1
|
A Needle-Free Jet Injection System for Controlled Release and Repeated Biopharmaceutical Delivery. Pharmaceutics 2021; 13:pharmaceutics13111770. [PMID: 34834185 PMCID: PMC8620904 DOI: 10.3390/pharmaceutics13111770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 12/24/2022] Open
Abstract
Swift vaccination is necessary as a response to disease outbreaks and pandemics; otherwise, the species under attack is at risk of a high fatality rate or even mass extinction. Statistics suggest that at least 16 billion injections are administered worldwide every year. Such a high rate of needle/syringe injection administration worldwide is alarming due to the risk of needle-stick injuries, disease spread due to cross-contamination and the reuse of needles, and the misuse of needles. In addition, there are production, handling, and disposal costs. Needle phobia is an additional issue faced by many recipients of injections with needles. In addition to a detailed literature review highlighting the need for needle-free injection systems, a compressed air-driven needle-free jet injection system with a hydro-pneumatic mechanism was designed and developed by employing an axiomatic design approach. The proposed injection system has higher flexibility, uninterrupted force generation, and provides the possibility of delivering repeated injections at different tissue depths from the dermis to the muscle (depending on the drug delivery requirements) by controlling the inlet compressed air pressure. The designed needle-free jet injector consists of two primary circuits: the pneumatic and the hydraulic circuit. The pneumatic circuit is responsible for driving, pressurizing, and repeatability. The hydraulic circuit precisely injects and contains the liquid jet, allowing us to control the volume of the liquid jet at elevated pressure by offering flexibility in the dose volume per injection. Finally, in this paper we report on the successful design and working model of an air-driven needle-free jet injector for 0.2–0.5 mL drug delivery by ex vivo experimental validation.
Collapse
|
2
|
Chuang CC, Tsai MH, Yen HJ, Shyu HF, Cheng KM, Chen XA, Chen CC, Young JJ, Kau JH. A fucoidan-quaternary chitosan nanoparticle adjuvant for anthrax vaccine as an alternative to CpG oligodeoxynucleotides. Carbohydr Polym 2019; 229:115403. [PMID: 31826481 DOI: 10.1016/j.carbpol.2019.115403] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/09/2019] [Accepted: 09/29/2019] [Indexed: 12/22/2022]
Abstract
We examined the efficacy of fucoidan-N-(2-hydroxy-3-trimethylammonium)propylchitosan nanoparticles (FUC-HTCC NPs) as adjuvants for anthrax vaccine adsorbed (AVA). Positively and negatively surface-charged FUC-HTCC NPs were prepared via polyelectrolyte complexation by varying the mass ratio of FUC and HTCC. When cultured with L929 cells or JAWS II dendritic cells, both charged NPs showed high cell viability and low cytotoxicity, observed via MTT assay and lactate dehydrogenase release assay, respectively. In addition, we have monitored excellent NPs uptake efficacy by dendritic cells and observed that combining FUC-HTCC NPs with AVA significantly increases the magnitude of IgG-anti-protective antigen titers in A/J mice compared to that by CpG oligodeoxynucleotides plus AVA or AVA alone, and PA-specific IgG1 and IgG2a analysis confirmed that FUC-HTCC NPs strongly stimulated humoral immunity. Furthermore, FUC-HTCC NPs plus AVA provided a superior survival rate (100%) of A/J mice compared to CpG oligodeoxynucleotides plus AVA (75%) or AVA alone (50%) following anthrax lethal toxin challenge. The findings support FUC-HTCC NPs as a potential adjuvant of AVA for rapid induction of protective immunity.
Collapse
Affiliation(s)
- Chuan-Chang Chuang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei City 11490, Taiwan, ROC; Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC
| | - Meng-Hung Tsai
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei City 11490, Taiwan, ROC; Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC
| | - Hui-Ju Yen
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC
| | - Huey-Fen Shyu
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC
| | - Kuang-Ming Cheng
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC
| | - Xin-An Chen
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC
| | - Cheng-Cheung Chen
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC
| | - Jenn-Jong Young
- Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC.
| | - Jyh-Hwa Kau
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei City 11490, Taiwan, ROC; Institute of Preventive Medicine, National Defense Medical Center, New Taipei City 23742, Taiwan, ROC.
