 9DU, UK
| | - Isabel K Macdonald
- OncImmune Limited, Clinical Sciences Building, Nottingham City Hospital, Hucknall Rd. Nottingham, NG5 1PB, UK
| | - Peter V Coveney
- Centre for Computational Science, Chemistry Department, University College of London, 20 Gordon Street, WC1H 0AJ, London, UK
| | - Matthew N Davies
- SGDP, Institute of Psychiatry, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Shunzhou Wan
- Centre for Computational Science, Chemistry Department, University College of London, 20 Gordon Street, WC1H 0AJ, London, UK
| |
Collapse
|
47
|
Li-Korotky HS, Lo CY, Banks JM. Interaction of pneumococcal phase variation, host and pressure/gas composition: Virulence expression of NanA, HylA, PspA and CbpA in simulated otitis media. Microb Pathog 2010; 49:204-10. [DOI: 10.1016/j.micpath.2010.05.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 05/24/2010] [Accepted: 05/25/2010] [Indexed: 10/19/2022]
|
48
|
Cipolla L, Araújo AC, Bini D, Gabrielli L, Russo L, Shaikh N. Discovery and design of carbohydrate-based therapeutics. Expert Opin Drug Discov 2010; 5:721-37. [PMID: 22827796 DOI: 10.1517/17460441.2010.497811] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
IMPORTANCE OF THE FIELD Till now, the importance of carbohydrates has been underscored, if compared with the two other major classes of biopolymers such as oligonucleotides and proteins. Recent advances in glycobiology and glycochemistry have imparted a strong interest in the study of this enormous family of biomolecules. Carbohydrates have been shown to be implicated in recognition processes, such as cell-cell adhesion, cell-extracellular matrix adhesion and cell-intruder recognition phenomena. In addition, carbohydrates are recognized as differentiation markers and as antigenic determinants. Due to their relevant biological role, carbohydrates are promising candidates for drug design and disease treatment. However, the growing number of human disorders known as congenital disorders of glycosylation that are being identified as resulting from abnormalities in glycan structures and protein glycosylation strongly indicates that a fast development of glycobiology, glycochemistry and glycomedicine is highly desirable. AREAS COVERED IN THIS REVIEW The topics give an overview of different approaches that have been used to date for the design of carbohydrate-based therapeutics; this includes the use of native synthetic carbohydrates, the use of carbohydrate mimics designed on the basis of their native counterpart, the use of carbohydrates as scaffolds and finally the design of glyco-fused therapeutics, one of the most recent approaches. The review covers mainly literature that has appeared since 2000, except for a few papers cited for historical reasons. WHAT THE READER WILL GAIN The reader will gain an overview of the current strategies applied to the design of carbohydrate-based therapeutics; in particular, the advantages/disadvantages of different approaches are highlighted. The topic is presented in a general, basic manner and will hopefully be a useful resource for all readers who are not familiar with it. In addition, in order to stress the potentialities of carbohydrates, several examples of carbohydrate-based marketed therapeutics are given. TAKE HOME MESSAGE Carbohydrates are a rich class of natural compounds, possessing an intriguing and still not fully understood biological role. This richness offers several strategies for the design of carbohydrate-based therapeutics.
Collapse
Affiliation(s)
- Laura Cipolla
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milano, Italy.
| | | | | | | | | | | |
Collapse
|
49
|
Concomitant administration of recombinant PsaA and PCV7 reduces Streptococcus pneumoniae serotype 19A colonization in a murine model. Vaccine 2010; 28:3071-5. [DOI: 10.1016/j.vaccine.2010.02.086] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 02/12/2010] [Accepted: 02/17/2010] [Indexed: 11/27/2022]
|
50
|
The proline-rich region of pneumococcal surface proteins A and C contains surface-accessible epitopes common to all pneumococci and elicits antibody-mediated protection against sepsis. Infect Immun 2010; 78:2163-72. [PMID: 20194601 DOI: 10.1128/iai.01199-09] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pneumococcal surface protein A (PspA) and PspC of Streptococcus pneumoniae are surface virulence proteins that interfere with complement deposition and elicit protective immune responses. The C-terminal halves of PspA and PspC have some structural similarity and contain highly cross-reactive proline-rich (PR) regions. In many PR regions of PspA and PspC, there exists an almost invariant nonproline block (NPB) of about 33 amino acids. Neither the PR regions nor their NPB exhibit the alpha-helical structure characteristic of much of the protection-eliciting N-terminal portions of PspA and PspC. Prior studies of PspA and PspC as immunogens focused primarily on the alpha-helical regions of these molecules that lack the PR and NPB regions. This report shows that immunization with recombinant PR (rPR) molecules and passive immunization with monoclonal antibodies reactive with either NPB or PR epitopes are protective against infection in mice. PR regions of both PspA and PspC were antibody accessible on the pneumococcal surface. Our results indicate that while PspA could serve as a target of these protective antibodies in invasive infections, PspC might not. When antibody responses to rPR immunogens were evaluated by using flow cytometry to measure antibody binding to live pneumococci, it was observed that the mice that survived subsequent challenge produced significantly higher levels of antibodies reactive with exposed PR epitopes than the mice that became moribund. Due to their conservation and cross-reactivity, the PR regions and NPB regions represent potential vaccine targets capable of eliciting cross-protection immunity against pneumococcal infection.
Collapse
|