| |
Collapse
|
3
|
Arévalo MT, Li J, Diaz-Arévalo D, Chen Y, Navarro A, Wu L, Yan Y, Zeng M. A dual purpose universal influenza vaccine candidate confers protective immunity against anthrax. Immunology 2016; 150:276-289. [PMID: 27775159 DOI: 10.1111/imm.12683] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 10/17/2016] [Accepted: 10/20/2016] [Indexed: 01/08/2023] Open
Abstract
Preventive influenza vaccines must be reformulated annually because of antigen shift and drift of circulating influenza viral strains. However, seasonal vaccines do not always match the circulating strains, and there is the ever-present threat that avian influenza viruses may adapt to humans. Hence, a universal influenza vaccine is needed to provide protective immunity against a broad range of influenza viruses. We designed an influenza antigen consisting of three tandem M2e repeats plus HA2, in combination with a detoxified anthrax oedema toxin delivery system (EFn plus PA) to enhance immune responses. The EFn-3×M2e-HA2 plus PA vaccine formulation elicited robust, antigen-specific, IgG responses; and was protective against heterologous influenza viral challenge when intranasally delivered to mice three times. Moreover, use of the detoxified anthrax toxin system as an adjuvant had the additional benefit of generating protective immunity against anthrax. Hence, this novel vaccine strategy could potentially address two major emerging public health and biodefence threats.
Collapse
Affiliation(s)
- Maria T Arévalo
- Center of Emphasis in Infectious Diseases, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Junwei Li
- Center of Emphasis in Infectious Diseases, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Diana Diaz-Arévalo
- Center of Emphasis in Infectious Diseases, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Yanping Chen
- Center of Emphasis in Infectious Diseases, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Ashley Navarro
- Center of Emphasis in Infectious Diseases, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Lihong Wu
- Center of Emphasis in Infectious Diseases, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA.,Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatological Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yongyong Yan
- Center of Emphasis in Infectious Diseases, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA.,Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatological Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Mingtao Zeng
- Center of Emphasis in Infectious Diseases, Department of Biomedical Sciences, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| |
Collapse
|
4
|
Arévalo MT, Navarro A, Arico CD, Li J, Alkhatib O, Chen S, Diaz-Arévalo D, Zeng M. Targeted silencing of anthrax toxin receptors protects against anthrax toxins. J Biol Chem 2014; 289:15730-8. [PMID: 24742682 DOI: 10.1074/jbc.m113.538587] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Anthrax spores can be aerosolized and dispersed as a bioweapon. Current postexposure treatments are inadequate at later stages of infection, when high levels of anthrax toxins are present. Anthrax toxins enter cells via two identified anthrax toxin receptors: tumor endothelial marker 8 (TEM8) and capillary morphogenesis protein 2 (CMG2). We hypothesized that host cells would be protected from anthrax toxins if anthrax toxin receptor expression was effectively silenced using RNA interference (RNAi) technology. Thus, anthrax toxin receptors in mouse and human macrophages were silenced using targeted siRNAs or blocked with specific antibody prior to challenge with anthrax lethal toxin. Viability assays were used to assess protection in macrophages treated with specific siRNA or antibody as compared with untreated cells. Silencing CMG2 using targeted siRNAs provided almost complete protection against anthrax lethal toxin-induced cytotoxicity and death in murine and human macrophages. The same results were obtained by prebinding cells with specific antibody prior to treatment with anthrax lethal toxin. In addition, TEM8-targeted siRNAs also offered significant protection against lethal toxin in human macrophage-like cells. Furthermore, silencing CMG2, TEM8, or both receptors in combination was also protective against MEK2 cleavage by lethal toxin or adenylyl cyclase activity by edema toxin in human kidney cells. Thus, anthrax toxin receptor-targeted RNAi has the potential to be developed as a life-saving, postexposure therapy against anthrax.
Collapse
Affiliation(s)
- Maria T Arévalo
- From the Center of Excellence for Infectious Diseases, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas 79905
| | - Ashley Navarro
- From the Center of Excellence for Infectious Diseases, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas 79905
| | - Chenoa D Arico
- From the Center of Excellence for Infectious Diseases, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas 79905
| | - Junwei Li
- From the Center of Excellence for Infectious Diseases, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas 79905
| | - Omar Alkhatib
- From the Center of Excellence for Infectious Diseases, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas 79905
| | - Shan Chen
- From the Center of Excellence for Infectious Diseases, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas 79905
| | - Diana Diaz-Arévalo
- From the Center of Excellence for Infectious Diseases, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas 79905
| | - Mingtao Zeng
- From the Center of Excellence for Infectious Diseases, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas 79905
| |
Collapse
|
5
|
Expression of either lethal toxin or edema toxin by Bacillus anthracis is sufficient for virulence in a rabbit model of inhalational anthrax. Infect Immun 2012; 80:2414-25. [PMID: 22526673 DOI: 10.1128/iai.06340-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The development of therapeutics against biothreats requires that we understand the pathogenesis of the disease in relevant animal models. The rabbit model of inhalational anthrax is an important tool in the assessment of potential therapeutics against Bacillus anthracis. We investigated the roles of B. anthracis capsule and toxins in the pathogenesis of inhalational anthrax in rabbits by comparing infection with the Ames strain versus isogenic mutants with deletions of the genes for the capsule operon (capBCADE), lethal factor (lef), edema factor (cya), or protective antigen (pagA). The absence of capsule or protective antigen (PA) resulted in complete avirulence, while the presence of either edema toxin or lethal toxin plus capsule resulted in lethality. The absence of toxin did not influence the ability of B. anthracis to traffic to draining lymph nodes, but systemic dissemination required the presence of at least one of the toxins. Histopathology studies demonstrated minimal differences among lethal wild-type and single toxin mutant strains. When rabbits were coinfected with the Ames strain and the PA- mutant strain, the toxin produced by the Ames strain was not able to promote dissemination of the PA- mutant, suggesting that toxigenic action occurs in close proximity to secreting bacteria. Taken together, these findings suggest that a major role for toxins in the pathogenesis of anthrax is to enable the organism to overcome innate host effector mechanisms locally and that much of the damage during the later stages of infection is due to the interactions of the host with the massive bacterial burden.
Collapse
|
6
|
Sharma S, Mukkur TK, Benson HA, Chen Y. Enhanced Immune Response Against Pertussis Toxoid by IgA-Loaded Chitosan–Dextran Sulfate Nanoparticles. J Pharm Sci 2012; 101:233-44. [DOI: 10.1002/jps.22763] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 08/12/2011] [Accepted: 08/30/2011] [Indexed: 12/11/2022]
|
7
|
Gorantala J, Grover S, Goel D, Rahi A, Jayadev Magani SK, Chandra S, Bhatnagar R. A plant based protective antigen [PA(dIV)] vaccine expressed in chloroplasts demonstrates protective immunity in mice against anthrax. Vaccine 2011; 29:4521-33. [PMID: 21504775 DOI: 10.1016/j.vaccine.2011.03.082] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 03/11/2011] [Accepted: 03/22/2011] [Indexed: 12/29/2022]
Abstract
The currently available anthrax vaccines are limited by being incompletely characterized, potentially reactogenic and have an expanded dosage schedule. Plant based vaccines offer safe alternative for vaccine production. In the present study, we expressed domain IV of Bacillus anthracis protective antigen gene [PA(dIV)] in planta (by nuclear agrobacterium and chloroplast transformation) and E. coli [rPA(dIV)]. The presence of transgene and the expression of PA(dIV) in planta was confirmed by molecular analysis. Expression levels up to 5.3% of total soluble protein (TSP) were obtained with AT rich (71.8% AT content) PA(dIV) gene in transplastomic plants while 0.8% of TSP was obtained in nuclear transformants. Further, we investigated the protective response of plant and E. coli derived PA(dIV) in mice by intraperitoneal (i.p.) and oral immunizations with or without adjuvant. Antibody titers of >10(4) were induced upon i.p. and oral immunizations with plant derived PA(dIV) and oral immunization with E. coli derived PA(dIV). Intraperitoneal injections with adjuvanted E. coli derived PA(dIV), generated highest antibody titers of >10(5). All the immunized groups demonstrated predominant IgG1 titers over IgG2a indicating a polarized Th2 type response. We also evaluated the mucosal antibody response in orally immunized groups. When fecal extracts were analyzed, low sIgA titer was demonstrated in adjuvanted plant and E. coli derived PA(dIV) groups. Further, PA(dIV) antisera enhanced B. anthracis spore uptake by macrophages in vitro and also demonstrated an anti-germinating effect suggesting a potent role at mucosal surfaces. The antibodies from various groups were efficient in neutralizing the lethal toxin in vitro. When mice were challenged with B. anthracis, mice immunized with adjuvanted plant PA(dIV) imparted 60% and 40% protection while E. coli derived PA(dIV) conferred 100% and 80% protection upon i.p. and oral immunizations. Thus, our study is the first attempt in highlighting the efficacy of plant expressed PA(dIV) by oral immunization in murine model.
Collapse
MESH Headings
- Animals
- Anthrax/immunology
- Anthrax/prevention & control
- Anthrax Vaccines/administration & dosage
- Anthrax Vaccines/genetics
- Anthrax Vaccines/immunology
- Anthrax Vaccines/metabolism
- Antibodies, Bacterial/blood
- Antibodies, Bacterial/immunology
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Antigens, Bacterial/genetics
- Antigens, Bacterial/immunology
- Antigens, Bacterial/metabolism
- Bacillus anthracis/immunology
- Bacterial Toxins/genetics
- Bacterial Toxins/immunology
- Bacterial Toxins/metabolism
- Chloroplasts/genetics
- Chloroplasts/metabolism
- Immunity, Mucosal
- Immunoglobulin A/blood
- Immunoglobulin A/immunology
- Immunoglobulin A, Secretory/immunology
- Immunoglobulin G/blood
- Immunoglobulin G/immunology
- Mice
- Mice, Inbred BALB C
- Molecular Sequence Data
- Plants, Genetically Modified
- Rhizobium/genetics
- Rhizobium/metabolism
- Nicotiana/genetics
- Nicotiana/metabolism
- Nicotiana/microbiology
- Transformation, Genetic
- Vaccination
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccines, DNA/metabolism
Collapse
Affiliation(s)
- Jyotsna Gorantala
- Laboratory of Molecular Biology and Genetic Engineering, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | | | | | | | | | | | | |
Collapse
|
8
|
Jesus S, Borges O. Recent Developments in the Nasal Immunization against Anthrax. ACTA ACUST UNITED AC 2011. [DOI: 10.4236/wjv.2011.13008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Fieldhouse RJ, Turgeon Z, White D, Merrill AR. Cholera- and anthrax-like toxins are among several new ADP-ribosyltransferases. PLoS Comput Biol 2010; 6:e1001029. [PMID: 21170356 PMCID: PMC3000352 DOI: 10.1371/journal.pcbi.1001029] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 11/10/2010] [Indexed: 11/19/2022] Open
Abstract
Chelt, a cholera-like toxin from Vibrio cholerae, and Certhrax, an anthrax-like toxin from Bacillus cereus, are among six new bacterial protein toxins we identified and characterized using in silico and cell-based techniques. We also uncovered medically relevant toxins from Mycobacterium avium and Enterococcus faecalis. We found agriculturally relevant toxins in Photorhabdus luminescens and Vibrio splendidus. These toxins belong to the ADP-ribosyltransferase family that has conserved structure despite low sequence identity. Therefore, our search for new toxins combined fold recognition with rules for filtering sequences--including a primary sequence pattern--to reduce reliance on sequence identity and identify toxins using structure. We used computers to build models and analyzed each new toxin to understand features including: structure, secretion, cell entry, activation, NAD+ substrate binding, intracellular target binding and the reaction mechanism. We confirmed activity using a yeast growth test. In this era where an expanding protein structure library complements abundant protein sequence data--and we need high-throughput validation--our approach provides insight into the newest toxin ADP-ribosyltransferases.
Collapse
Affiliation(s)
- Robert J. Fieldhouse
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Zachari Turgeon
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Dawn White
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - A. Rod Merrill
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
10
|
Ramirez K, Ditamo Y, Galen JE, Baillie LWJ, Pasetti MF. Mucosal priming of newborn mice with S. Typhi Ty21a expressing anthrax protective antigen (PA) followed by parenteral PA-boost induces B and T cell-mediated immunity that protects against infection bypassing maternal antibodies. Vaccine 2010; 28:6065-75. [PMID: 20619377 DOI: 10.1016/j.vaccine.2010.06.089] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 06/20/2010] [Accepted: 06/25/2010] [Indexed: 10/19/2022]
Abstract
The currently licensed anthrax vaccine has several limitations and its efficacy has been proven only in adults. Effective immunization of newborns and infants requires adequate stimulation of their immune system, which is competent but not fully activated. We explored the use of the licensed live attenuated S. Typhi vaccine strain Ty21a expressing Bacillus anthracis protective antigen [Ty21a(PA)] followed PA-alum as a strategy for immunizing the pediatric population. Newborn mice primed with a single dose of Ty21a(PA) exhibited high frequencies of mucosal IgA-secreting B cells and IFN-gamma-secreting T cells during the neonatal period, none of which was detected in newborns immunized with a single dose of PA-alum. Priming with Ty21a(PA) followed by PA-boost resulted in high levels of PA-specific IgG, toxin neutralizing and opsonophagocytic antibodies and increased frequency of bone marrow IgG plasma cells and memory B cells compared with repeated immunization with PA-alum alone. Robust B and T cell responses developed even in the presence of maternal antibodies. The prime-boost protected against systemic and respiratory infection. Mucosal priming with a safe and effective S. Typhi-based anthrax vaccine followed by PA-boost could serve as a practical and effective prophylactic approach to prevent anthrax early in life.
Collapse
Affiliation(s)
- Karina Ramirez
- Center for Vaccine Development, Department of Pediatrics, University of Maryland School of Medicine, 685 West Baltimore St. Room 480, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
11
|
Cybulski RJ, Sanz P, O'Brien AD. Anthrax vaccination strategies. Mol Aspects Med 2009; 30:490-502. [PMID: 19729034 DOI: 10.1016/j.mam.2009.08.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 08/24/2009] [Indexed: 01/10/2023]
Abstract
The biological attack conducted through the US postal system in 2001 broadened the threat posed by anthrax from one pertinent mainly to soldiers on the battlefield to one understood to exist throughout our society. The expansion of the threatened population placed greater emphasis on the reexamination of how we vaccinate against Bacillus anthracis. The currently-licensed Anthrax Vaccine, Adsorbed (AVA) and Anthrax Vaccine, Precipitated (AVP) are capable of generating a protective immune response but are hampered by shortcomings that make their widespread use undesirable or infeasible. Efforts to gain US Food and Drug Administration (FDA) approval for licensure of a second generation recombinant protective antigen (rPA)-based anthrax vaccine are ongoing. However, this vaccine's reliance on the generation of a humoral immune response against a single virulence factor has led a number of scientists to conclude that the vaccine is likely not the final solution to optimal anthrax vaccine design. Other vaccine approaches, which seek a more comprehensive immune response targeted at multiple components of the B. anthracis organism, are under active investigation. This review seeks to summarize work that has been done to build on the current PA-based vaccine methodology and to evaluate the search for future anthrax prophylaxis strategies.
Collapse
Affiliation(s)
- Robert J Cybulski
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4799, United States
| | | | | |
Collapse
|
12
|
McGowen AL, Hale LP, Shelburne CP, Abraham SN, Staats HF. The mast cell activator compound 48/80 is safe and effective when used as an adjuvant for intradermal immunization with Bacillus anthracis protective antigen. Vaccine 2009; 27:3544-52. [PMID: 19464533 DOI: 10.1016/j.vaccine.2009.03.069] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 03/20/2009] [Accepted: 03/24/2009] [Indexed: 11/18/2022]
Abstract
We evaluated the safety and efficacy of the mast cell activator compound 48/80 (C48/80) when used as an adjuvant delivered intradermally (ID) with recombinant anthrax protective antigen (rPA) in comparison with two well-known adjuvants. Mice were vaccinated in the ear pinnae with rPA or rPA+C48/80, CpG oligodeoxynucleotides (CpG), or cholera toxin (CT). All adjuvants induced similar increases in serum anti-rPA IgG and lethal toxin neutralizing antibodies. C48/80 induced a balanced cytokine production (Th1/Th2/Th17) by antigen-restimulated splenocytes, minimal injection site inflammation, and no antigen-specific IgE. Histological analysis demonstrated that vaccination with C48/80 reduced the number of resident mast cells and induced an injection site neutrophil influx within 24h. Our data demonstrate that C48/80 is a safe and effective adjuvant, when used by the intradermal route, to induce protective antibody and balanced Th1/Th2/Th17 responses.
Collapse
Affiliation(s)
- Afton L McGowen
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
13
|
Abstract
A replication-incompetent adenoviral vector encoding the heavy chain C-fragment (HC50) of botulinum neurotoxin type C (BoNT/C) was evaluated as a mucosal vaccine against botulism in a mouse model. Single intranasal inoculation of the adenoviral vector elicited a high level of HC50-specific IgG, IgG1 and IgG2a in sera and IgA in mucosal secretions as early as 2 weeks after vaccination. The antigen-specific serum antibodies were maintained at a high level at least until the 27th week. Immune sera showed high potency in neutralizing BoNT/C as indicated by in vitro toxin neutralization assay. The mice receiving single dose of 2 × 107 p.f.u. (plaque-forming unit) of adenoviral vector were completely protected against challenge with up to 104 × MLD50 of BoNT/C. The protective immunity showed vaccine dose dependence from 105 to 2 × 107 p.f.u. of adenoviral vector. In addition, animals receiving single intranasal dose of 2 × 107 p.f.u. adenoviral vector could be protected against 100 × MLD50 27 weeks after vaccination. Animals with preexisting immunity to adenovirus could also be vaccinated intranasally and protected against lethal challenge with BoNT/C. These results suggest that the adenoviral vector is a highly effective gene-based mucosal vaccine against botulism.
Collapse
|
14
|
Mono-N-carboxymethyl chitosan (MCC) and N-trimethyl chitosan (TMC) nanoparticles for non-invasive vaccine delivery. Int J Pharm 2008; 363:139-48. [DOI: 10.1016/j.ijpharm.2008.06.029] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 06/24/2008] [Accepted: 06/28/2008] [Indexed: 11/17/2022]
|
15
|
Detoxified lethal toxin as a potential mucosal vaccine against anthrax. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2008; 15:612-6. [PMID: 18256208 DOI: 10.1128/cvi.00402-07] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The nontoxic mutant lethal factor (mLF; which has the E687C substitution) and functional protective antigen (PA63) of Bacillus anthracis were evaluated for their use as mucosal vaccines against anthrax in A/J mice. Intranasal vaccination of three doses of 30 microg of mLF or 60 microg of PA63 elicited significant serum and mucosal antibody responses, with anthrax lethal toxin-neutralizing titers of 40 and 60 in immune sera, respectively. However, only 30% and 60% of the vaccinated animals in the two groups could survive a challenge with 100 times the 50% lethal dose of B. anthracis Sterne spores, respectively. In contrast, vaccination with three doses of the combination of 30 microg of mLF and 60 microg of PA63, the detoxified lethal toxin, elicited antibody responses against LF and PA significantly higher than those elicited after vaccination with mLF or PA63 individually by use of the same dose and schedule. Vaccination with the detoxified lethal toxin resulted in significantly higher lethal toxin-neutralizing antibody titers in sera (titer, 90). Animals vaccinated with three doses of the detoxified lethal toxin were completely protected against the spore challenge. The data suggest that mLF and PA63 have a mutual enhancement effect for evoking systemic and mucosal immune responses and that the detoxified lethal toxin can be used as an efficient mucosal vaccine against anthrax.
Collapse
|
16
|
Zeng M, Xu Q, Elias M, Pichichero ME, Simpson LL, Smith LA. Protective immunity against botulism provided by a single dose vaccination with an adenovirus-vectored vaccine. Vaccine 2007; 25:7540-8. [PMID: 17897756 PMCID: PMC2077857 DOI: 10.1016/j.vaccine.2007.08.035] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 08/15/2007] [Accepted: 08/16/2007] [Indexed: 11/18/2022]
Abstract
Botulinum neurotoxins cause botulism, a neuroparalytic disease in humans and animals. We constructed a replication-incompetent adenovirus encoding a synthesized codon-optimized gene for expression of the heavy chain C-fragment (H(C)50) of botulinum neurotoxin type C (BoNT/C). This recombinant human serotype 5 adenoviral vector (Ad5) was evaluated as a genetic vaccine candidate against botulism caused by BoNT/C in a mouse model. A one-time intramuscular injection with 10(5) to 2 x 10(7)pfu of adenoviral vectors elicited robust serum antibody responses against H(C)50 of BoNT/C as assessed by ELISA. Immune sera showed high potency in neutralizing the active BoNT/C in vitro. After a single dose of 2 x 10(7)pfu adenoviral vectors, the animals were completely protected against intraperitoneal challenge with 100 x MLD(50) of active BoNT/C. The protective immunity appeared to be vaccine dose-dependent. The anti-toxin protective immunity could last for at least 7 months without a booster injection. In addition, we observed that pre-existing immunity to the wild-type Ad5 in the host had no significant influence on the protective efficacy of vaccination. The data suggest that an adenovirus-vectored genetic vaccine is a highly efficient prophylaxis candidate against botulism.
Collapse
Affiliation(s)
- Mingtao Zeng
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Box 672, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| | | | | | | | | | | |
Collapse
|